R&D Network Life Cycles
This project is related to our research line: R&D networks.
Duration 30 months (May 2010 - October 2012)
Funding source Swiss National Science Foundation (Grant 100014_126865)
It is widely agreed that research and development (R&D), with its subsequent technological innovations, is the driving force in economic growth. The project aims at understanding the rise and fall of collaboration networks in R&D intensive industries. Different from many other projects on economic networks, this one does not just focus on network growth, but also on the decline. Together with repeated collaborations over a longer period of time, this may result in life cycles of R&D networks. This phenomenon is interesting not just from a scientific perspective, where empirical and theoretical investigations are still rare. It is also important for national economies such as Switzerland, which remarkably rely on technological innovation. Hence, from a policy perspective, it is important to know the driving forces behind firms' decision to start, or to drop, R&D alliances.
With our project, we address both the theoretical and the empirical investigation of R&D life cycles. The former resulted in developing agent-based models to explain structural features of real R&D networks. The latter allowed us to reveal such features in large-scale datasets of firm interactions, and to identify the specific characteristics of successful firms. Among the major deliverables, there are several publications, talks at scientific conferences, and the creation of an intergrated dataset that can be further used in subsequent research on R&D networks.
Newcomers vs. incumbents: How firms select their partners for R&D collaborations
|
[2017]
|
Garas, Antonios;
Tomasello, Mario Vincenzo;
Schweitzer, Frank
|
arXiv:1403.3298
|
more» «less
|
Abstract
This paper studies the selection of partners for R&D collaborations of firms both empirically, by analyzing a large data set of R&D alliances over 25 years, and theoretically, by utilizing an agent-based model of alliance formation. We quantify the topological position of a firm in the R&D network by means of the weighted k-core decomposition which assigns a coreness value to each firm. The evolution of these coreness values over time reconstructs the career path of individual firms, where lower coreness indicates a better integration of firms in an evolving R&D network. Using a large patent dataset, we demonstrate that coreness values strongly correlate with the number of patents of a firm. Analyzing coreness differences between firms and their partners, we identify a change in selecting partners: less integrated firms choose partners of similar coreness until they reach their best network position. After that, well integrated firms (with low coreness) choose preferably partners with high coreness, either newcomers or firms from the periphery. We use the agent-based model to test whether this change in behavior needs to be explained by means of strategic considerations, i.e. firms switching their strategy in choosing partners dependent on their network position. We find that the observed behavior can be well reproduced without such strategic considerations, this way challenging the role of strategies in explaining macro patterns of collaborations.
The Rise and Fall of R&D Networks
|
[2017]
|
Tomasello, Mario Vincenzo;
Napoletano, Mauro;
Garas, Antonios;
Schweitzer, Frank
|
ICC - Industrial and Corporate Change,
pages: 617-646,
volume: 26,
number: 4
|
more» «less
|
Abstract
Drawing on a large database of publicly announced R&D alliances, we empirically investigate the evolution of R&D networks and the process of alliance formation in several manufacturing sectors over a 24-year period (1986-2009). Our goal is to empirically evaluate the temporal and sectoral robustness of a large set of network indicators, thus providing a more complete description of R&D networks with respect to the existing literature. We find that most network properties are not only invariant across sectors, but also independent of the scale of aggregation at which they are observed, and we highlight the presence of core-periphery architectures in explaining some properties emphasized in previous empirical studies (e.g. asymmetric degree distributions and small worlds). In addition, we show that many properties of R&D networks are characterized by a rise-and-fall dynamics with a peak in the mid-nineties. We find that such dynamics is driven by mechanisms of accumulative advantage, structural homophily and multiconnectivity. In particular, the change from the "rise" to the "fall" phase is associated to a structural break in the importance of multiconnectivity.
A model of dynamic rewiring and knowledge exchange in R&D networks
|
[2016]
|
Tomasello, Mario Vincenzo;
Tessone, Claudio Juan;
Schweitzer, Frank
|
Advances in Complex Systems,
volume: 19,
number: 1 - 2
|
more» «less
|
Abstract
This paper investigates the process of knowledge exchange in inter-firm Research and Development (R&D) alliances by means of an agent-based model. Extant research has pointed out that firms select alliance partners considering both network-related and network-unrelated features (e.g., social capital versus complementary knowledge stocks). In our agent-based model, firms are located in a metric knowledge space. The interaction rules incorporate an exploration phase and a knowledge transfer phase, during which firms search for a new partner and then evaluate whether they can establish an alliance to exchange their knowledge stocks. The model parameters determining the overall system properties are the rate at which alliances form and dissolve and the agents' interaction radius. Next, we define a novel indicator of performance, based on the distance traveled by the firms in the knowledge space. Remarkably, we find that - depending on the alliance formation rate and the interaction radius - firms tend to cluster around one or more attractors in the knowledge space, whose position is an emergent property of the system. And, more importantly, we find that there exists an inverted U-shaped dependence of the network performance on both model parameters.
Quantifying knowledge exchange in R&D networks: A data-driven model
|
[2018]
|
Vaccario, Giacomo;
Tomasello, Mario Vincenzo;
Tessone, Claudio Juan;
Schweitzer, Frank
|
Journal of Evolutionary Economics,
pages: 461-493,
volume: 28,
number: 3
|
more» «less
|
Abstract
We propose a model that reflects two important processes in R&D activities of firms, the formation of R&D alliances and the exchange of knowledge as a result of these collaborations. In a data-driven approach, we analyze two large-scale data sets extracting unique information about 7500 R&D alliances and 5200 patent portfolios of firms. This data is used to calibrate the model parameters for network formation and knowledge exchange. We obtain probabilities for incumbent and newcomer firms to link to other incumbents or newcomers which are able to reproduce the topology of the empirical R&D network. The position of firms in a knowledge space is obtained from their patents using two different classification schemes, IPC in 8 dimensions and ISI-OST-INPI in 35 dimensions. Our dynamics of knowledge exchange assumes that collaborating firms approach each other in knowledge space at a rate $μ$ for an alliance duration $τ$. Both parameters are obtained in two different ways, by comparing knowledge distances from simulations and empirics and by analyzing the collaboration efficiency $\hat{C}_n$. This is a new measure, that takes also in account the effort of firms to maintain concurrent alliances, and is evaluated via extensive computer simulations. We find that R&D alliances have a duration of around two years and that the subsequent knowledge exchange occurs at a very low rate. Hence, a firm's position in the knowledge space is rather a determinant than a consequence of its R&D alliances. From our data-driven approach we also find model configurations that can be both realistic and optimized with respect to the collaboration efficiency $\hat{C}_n$. Effective policies, as suggested by our model, would incentivize shorter R&D alliances and higher knowledge exchange rates.
The Role of Endogenous and Exogenous Mechanisms in the Formation of R&D Networks
|
[2014]
|
Tomasello, Mario Vincenzo;
Perra, Nicola;
Tessone, Claudio Juan;
Karsai, M'arton;
Schweitzer, Frank
|
Scientific Reports,
pages: 5679,
volume: 4
|
more» «less
|
Abstract
We develop an agent-based model of strategic link formation in Research and Development (R&D) networks. Empirical evidence has shown that the growth of these networks is driven by mechanisms which are both endogenous to the system (that is, depending on existing alliances patterns) and exogenous (that is, driven by an exploratory search for newcomer firms). Extant research to date has not investigated both mechanisms simultaneously in a comparative manner. To overcome this limitation, we develop a general modeling framework to shed light on the relative importance of these two mechanisms. We test our model against a comprehensive dataset, listing cross-country and cross-sectoral R&D alliances from 1984 to 2009. Our results show that by fitting only three macroscopic properties of the network topology, this framework is able to reproduce a number of micro-level measures, including the distributions of degree, local clustering, path length and component size, and the emergence of network clusters. Furthermore, by estimating the link probabilities towards newcomers and established firms from the data, we find that endogenous mechanisms are predominant over the exogenous ones in the network formation, thus quantifying the importance of existing structures in selecting partner firms.
Garas, Antonios;
Tomasello, Mario Vincenzo;
Schweitzer, Frank
A k-shell decomposition method for weighted networks
|
[2012]
|
Garas, Antonios;
Schweitzer, Frank;
Havlin, Shlomo
|
New Journal of Physics,
pages: 083030,
volume: 14,
number: 8
|
more» «less
|
Abstract
We present a generalized method for calculating the k-shell structure of weighted networks. The method takes into account both the weight and the degree of a network, in such a way that in the absence of weights we resume the shell structure obtained by the classic k-shell decomposition. In the presence of weights, we show that the method is able to partition the network in a more refined way, without the need of any arbitrary threshold on the weight values. Furthermore, by simulating spreading processes using the susceptible-infectious-recovered model in four different weighted real-world networks, we show that the weighted k-shell decomposition method ranks the nodes more accurately, by placing nodes with higher spreading potential into shells closer to the core. In addition, we demonstrate our new method on a real economic network and show that the core calculated using the weighted k-shell method is more meaningful from an economic perspective when compared with the unweighted one.
The efficiency and stability of R&D networks
|
[2012]
|
Koenig, Michael D;
Battiston, Stefano;
Napoletano, Mauro;
Schweitzer, Frank
|
Games and Economic Behavior,
pages: 694-713,
volume: 75,
number: 2
|
more» «less
|
Abstract
We investigate the efficiency and stability of R&D networks in a model with network-dependent indirect spillovers. We show that the efficient network structure critically depends on the marginal cost of R&D collaborations. When the marginal cost is low, the complete graph is efficient, while high marginal costs imply that the efficient network is asymmetric and has a nested structure. Regarding the stability of network structures, we show the existence of both symmetric and asymmetric equilibria. The efficient network is stable for small industry size and small cost. In contrast, for large industry size, there is a wide region of cost in which the efficient network is not stable. This implies a divergence between efficiency and stability in large industries.
Recombinant knowledge and the evolution of innovation networks
|
[2011]
|
Koenig, Michael D;
Battiston, Stefano;
Napoletano, Mauro;
Schweitzer, Frank
|
Journal of Economic Behavior & Organization,
pages: 145–164,
volume: 79,
number: 3
|
more» «less
|
Abstract
We introduce a new model for the evolution of networks of firms exchanging knowledge in R&D partnerships. Innovation is assumed to result from the recombination of knowledge among firms in an R&D intensive industry. The decision of two firms to establish a new partnerships or to terminate an existing one, is based on their marginal revenues and costs, which in turn depend on the position they occupy in the network. Moreover, the formation of a collaboration has significant external effects on the other firms in the same connected component of the network. We show that this decentralized partner selection process leads to the existence of multiple equilibrium structures. Finally, by means of computer simulations, we study the properties of the emerging equilibrium networks and we show that they reproduce the stylized facts of R&D networks.
|