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Abstract This paper studies the selection of partners for R&D collaborations of firms both
empirically, by analyzing a large data set of R&D alliances over 25 years, and theoretically, by
utilizing an agent-based model of alliance formation. We quantify the topological position of a
firm in the R&D network by means of the weighted k-core decomposition which assigns a coreness
value to each firm. The evolution of these coreness values over time reconstructs the career path of
individual firms, where lower coreness indicates a better integration of firms in an evolving R&D
network. Using a large patent dataset, we demonstrate that coreness values strongly correlate
with the number of patents of a firm. Analyzing coreness differences between firms and their
partners, we identify a change in selecting partners: less integrated firms choose partners of
similar coreness until they reach their best network position. After that, well integrated firms
(with low coreness) choose preferably partners with high coreness, either newcomers or firms from
the periphery. We use the agent-based model to test whether this change in behavior needs to
be explained by means of strategic considerations, i.e. firms switching their strategy in choosing
partners dependent on their network position. We find that the observed behavior can be well
reproduced without such strategic considerations, this way challenging the role of strategies in
explaining macro patterns of collaborations.

1 Introduction

The structure and dynamics of many social and economic systems can be studied by utilizing
the network approach. Here, nodes in a network represent the actors, or agents, such as firms
in an economic system, while links between nodes represent their interactions, for instance the
mutual exchange of knowledge. The complex network approach, in particular, builds on the fact
that there is a large number of similar agents which allows to express their interactions in terms
of statistical rules rather than individual decisions.

Importantly, these complex networks are inherently dynamic, at different scales. Nodes can enter
or leave the network, which impacts the size of the network measured by the number of nodes.
But nodes can also start new interactions with other nodes or terminate existing ones, which
impacts the topology of the network. Eventually, nodes can also strengthen or reduce established
interactions which impacts the weight of the links. All these dynamic processes feed back on
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the importance of individual nodes in the network which can be expressed by means of different
centrality measures [8].

For economic networks, such as the network of research and development (R&D) collaborations
between firms discussed in this paper, one generally assumes that the different dynamics do not
occur at random but are based on the strategic decisions of the firms involved. This leads us
to the question addressed in this paper: if we are able to observe the dynamics of the network
from large-scale datasets, could we deduce (some of) the strategies that such firm may follow
in entering or leaving the network and in establishing or terminating collaborations? And, more
importantly, would we be able to distinguish what is deduced as a strategy from a non-strategic
behavior that follows only statistical rules?

These questions point to the overarching discussion about the role of chance and choice in the
decision of firms and to the corresponding research strands on economic networks [11, 13, 22]. If
the dynamics of firms is driven by choice, then the research focus shall be on rational decisions,
on utility maximization and on strategic link formation, to explain observed economic networks.
Such an approach mainly rooted in economics is indeed able to capture a number of topological
features of these networks [1, 3, 12, 14, 16, 17]. Network formation, from this perspective, is
modeled as a strategic game where firms form and delete links based on rational strategies using
complete or incomplete information. If, on the other hand, the observed dynamics of firms is
driven by chance, the research focus shall be on stochastic rules, statistical regularities and
large-scale structures. This approach is put forward in complex systems science and has been
successful in reproducing empirical findings in various economic networks [5, 7, 19–21, 25].

As pointed out in Ref. [22], our aim is to combine these two seemingly different perspectives, i.e.
to link economic arguments about strategic link formation of firms to their statistical counterpart
of probabilistic rules. For this, we utilize data driven modeling. We analyze a large dataset of
R&D collaborations described in Sect. 2 to identify, in Sect. 3, strategies that firms possibly use
for choosing partners in R&D alliances. As reported in Sect. 3, the observed behavior differs for
newcomers and established firms, as well as for firms that have not or have already reached their
best network position. The probabilities involved in the link formation with either newcomers or
established firms have been deduced from the data by means of statistical calibration [25]. Here,
we apply such probabilities in an agent-based model described in Sect. 4 to better understand
the observed differences in choosing partners. Since our agent-based model does not build on
strategic considerations, it can serve as a null model to test to what extent strategic arguments
are necessary to explain the observed choice of partners. Sect. 5 draws conclusions with respect
to this question.

Along with our investigations, we provide solutions to some methodological issues that can be
useful beyond their current application: (a) we quantify the network position of firms by means
of the weighted k-core decomposition [10], (b) based on this, we reconstruct the time-dependent
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career path of firms in the R&D network, and (c) we link the network position of firms to their
success in R&D activities, as measured by their number of patents, to verify that a topological
measure can indeed be used to proxy performance.

2 Network analysis

2.1 Data sets

In this paper, we build on two different data sets. Our first data set is used to reconstruct the
network of firm interactions. In our network, nodes represent firms and links represent R&D col-
laborations. All publicly announced R&D partnerships between firms are available from Thomson
Reuters’ SDC Platinum alliances database. From this database we used in total 21,572 alliance
reports involving 13,936 firms between 1984 and 2009. We note that these alliances can involve
different kinds of economic actors, e.g. also universities, but we commonly dub them here as
firms. To classify the industrial sector of a firm’s activity, we used its 4-digit Standard Industrial
Classification (SIC) code, which allows us to classify universities separately (see Figure 2).

Because the SDC database does not provide a unique identifier for each firm, we used the firm
names reported in the dataset. Therefore, we had to correct for the cases where two or more
entries with different names corresponded to the same firm, by manually controlling for spelling,
legal extensions (e.g. LTD, INC, etc.), and any other recurrent key words (e.g. BIO, TECH,
PHARMA, LAB, etc.) that could affect the matching between different entries referring to the
same company. We decided to keep those subsidiaries of the same firm that are located in different
countries as separated entities.

Our second data set is used to estimate the success of each firm, to later relate this to the
network position. As a measure of success we use a firm’s knowledge production as measured by
the number of patents in the respective time window. This data is obtained from the NBER
patent database of the National Bureau of Economic Research. It contains detailed information
on about almost three million patents granted in the U.S.A. between 1974 and 2006. Every
patent is associated with one or more assignees and is classified according to the International
Patent Classification (IPC) system. In general the NBER database is of very high quality, and
allowed us to cross-link the firm names involved in alliances in the SDC database with patent
information.

2.2 Reconstructing the R&D network

Because the network of firm collaborations is highly dynamic, as pointed out in Sect. 1, there
are various ways of studying its evolution over time. In a recent work [24] we focused on the
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changing growth pattern in consecutive 5-year time intervals, to reveal a remarkable life cycle
dynamics of the R&D network over the whole period of 25 years. Here, our focus is different: we
want to find out how a firm’s (current) position in the network impacts its (future) strategy of
forming alliances with other firms.

This builds on the assumption that topological measures, i.e. quantifications of the network posi-
tion, indeed capture relevant information for strategic decisions. To characterize the information
encoded in a network’s topology, we distinguish between local and global information. The former
has its focus on the specific firm in relation to its partners: its degree characterizes the number
of alliance partners, which are direct neighbors in the network at any instance of time. Hence,
the cumulative degree, aggregated over time, tells us about the variety of partners in the recent
history. The cumulative weight for each link, on the other hand, tells us how often the same
partner was chosen over the available time period.

We argue that cumulative values tell more about a possible strategy because they also reflect the
previous experience of a firm with respect to diversified and repeated interactions. Hence, in the
following we will focus on the cumulative network of R&D collaborations, aggregated over time up
to a given year. This implies that the cumulative network further evolves over time, as new annual
data is considered. This gives it an advantage over the aggregated network which only considers
one static topology. The cumulative network is also preferred over a time-sliced reconstruction
of the network which often only results in a large number of disconnected components. Hence,
from the cumulative network, we can deduce global information about the position of a firm
beyond the relation to its nearest neighbors. For instance, we can characterize its embeddedness
in larger communities, its belonging to (dis)connected components of the network, its importance
in connecting other firms that are not neighbors in the network, etc.

To reconstruct the cumulative R&D network, we use as time resolution one year and add a new
link to the cumulative network every time an alliance of two firms is announced in the dataset
in this time window. When an alliance involved more than two firms (consortium), all the firms
involved are connected in pairs, resulting into a fully connected clique. The weight wij(t) of a
link indicates the total number of alliances between firms i and j up to time t. If, during the
same time interval, two firms i and j have more than one collaboration on different projects,
such multiple links are also considered in the weight.

2.3 Largest connected component and cluster sizes

One prominent feature of the R&D network as shown in Figure 1 is the emergence of a large con-
nected component, in which all firms are either directly or indirectly connected. This component
is not homogeneous with respect to the economic activities of the firms as the different colors
indicate. Instead, it is dominated by the two sectors, pharmaceuticals and computer software.
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1988 1990 1994 2000

Figure 1: Snapshots of the R&D network showing its evolution and the emergence of a large
connected component.

The largest connected component is surrounded by a large number of much smaller compo-
nents. These indicate isolated clusters of a few firms collaborating. The mixed colors indicate
that usually firms from different economic sectors engage in R&D alliances which highlights the
importance of their complementary knowledge bases.

In order to characterize the distribution of sizes of the different components, or clusters, we use
an approach from percolation theory. We compare the average cluster size Iav of the network
including the largest connected component with the reduced average cluster size I ′av of the network
without the largest connected component. Specifically, these quantities are calculated as:

Iav =
mmax

∑

m=2

hmm
2

N2
; I ′av =

mmax−1

∑

m=2

hmm
2

N2
= Iav −

m2
max

N2
(1)

where m ≥ 2 are the sizes of the clusters (isolated firms are not considered) and hm is the number
of clusters of size m and N is the total number of firms in the network at a given time.

The evolution of Iav and I ′av over the time period of 25 years is shown in Figure 2. During
early years, the network is still fragmented, i.e many isolated and general small clusters exist.
But already at an early stage a larger cluster emerges, which becomes the largest connected
component over time. After the years 1992-1993, it dominates the network, which means that
knowledge can potentially diffuse across the whole network.

2.4 Quantifying network positions

Given that we have reconstructed the cumulative R&D network, we need to characterize the
importance of nodes in this network. In a network approach, this importance is quantified by
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Figure 2: Evolution of the average cluster size (Iav), and the reduced average cluster size (I ′av)
of the R&D network.

purely topological measures, i.e. deduced from the link structure of the network rather than using
economic measures (such as market capitalization).

There are various centrality measures to capture the (topological) importance of nodes that are
also partially correlated [8]. For example, degree centrality simply counts the number of links
di of node i and thus only captures local information about a node and its nearest neighbors.
Betweenness centrality, on the other hand, quantifies the importance of node i in connecting all
other nodes in the system via the shortest path. Such a measure might be of interest in cases
where the shortest path has a practical meaning, but it does not allow to capture core-periphery
structures.

The main centrality measure used in this paper is called coreness CiC . It has its roots to social
network analysis [4, 23] and aims to measure the importance of a node relative to others. For a
given network, a coreness value can be assigned to every node based on a procedure called k-core
decomposition. This procedure recursively removes all nodes with a degree less than d, i.e., it
simulates a cascade that consecutively removes nodes with a degree less than d until only nodes
with a degree equal or larger than d remain in the network. The procedure starts with d = 1, i.e.
it removes all nodes that have only one neighbor in the networks. The removal may leave these
neighboring nodes with one additional neighbor, hence in the second step of the cascade such
nodes are also removed. Their removal again may leave other nodes with one remaining neighbor.
Thus, in the third step they are also removed and so forth, unless the cascade stops. Then, all
nodes that have been removed during this cascade are assigned a shell number ks equal to d.
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Nodes with a small ks obviously have been removed very early because they were topologically
not well integrated in the network. Consequently, nodes in the shell with the largest ks = kmax

s

are counted as the the core of the network. The difference between the kis value of a node i and
the value of the core is called coreness, CiC = kmax

s −kis. It can be used to measure the importance
of nodes based on the assumption that the most important nodes are part of the core and nodes
in the periphery of the network, i.e. at some distance from the core, are less important.

Since the method described uses only information about the node degree and ignores the weight
of links, it is called unweighted k-core decomposition. This method has been successfully applied
to characterize various real-world networks [6, 9]. Kitsak et al. [15] showed that the coreness value
of a node is a more accurate predictor of its spreading potential as, for example, its degree. This
is understandable since coreness also captures information about the second-nearest neighbors
of a node (for example, a node A with high degree can have a low coreness if all of its neighbors
simply have one neighbor, A)

In this paper, we will use a recent extension of the unweighted k-core decomposition which
considers additionally the weights of the links. This weighted k-core decomposition [10] uses the
same routine to remove nodes as in the unweighted version, but a refined measure for the node
degree, called weighted degree, d′. For node i it is defined as:

d′i = [(di)
α
(∑

di

j
wij)

β

]

1
α+β

(2)

di is the degree of node i and wij is the weight of the link between nodes i and j. The summation
goes over all neighbors of i. All coreness values reported in this paper are based on the weighted
k-core decomposition.

Eqn. (2) further uses two free parameters α, β to balance the influence of the weights wij which
indicate multiple alliances between the same firms. β = 0 would return the results of the the
unweighted k-core decomposition. In this paper, we use α = 1 and β = 0.2. The choice is justified
in Sect. 3.1 where we show that with β = 0.2 the correlation between network position and
performance is maximized. But in Sect. 3 we will also address the question how other values of
β impact the list of firms in the core.

2.5 Distribution of coreness values

In the following we apply the k-core decomposition to the cumulative R&D network, to assign
coreness values to each firm. Evidently, whenever the network evolves over time most coreness
values change. To define a reference point, we take the cumulative R&D network at the very
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Figure 3: (left) Graphical representation of the cumulative R&D network at the end of 2009.
This plot is made with Gephi [2] using the OpenOrd layout. The different colors represent dif-
ferent coreness values, with red assigned to the core nodes. (right) The network has a strong
core-periphery structure [4], i.e. only a small number of nodes having small CF values, while
the majority of the nodes are located in the periphery and have large CF values.

last time, which is the year 2009, and indicate the coreness values obtained from this maximal
network as CiF (F stands for final).

Figure 3 (left) shows a network plot of the cumulative R&D network in 2009. The nodes are
colored according to their coreness value CiF and their size is proportional to their cumulative
degree di, i.e. the cumulative number of collaboration partners of firms. This makes it obvious
that many firms with a large number of collaborations not necessarily belong to the core, but
still to the periphery of the R&D network.

Figure 3 (right) shows the normalized frequency of coreness values, f(CF ), for the cumulative
R&D network in 2009. Taking into account that N = 13,936, we see that the total number of
firms with small coreness values, 0 ≤ CF ≤ 5, i.e. firms that are part of, or very close to, the core
is rather small, but there is a large number of firms in the periphery, CF > 5. I.e. the network
exhibits a very distinct core-periphery structure.

As an important observation for the real R&D network, we find that only 17 distinct k-shells
exist although the maximum degree in the network is dmax = 336. It is worth to notice the names
of the firms that belong to the core, i.e. CF = 0, which are listed in Appendix A. There, we also
discuss how this list changes if instead of the weighted k-core analysis the unweighted method is
used.
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3 The career path of firms in the R&D network

3.1 Correlations between network position and success

Before we further discuss how the network position of important firms in the R&D network
changes over time, we want to explore to what extent this position is indicative of success. As
explained in Sect. 2.1, we measure the success of R&D activities of firms by the number of patents
obtained from the NBER database.

Let us first discuss how this number correlates with the coreness value of firms. The results are
shown in Figure 4. According to the distribution of coreness values shown in Figure 3(right), each
firm belongs to one out of 17 different classes indicated by the final coreness value CF . Hence, in
Figure 4 we show the distribution of patent numbers for each of these classes, together with the
average number of patents and the 95% confidence interval. Although the patent data is rather
scattered, there is a very clear trend that the number of patents increases with a better network
position, i.e. with smaller CF where CF = 0 indicates the core.

CF
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Figure 4: Number of patents against CF . The heat map is colored according to the number of
firms that filled a certain number of patents, the dots represent the average number of patents
and the error bars indicate the 95% confidence interval.

More precisely, we calculate the Kendall pairwise correlation between the number of patents
Np(z) in class z and the value of z which quantifies the network position. If z is quantified by
coreness CF , as provided by the weighted k-core decomposition method, the correlation implicitly
depends on the two free parameters α and β that influence this coreness value. If we take α = 1,
β = 1, this correlation reads as τ = −0.493 (p < 0.001). However, the correlation could be vastly
improved, as we can see if we calculate it for all pairs (α,β) ∈ [0,1] × [0,1] in steps of ∆α =
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∆β = 0.1. This procedure returns that for the parameter values α = 1 and β = 0.2 the correlation
between the coreness value and the number of patents is maximized, τ = −0.84 (p < 0.001).

This means that for β = 0.2 the weighted coreness of a firm – i.e. a topological measure – becomes
a very strong indicator of its success in R&D activities, as measured by the number of patents.
Hence, it establishes a link between public information (number of patents) and network position
(node centrality), which is not directly accessible.

3.2 Evolution of coreness values for individual firms

Now that we have confirmed that the coreness value of a firm is a good indicator of its success
in R&D activities, our focus is on the evolution of this indicator over time. This helps us to
reconstruct a career path of individual firms in the R&D landscape. Subsequently, we will address
the question how this career path depends on the alliance partners, to identify strategies followed
by successful firms.

Figure 5: Illustration of the network evolution where new k-shells emerge as new links are
formed.

Basically, we need to consider that the coreness value, CiC(t), of a firm i can change over time t
by means of two different dynamic processes: (a) the growth of the network as a whole, as already
demonstrated in Figure 1, and (b) the formation of new alliances involving that particular firm i.
Figure 5 sketches a growing network where, similar to real R&D networks, new nodes enter the
network by creating new links either with existing nodes or with other newcomers. As the network
grows both in size and density, new k-shells emerge and the coreness of all nodes constantly
changes with the global connectivity pattern. This implies that the coreness of a particular firm
i may change even without any new R&D alliances involving that firm. This contrasts with the
second process, where firm i plays an active role in forming new alliances.

We argue that the two dynamic processes can be disentangled in the time evolution of the
coreness values of individual firms, as shown in Figure 6. To make coreness values comparable at
different times, we define relative coreness as ci(t) = CiC(t)/Cm(t), i.e. as the ratio between the
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Figure 6: Career path of firms: left successful, right normal

current coreness CiC(t) and the maximum coreness Cm(t) at the same time. This returns values
between 0 and 1, where 0 always refers to the very core and 1 to the outest periphery.

In Figure 6, we present two examples of successful firms that made it to the core of the R&D
network together with two examples of “normal” firms that always belong to the network, but
only at the periphery. All firms start their career path with high relative coreness values, which
is due to the fact that in the beginning no fully developed network existed (cf also Figure 1).
The successful firms then show a steadily declining relative coreness reaching small values, which
means that they manage to get closer to the core as the network evolves. I.e. they actively
formed alliances such that they stayed away from the periphery, which distinguishes them from
the “normal” firms that neither lost or gained in position and thus just stayed in the periphery.
Looking at the corresponding patent data, we verify that for the successful firms a better coreness
comes along with more patents (as also indicated in Figure 4), whereas for the “normal” firms
both the position and the number of patents is rather level (in comparison to the successful
firms).
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It is important to recognize that even successful firms do not always manage to stay in the very
core (ci = 0). In most of the cases, there is a minimum c corresponding to the best overall position
in the R&D network. In later times, this position can become worse, but successful firms always
stay very close to the core.

3.3 Partner selection of newcomers

As already mentioned, the growth of the R&D network occurs by firms selecting partners for
R&D alliances. These partners can be newcomers, i.e. nodes not yet linked to the network at a
given time t, or incumbents, i.e. firms already established in the network. This way, the network
can grow in size, by adding new nodes, but also in density, by adding new links. To disentangle
these dynamic processes, we first take the perspective of the newcomer that never linked to the
network before.

The prevalent preferential attachment model of network growth proposes that new nodes choose
partners proportional to their degree, i.e. proportional to the number of already established
alliances. Such an assumption has several conceptual drawbacks when applying it plainly to
the growth of real R&D networks. First, it requires newcomers to have complete information
about all the alliances of all firms, to rank these accordingly. Secondly, this neglects any capacity
constraints that established firms may have in accepting new alliances. And thirdly, it assumes
that a newcomer is attractive enough to be accepted by an established firm as an alliance partner.

Applying the simple preferential attachment rule to growing networks results in a dissortative
network where nodes with low degree are more likely linked to nodes with high degree. But
the real R&D network is assortative, i.e nodes with similar degree are more likely to be linked.
Specifically, we find for the assortativity coefficient r = 0.166. This is in line with positive assor-
tativity coefficients, ranging from 0.12 to 0.363, for various collaboration networks, like scientific
co-authorship networks [18] and highlights the existence of degree-degree correlations.

Hence, taking these insights into account, we can expect that newcomers do not follow a preferen-
tial attachment rule because they hardly succeed to establish alliances with those firms that are
already well integrated in the R&D network. To analyze the real situation, we take again coreness
as the most appropriate topological measure of this integration. Figure 7 shows the percentage of
all alliances that firms with a given coreness value form with newcomers. Firms in the core only
have about 12% of their alliances with newcomers. This share increases with coreness, i.e. with
the distance from the core, such that firms in the periphery have almost 40% with newcomers.
Taking the perspective of newcomers, this means that the vast majority of partners are firms in
the outer parts of the network.
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Figure 7: Histogram of the fraction f18 i.e. the number of new entries (nodes that were previ-
ously not part of the network, assigned to ks = 18) that partner with nodes having coreness
CF divided with the total number of partners of these nodes.

3.4 Partner selection of incumbents

We now look at the formation of alliances from the perspective of incumbents, i.e. firms that
are already part of the network. Such a firm could form alliances with newcomers, with firms
that are integrated at a level comparable to itself, or with firms that are much better integrated
and may even belong to the core. The choice between such alternatives of course depend on the
attractiveness of the firm itself. Again, we consider coreness as the most appropriate measure
to quantify both the embeddedness in the network and the success of R&D activities, i.e. the
attractiveness of a firm. That means we should be interested in the coreness value differences
between firms at the time of alliance formation.

Figure 8 shows, for two successful firms, their relative coreness together with the relative coreness
of their alliance partners. We observe that a successful firm was able to steadily improve its
coreness in the course of time. It does not always reach the very core, c = 0, but it is very close
to it, indicated by the small values of c. As Figure 8(left) shows, the network position can also
worsen at later times, in particular because other firms managed to become better integrated
into the core. We recall that the network position is quantified by a relative measure that takes
the core-periphery structure of the whole network into account.

As discussed for newcomers, in the early period when firms are rather new to the network and
thus part of the periphery, they have a strong tendency to choose alliance partners that are also
part of the periphery. When these firms become better integrated in the network, as indicated
by a decreasing coreness value, they choose partners of comparable coreness that are also better
integrated. The decrease in coreness, both of firm i and its partners, continues until the firm
reaches a state of minimal coreness, the time of which, tic, is indicated by a red line in Figure 8.
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Figure 8: examples of the normalized coreness evolution of firms with different CF values (blue
circles), and the average normalized coreness evolution of their partners (open circles). The
size of the open circle is proportional to the fraction of collaborations involving the particular
firm that happened in a given year over the total number of collaborations of this firm. With a
red vertical line we mark the tc, to visually clarify the change in collaboration behavior before
and after this point. It is interesting to note that the firms are more active during the first
phase, when they try to maximize their centrality.

Hence, tic gives the time of maximum integration of firm i in the network and the corresponding
relative coreness value ci(tic) quantifies the best network position obtained. If we compare the
relative coreness values of a firm and its alliance partners with respect to tic, we observe a change:
While for times t < tic, firm i chooses partners of similar coreness, for times t > tic the firm chooses
partners of high coreness, i.e. newcomers or firms from the periphery.

This raises the question whether this observation can be interpreted as a change in the strategy
of a firm in selecting its partners. It could also be that firms in the periphery or newcomers act
differently from core firms simply because they have different options to choose from. This would
then probably not count as a change in their strategy, but as a direct reflection of their network
position. We will address precisely this question in Sect. 4 by means of an agent-based model
that allows us to disentangle strategic behavior from restrictions of choice. But before, we verify
the above finding by taking into account all alliances of all firms over time.

For each firm i, we calculate the relative coreness ci(t) for every year t and the time tic of minimal
coreness. We further calculate the number of alliances with each of their partners j, i.e. wij(t),
and the total number of alliances Ai(t) = ∑j wij(t) in the given year. Eventually, we calculate
the relative coreness cj(t) of each of their partners j. Combining all these information, we obtain
the weighted average of coreness differences:

⟨dci(t)⟩ =
1

Ai(t)
∑

j

wij(t) [ci(t) − cj(t)] (3)
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Figure 9: Average partner coreness deviation. Plot of the average normalized partner coreness
deviation ⟨dc⟩ against CF before and after tc.

After calculating ⟨dci(t)⟩ for all times t between tstart = 1984 and tend = 2009, we divide the
values according to two time periods, before and after tic and average for each of these periods
separately:

⟨dcibefore⟩ =
1

tic − tstart

tic

∑

t=tstart

⟨dci(t)⟩ ; ⟨dciafter⟩ =
1

tend − tic

tend

∑

t=tic

⟨dci(t)⟩ (4)

For each firm i, these two values are related to the final coreness value of that firm, CF at tend,
i.e., ⟨dcibefore⟩ (CF ) and ⟨dciafter⟩ (CF ). Then, for each value of CF (between 0 and 17), we average
the ⟨dci⟩ with the same CF separately before and after tc.

The results are shown in Figure 9. We observe that, for the two periods before and after tc,
the averaged coreness differences decrease monotonously with final coreness CF and even become
negative. Positive values mean that the initiating firm has, on average, a higher coreness than
its chosen partners. This applies for initiators with high coreness, i.e. newcomers or firms in the
periphery that strive to get a better network position by choosing better integrated partners.
Negative values mean that this relation switches: initiating firms have on average a lower coreness,
i.e. they are better integrated than their partners. This applies for initiators with low coreness
that made it to the core and confirms the previous discussion that firms closer to the core have
more alliances with newcomers or firms with high coreness.

Looking particularly at differences between the two time periods, we find that this shift from
positive to negative coreness differences becomes much stronger in the period after tc, i.e., for
firms that have already reached their best network position. This means that established core
firms choose even more partners with high coreness (newcomers, periphery) than firms in the
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period before tc that are still striving for a better position.

To test the robustness of this finding, we perform a random reshuffling of the alliance links while
preserving the degree sequence of the empirical network. The dashed curves in Figure 9 show the
averaged coreness differences before and after tc for the reshuffled network. We see that the
trend is the same as for the empirical network. However, the differences between the two curves
are much larger for the empirical network than for the reshuffled network. This means that the
observed change before and after tc is not random. We preformed a two-sided Kolmogorov-
Smirnov test to the distributions of the ⟨dc⟩ for the empirical and the reshuffled network, and
we can reject that they are the same with p = 0.056.

As discussed above, it needs further investigation to decide whether our observation that firms
change their selection criteria for partners can be interpreted as a change in strategy. In the next
section, we will use an agent-based model that allows to test to what extent the observed pattern
can be reproduced without stragetic considerations.

4 Modeling the alliance formation

4.1 Agent-based model

Now that we have identified the dynamics of firms forming R&D alliances dependent on their
success, it remains to reproduce this behavior by means of an agent-based model. Such a modeling
approach can be regarded as successful if it is able to reproduce the pattern in alliance formation
observed in Figure 9, which we take as a benchmark here. At the same time, a correct agent-
based model should be able to additionally reproduce other empirical observations, such as the
empirical degree distribution of the R&D network or the coreness distribution. Only if different
dimensions of this rather complex phenomenon are reproduced by the same model, we can claim
that the model captures the essence of the dynamic interactions that lead to R&D alliances,
rather than simply (over)fitting free parameters to available observations.

In the following, we utilize a recently proposed agent-based model of alliance formation in R&D
networks [25]. Agents represent firms in an R&D network and links between agents represent
R&D collaborations. The model uses two macroscopic features of empirical R&D collaborations
as input, the distribution of agents activities and the distribution of alliance sizes (see Fig 10).
But it does not make strategic assumptions about alliance formation. Instead, the decision of
agents in establishing alliances with newcomers or incumbents are modeled by means of five
probabilities, which need to be calibrated. Therefore, this is an ideal null model to test whether
the observed change in firms strategies need strategic agent considerations as an explanation.
Hereafter, we briefly sketch the outline of the model, further explanations and mathematical
details are given in [25].
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Assuming a multi-agent system withN agents, each agent is assigned two fundamental attributes:
an activity and a label. The activity defines the propensity of each agent to be involved in a
collaboration event, and the label is a unique attribute that once set for an agent and does not
change afterwards.

Initially we assign to each agent an activity value ai, which is sampled without replacement from
the distribution of empirical activities shown in Fig. 10(left). At every time step agent i initiates
an alliance with probability pi ∝ aidt. Thus, at each time step the number of active agents is
NA ∝ ⟨a⟩Ndt, where ⟨a⟩ is the average agent activity. Upon activation, an agent becomes an
initiator, i.e. selects the number of partners, m, with whom the alliance is formed. This value
of m is sampled without replacement from the empirical distribution of alliance sizes shown in
Fig. 10(right).

α

C
C

D
F 
(α
)

10−5 10−4 10−3 10−2

10
−4

10
−3

10
−2

10
−1

1 ●
●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●

●

●

Δt = 1 year
Δt = 5 years
Δt = 10 years
Δt = 26 years

Partners per alliance

C
ou

nt
s

2 5 10 15

1
10

10
2

10
3

10
4

Figure 10: (left) Complementary cumulative distribution function (CCDF) of the empirical
firm activities, measured from the SDC dataset for 4 different time windows. (right) Distri-
bution of alliance sizes, as measured from the SDC alliance dataset. Both figures are adapted
from Ref. [25].

The label attribute is used to model the participation of an agent in different groups with shared
practices and/or behaviors. For the case of firms forming R&D alliances, labels translate to
membership, “clubs” or “circles of influence”. In our model we assume that collaborations allow
the transfer of such membership to other agents that are not part of any circle of influence yet.
At the beginning of a simulation, all agents are non-labeled, meaning that their membership
attribute is blank. There are two ways a non-labeled agent can obtain its label: (i) the agent
either receives the label from another agent, if the latter initiates an alliance, or (ii) it takes an
arbitrary and unique label when it becomes active for the first time. Hence, if the agent that
initiates the alliance is a non-labeled one (newcomer), it links to a labeled agent with probability
pNLl , or to another non-labeled agent with probability pNLnl . If the agent that initiates the alliance
is already labeled (incumbent), it has three options to form a link. It can i) link to an agent with
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the same label with probability pLs , ii) link to an agent with a different label with probability
pLd , or iii) link to an agent without a label with probability pLn .

As the number of alliance partners, m, is already given, the above five probabilities decide how
many of the m partners come from each available partner category (same/different/no label). To
actually select the partners within these categories, we use a linear preferential attachment rule,
where the probability to attach to a node j linearly scales with its degree dj , i.e. Π(dj) ∝ dj .
This rule applies only for incumbents that are already assigned to a category, as by definition
newcomers are non-labeled and have no previous partners (dj = 0). Therefore, if the initiator
connects to a newcomer, the partner is selected among all non-labeled nodes with equal proba-
bility. When the partner selection process is complete, all m partners are mutually connected,
forming a fully connected clique of size m + 1. This reflects the meaning of R&D alliances in a
consortium.

4.2 Model results

In order to run agent-based computer simulations, we need to determine the five probabilities.
This was done in Ref. [25] using the R&D data set described in Sect. 2.1. Specifically, we found
that incumbent firms follow a balanced alliance strategy, forming 30% of their alliances with firms
in the same circle of influence (p∗Ls = 0.3), 30% of their alliances with firms in a different circle
of influence (p∗Ld = 0.3) and 40% of their alliances with newcomer firms (p∗Ln = 0.4), represented
by non-labeled nodes. At the same time, the newcomer firms show a strong tendency to connect
to incumbent firms (p∗NLl = 0.75), as opposed to a low linking probability with other newcomers
(p∗NLnl = 0.25). We use these results here, to simulate the evolution of 100 synthetic networks
over time. Their (time dependent) topology is analyzed with respect to the weighted k-core
decomposition, to allow a comparison with the empirical R&D network.

Our main result is presented in Figure 11 which should be compared to the empirical finding
shown in Figure 9. It demonstrates that the agent-based model we used is indeed able to reproduce
the change of strategies in firms after they have reached the core. This is remarkable as our
simulations do not use assumptions about the strategic behavior of firms.

To verify that the agent-based model is also able to reproduce other empirical findings without
overfitting, we plot in Figure12(left) the degree distribution of the network ensembles obtained
from the 100 realizations, alongside of the empirical degree distribution, both for the final time.
The excellent match of the two distributions should be noted. We further plot in Figure12(right)
the distribution of the coreness values both from the empirical data (also shown in Figure 3
(right) and from the computer simulations. Here, we use the normalized coreness C ′ instead of
CF . While one could argue about some deviations between the two in the range of small coreness
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Figure 11: Plot of the average normalized partner coreness deviation ⟨dC ′
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for the networks obtained using our model.
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Figure 12: Model results and validation: (left) Degree distribution of the network obtained
using our model (blue line), alongside the degree distribution of the full empirical network (cir-
cles). (right) Comparison of the coreness distribution obtained from the model (orange) versus
the distribution of the empirical cumulative network (blue). The results are averaged over 100
model realizations and the error bars (when visible) indicate standard errors.

values, we note that the core-periphery structure of the network is well captured by the model –
without any additional assumptions.
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5 Discussion

In this paper we address an important question for the evolution of real networks, in particular
R&D networks, namely which partners firms select for their collaborations. Our approach can
be best described as data-driven modeling, i.e. we first analyze large-scale time-resolved data
about R&D collaborations of firms. The aggregated outcome of this analysis is then used to
calibrate an agent-based model that captures the interactions of firms in forming R&D alliances.
This agent-based model is then validated by its ability to reproduce the dynamics of the R&D
network at the macro level, in addition to topological features observed in the network. In this
particular application, we want to reproduce the observed change of partners by successful firms,
from partners with similar coreness to partners with high coreness.

Coreness and success In order to quantify the network position of individual firms, we pro-
pose a method that is rather new compared to established centrality measures, the weighted
k-core decomposition. This assumes a sequence of cascades to prune the network and assigns a
coreness value to each node that indicates its distance from the core.

As the network evolves both by adding new nodes and new links, individual coreness values
change to reflect the relative position of nodes. We observe the emergence of a clear core-periphery
structure characterized by a dense core with a smaller number of firms and a sparse periphery
with the majority of less integrated firms.

Analyzing the coreness of firms and their number of patents as a proxy of their success in R&D
activities, we find a strong correlation (τ = −0.84 for α = 1, β = 0.2 for the weighted k-core
decomposition). That means, we can use a topological measure, coreness, that quantifies the
network position as an indicator of successful R&D activities and, hence, as a measure of the
attractiveness of a firm as potential collaboration partner.

Selection of partners Monitoring a firm’s coreness over time allows us to determine its career
path. The most successful firms move from the periphery of the R&D network (close) to the core
in the course of time, i.e. from high to low coreness values. From the data, we obtain a time tic
for each firm when the minimal coreness, i.e. the best network integration, is reached. At about
tic we observe a change in partner selection, from partners of similar coreness to partners of high
coreness.

Such an observed behavior may have a rational basis. Firms new to the network may have little
chances to get connected to core firms. Therefore, in the absence of better alternatives, they may
eventually team up with other newcomers or firms from the periphery with comparable coreness.
Together with their partners, they then try to improve their network position. However, at the
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time of maximum network integration, the competition with other firms of similar or lower
coreness can become more important than the opportunity to further increase their (already
optimal) position. So, while previous partners may have become competitors, successful firms
more likely search for, and to team up with, new start-up companies with fresh ideas.

Strategic behavior vs. changed opportunities The question is whether this observed
change in partner selection indeed follows a strategy, i.e. a deliberative process, or whether the
“strategic” behavior is still the same but the opportunities for firms have changed.

To decide between these two alternative explanations, we propose an agent-based model that
assigns fixed probabilities to firms for choosing their partners, irrespective of any network po-
sition. We demonstrate that this agent-based model is able to reproduce the observed change
in partner selection together with other topological features, such as degree distribution and
coreness distribution. This indicates that the model indeed captures the essence of forming R&D
alliances between firms.

From the results, we can conclude that the change in choosing partners can be reproduced with-
out assuming changes in the selection rules for partners and without assuming any dependence
of these rules on the network position. This does not allow to conclude that firms do not fol-
low strategies in selecting their partners, or change these strategies dependent on the network
position. It just demonstrates that firms do not need to change strategies in order to display a
“behavior” that is observed in their career path.

Agent-based model This leaves us with the concluding question how we obtain from selection
rules that do not depend on the network position (but on five constant probabilities) strategies
in selecting partners that depend on the network position.

Our agent-based model is an activity driven model, i.e. from the empirical distribution of activities
firms get assigned a (fixed) activity ai to form alliances. Obviously, in a stochastic simulation
firms with a higher activity are on average chosen earlier and more often. This generates a first
mover advantage because such firms can increase their degree early on. In the beginning, they
also get a higher chance to propagate their label to other (unlabeled) firms.

Firms with high activity also have more alliances over time, and therefore a higher (weighed)
degree in the cumulative R&D network. This becomes important when the initiator of an alliance
has to select partners within the two categories “same/different label”. There, we use a linear
preferential attachment rule, i.e. within each category firms with a higher degree are chosen with
higher probability. This further increases their degree or at least the weight of the link in case of
repeated collaborations, which eventually improves their coreness value.
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This preferential selection rule applies to both newcomers and incumbents. Because the network
is dominated by newcomers and low-degree/high-coreness incumbent nodes, all these firms offer
to establish alliances with more central firms. If this offer is accepted, the likelihood that a firm
with high degree is chosen becomes even higher over time because the differentiation between
firms with higher and lower degree increases. It is less pronounced in the beginning, but with an
established core-periphery structure the degree distribution becomes rather skew (see also Figure
12 left).

These combined reinforcement effects eventually lead to the observation that core firms tend
to form alliances preferably with newcomers. It is the newcomers that, with larger probability,
choose these firms after they managed to have a low coreness/high degree (in comparison to
others).

Thus, in conclusion, what appears as a deliberative strategy of successful firms, namely to switch
from partners of comparable coreness to partners of high coreness, can be basically explained by
the choice of newcomers. This does not exclude other strategic considerations, it just tells that
the observation does not already imply such considerations.

Which of the firms eventually end up in the core of the R&D network basically depends on their
individual activity, which is very skew distributed (see Figure 10). More active firms have an
early mover advantage, they can accumulate more experience in collaborations over time, which
increases their attractiveness as partners. More collaborations also lead to better integration in
the network, as quantified by the decreasing coreness, and to more success in R&D activities, as
quantified by the number of patents.
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Appendix

A Identification of core firms

In order to better illustrate the advantage of the weighted k-core decomposition we present
the list of firms in the core (CF = 0) for α = 1 and varying β, where β = 0 corresponds to the
unweighted k-core decomposition. The analysis was done on the cumulative R&D network for the
year 2009. As shown in Table 1 the list of firms identified in the core strongly depend on the value
of β ∈ {0,1}. The list provided by the weighted method matches better our economic intuition
as it contains big and well known firms. These are mayor international players in research and
development activities. Note that the results for β = 0.2 are much closer to β = 1.0 than to β = 0.
I.e., we argue that the core firms are considerably well captured as long as the weighted method
is used.

β = 1 β = 0.2 β = 0

Apple Apple Aiscorp
AT&T AT&T Arbortext
Fujitsu France Telecom Avalanche Dev.
Hewlett Packard Fujitsu Broadvision
Hitachi Hewlett Packard Computer Task
IBM Hitachi Database Publishing Sys.
Intel IBM EBT
Matsushita Electric Matsushita Electric Furlcrum
Microsoft Microsoft Information Design
Mitsubishi Electric Mitsubishi Electric Information Dimensions
Motorola Motorola Intergraph
NEC NEC Object Design
Nippon Telegraph & Telephone Nippon Telegraph & Telephone OfficeSmith CTMG
OKI Electric Ind. Nortel Networks Open Text
Sanyo Electric Oki Electric Ind. Oracle Sys.
Sharp Philips Electronics SoftQuad
Sony Sanyo Electric XSoft
Toshiba Sony

Toshiba

Table 1: Firms identified as the core of the R&D network using the weighed k-core decomposi-
tion method with α = 1 and different values of β.
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