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Abstract. We present a generalized method for calculating the k-shell structure
of weighted networks. The method takes into account both the weight and
the degree of a network, in such a way that in the absence of weights we
resume the shell structure obtained by the classic k-shell decomposition. In the
presence of weights, we show that the method is able to partition the network in a
more refined way, without the need of any arbitrary threshold on the weight
values. Furthermore, by simulating spreading processes using the susceptible-
infectious-recovered model in four different weighted real-world networks, we
show that the weighted k-shell decomposition method ranks the nodes more
accurately, by placing nodes with higher spreading potential into shells closer
to the core. In addition, we demonstrate our new method on a real economic
network and show that the core calculated using the weighted k-shell method
is more meaningful from an economic perspective when compared with the
unweighted one.
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1. Introduction

The continuously growing interest in complex network science has resulted over the last
few years in novel methods of analysis for a large number of complex systems in various
scientific fields [1–7]. The fundamental view of this interdisciplinary approach is that
large complex systems can be described as complex networks (or graphs in mathematics
terminology) where the nodes (or vertices) represent the system’s interacting elements and
the links (or edges) represent their interactions. This unified view was used in the analysis of
social [7–9], biological [10–13], physiological [14], technological [15, 16], climate [17–19],
economic [20–23] and financial systems [24, 25]. In combination with the technological
advances that made enormously detailed data available, we are now able to understand and
model the evolution of dynamical processes, such as epidemic outbreaks and information
spreading [26–30].

Even the earliest empirical works in this field made it clear to researchers that the topology
of a network affects its properties. For example, networks with broad degree distributions are
more robust to random failures, but are fragile under intentional attacks [31–35]. Nowadays,
there is a growing body of literature trying to understand global properties of a network by
focusing on the properties of individual nodes, and their connectivity patterns [36]. Of course,
the role of individual nodes has a profound relation with the evolution of any dynamical process,
and with the evolution of the network itself. For example, very popular individuals in a social
network (i.e. individuals with a large number of connections) usually attract more attention and
increase their connectivity even more. While it is clear that such processes affect the evolution
of the network topology, we can imagine that such individuals could assume key roles in the
case of disease spreading, etc.

It is clear that questions such as ‘who are the most important nodes in the network?’
are natural to ask. Such questions can be addressed using centrality measures, which are the
most frequently used measures when it comes to quantitative network analysis. However, there
is a variety of centrality measures aiming to address the question of node ‘importance’. For
example, there is the degree centrality (or just the degree of a node, i.e. the number of its links),
the eigenvector centrality [37], the betweenness centrality [38], the closeness centrality [39],
etc. In this paper, we focus on a centrality measure based on the notion of k-cores which is a
fundamental concept in graph theory [40] when it comes to ranking the centrality of nodes in a

New Journal of Physics 14 (2012) 083030 (http://www.njp.org/)

http://www.njp.org/


3

complex network. Such a ranking was applied in many real networks [21, 41–48], allowing
a thorough investigation of their structure, while highlighting the role of various topology-
dependent processes.

One major limitation of most centrality measures, including the k-core decomposition
method, is their design to work on unweighted graphs. However, in practice, real networks are
weighted, and their weights describe important and well-defined properties of the underlying
systems. In a weighted network, nodes have (at least) two properties that can characterize them,
their degree and their weight. However, since weights are properties of the network’s links, the
node’s weight is calculated as the sum over all link weights passing through a particular node.
These two properties, even though in some cases they are correlated, are in general independent.
As a result, nodes with high degree can have small weight (i.e. they have many connections to
other nodes but the links of these connections have small weights), while there could also be
nodes with small degree and high weight. Situations where the weights play an important role
occur, for example, in economic or trade networks. In such networks, the weights are related to
some measured property (such as trade flow, capital flow, etc), and in many cases one wishes to
focus on nodes with high weights that are (usually) the most important players. Thus, in such
systems the presence of nodes with high degree and relatively small weights may influence
the results obtained by methods that are based only on the degree. In such cases, two main
approaches have been used, with both having their own drawbacks. Under the first approach, one
completely neglects the weights and performs the analysis on the unweighted network, but doing
so one chooses to neglect an important property of the network. The second approach would be
to consider only links with weights above some—(usually) arbitrary chosen—threshold value
and filter out the rest. The drawback of this approach is the selection of a proper cutoff value,
which may remove important high degree nodes with links of low weights (below the threshold),
and as we will discuss later, this could have significant impact on the results. Additionally,
by neglecting links below a threshold, the network becomes sparser with some nodes getting
disconnected and not considered by the applied method afterwards.

In this paper, we aim to overcome these limitations by introducing a generalized method
for calculating the k-shell structure of weighted networks. The paper is organized as follows.
First we discuss the standard k-shell decomposition method, and right after that we introduce
our generalized version. Next we apply both methods on real networks and present their results.
Subsequently, we compare in more detail the performance of both methods in ranking nodes
according to their importance when it comes to spreading processes, and finally we present the
conclusions.

2. The unweighted k-shell decomposition method

The k-core/k-shell decomposition method partitions a network into sub-structures that are
directly linked to centrality [49]. This method assigns an integer index, ks, to each node that is
representative of the location of the node in the network, according to its connectivity patterns.
Nodes with low/high values of ks are located at the periphery/center of the network. This
way, the network is described by a layered structure (similar to the structure of an onion),
revealing the full hierarchy of its nodes. The innermost nodes belong to a structure called the
core or ‘nucleus’ of the network, while the remaining nodes are placed into more external layers
(k-shells).
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Figure 1. Illustration of the layered structure of a network, obtained using
the k-shell decomposition method. The nodes between the two outer rings
compose shell 1 (ks = 1), while the nodes between the two inner rings compose
shell 2 (ks = 2). The nodes within the central ring constitute the core, in this case
ks = 3.

A more detailed description of how a network is divided into this k-shell structure is as
follows (see figure 1). First we remove recursively from the network all nodes with degree
k = 1, and we assign the integer value ks = 1 to them. This procedure is repeated iteratively
until there are only nodes with degree k > 2 left on the network. Subsequently, we remove all
nodes with degree k = 2 and assigns to them the integer value ks = 2. Again, this procedure is
repeated iteratively until there are only nodes with degree k > 3 left on the network, and so on.
This routine is applied until all nodes of the network have been assigned to one of the k-shells.
This is how the original k-shell decomposition method works, which, as described above, does
not consider the weights of the links at all; therefore, from now on we will call it the unweighted
k-shell decomposition method (Uk-shell).

3. The weighted k-shell decomposition method

Here we propose a generalization of the k-shell decomposition method, which we call the
weighted k-shell decomposition method (Wk-shell). This method applies the same pruning routine
that was described earlier, but is based on an alternative measure for the node degree. This
measure considers both the degree of a node and the weights of its links, and we assign for each
node a weighted degree, k ′. The weighted degree of a node i is defined as

k ′

i =

kα
i

 ki∑
j

wi j

β
1

α+β

, (1)
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where ki is the degree of node i and
∑ki

j w j is the sum over all its link weights. In this paper, we
discuss only the case when α = β = 1, which treats the weight and the degree equally. The full
exploration of the parameter space is beyond our scope and is left for future work. Therefore,

for what follows, k ′

i =

√
ki

∑ki
j wi j .

Using the above approach in the case of unweighted networks, where wi j = 1, the weighted
degree is equivalent to the node degree (k ′

≡ k), and we resume the same network partitioning
as with the Uk-shell decomposition method. However, in order that a typical weighted link be
regarded as of unit weight before we calculate k ′ using equation (1), we perform the following
steps. First, we normalize all the weights with their mean value 〈w〉, next we divide the resulting
weights with their minimum value, and we discretize them by rounding to the closest integer;
this way the minimum link weight is equal to 1.4

In figure 1, we illustrate schematically the layered structure obtained by applying the
Uk-shell decomposition method in a graph. In order to highlight the weaknesses of the unweighted
method, let us suppose that the network is weighted. For simplicity, we assume that all link
weights are equal to 1, except for the weight of the link between nodes A and B, which is
wAB = 3. As illustrated in figure 1, the node B is located at the periphery of the network, even
though it is strongly connected to one of the core nodes. In real networks such a strong link
(three times the capacity of other links) means that this particular node is of more importance for
the core, but this is not depicted in the layered structure calculated by the classical unweighted
approach, since this node will be placed in the outermost shell (ks = 1). However, if we apply
the Wk-shell decomposition method, then node B is assigned to ks = 2 that is one shell away from
the core of the network, highlighting its actual importance.

4. Application to real networks

In order to compare the results obtained from the Uk-shell and the Wk-shell decomposition method,
we used as case studies the following four real networks:

(i) Corporate ownership network (CON). This is an economic network linking 206 different
countries. It is constructed [21] using the 616 000 direct or indirect subsidiaries of the
4000 world corporations with the highest turnover, based on the 2007 version of the ORBIS
database obtained from the Bureau van Dijk Electronic Publishing (BvDEP)5. The network
is weighted, and its weights represent the business ties among countries [21].

(ii) The collaboration network of scientist working in network science (SCIE). This network
contains the co-authorship relations of scientists working on network theory and
experiment, as compiled by Newman [50]. The network is weighted, and its weights are
assigned as described in [51].

(iii) The neural network of the nematode C. elegans (CEL). This network was compiled by
Watts and Strogatz [52] using the original experimental data of White et al [53]. It is a
weighted representation of the neural network of C. elegans.

(iv) The US air transportation network (AIR). This is a weighted network obtained by
considering the 500 US airports with the largest amount of traffic from publicly available

4 We also tested the effect of the normalization by dividing it by the minimum weight, and the results we obtained
in terms of node positioning with or without the normalization were similar.
5 Bureau van Dijk Electronic Publishing (BvDEP), http://www.bvdep.com/.
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Table 1. Statistical properties of the networks used in our analysis. Here NN is
the number of nodes, NE is the number of edges, 〈k〉 is the average degree of the
network nodes, d is the diameter, C is the clustering coefficient [52] and B is the
network’s betweenness [38, 55]. If the original network is disconnected, we only
consider its LCC.

Network NN NE 〈k〉 d C B

CON 206 2886 28.0 4 0.38 94.6
SCIE 379 914 4.82 17 0.43 952.9
CEL 297 2345 15.8 5 0.18 215.4
AIR 500 2980 11.92 7 0.35 496.7

Table 2. Comparison of the network hierarchies obtained by the Uk-shell and
Wk-shell decomposition method. Here sU and sW is the total number of k-shells,
while nU

c and nW
c are the total number of nodes in the cores obtained using the

Uk-shell and the Wk-shell, respectively. NC is the number of common nodes in both
cores, NU W is the fraction of nodes of the core obtained by the Uk-shell that also
belong to the core obtained by the Wk-shell and NWU is the fraction of nodes
of the core obtained by the Wk-shell that also belong to the core obtained by
the Uk-shell.

Network sU sW nU
c nW

c NC NU W NWU

CON 28 87 41 11 11 0.27 1
SCIE 8 10 9 13 9 1 0.69
CEL 10 21 119 26 26 0.22 1
AIR 29 257 35 31 28 0.8 0.9

data [54]. Nodes represent US airports and edges represent air travel connections among
them. It reports the anonymized list of connected pairs of nodes and the weight associated
with the edge, expressed in terms of the number of available seats on the given connection
on a yearly basis.

In table 1, we provide some detailed statistical properties of the above networks. For
our analysis, if not stated otherwise, when we talk about the network we refer to the largest
connected component (LCC), and whenever we discuss network properties these are calculated
from the LCC.

In table 2, we compare the network hierarchies obtained by applying the Uk-shell and
the Wk-shell decomposition method. We observe that the Wk-shell method yields a more refined
partitioning (a larger number of k-shells) of the networks. This means that by applying this
method we obtain more detailed information about the networks’ internal structure, which is
similar to using a high-resolution microscope to observe small-size structures of a larger system.

Furthermore, for three out of the four studied networks the core obtained with the Wk-shell

contains a smaller number of nodes, while these nodes are almost entirely part of the core
obtained by the Uk-shell. This means that the weighted method in most cases is able to split the
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Figure 2. The average degree of all nodes in each shell, obtained using the
Wk-shell decomposition method. The shaded area highlights the full range of the
degree values in each shell. The shells are ranked according to their distance from
the core, and the error bars are showing the standard deviation. Insets: zoom to
distances closer to the core for networks with a large number of shells.

cores obtained by the unweighted method further and to identify which are most central of the
central nodes.

In figure 2, we plot the degrees of the nodes according to the k-shell they belong to
(expressed as the distance from the core of the network). The node ranking is obtained using
the Wk-shell method for all the four different networks described above. As shown in figure 2,
the degree is highly (and nonlinearly) correlated with the position of the node in the k-shell
structure, but there are particular cases where the trend is not monotonic. This means that there
are nodes with high degree that may not be as central to the network as one would expect; this
is in line with our discussion for the example network of figure 1.

4.1. A detailed example: analysis of the core of an economic network

Next we compare the core of the Uk-shell and the Wk-shell decomposition methods applied to the
global CON studied in [21]. The CON connects 206 countries around the globe, using as links
the ownership relations within large companies. If companies listed in country A have subsidiary
corporations in country B, there is a link connecting these two countries directed from country
A to country B. The weight of the link, wAB , equals the number of the subsidiary corporations
in country B controlled by companies of country A.

New Journal of Physics 14 (2012) 083030 (http://www.njp.org/)
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Figure 3. Changes in the CON network structure when using different weight
cutoff values wc. Panels (A)–(C) show the network snapshots around the central
region for wc = 3, 75 and 150, respectively. The size of the nodes is proportional
to their degree. (D) Evolution of the core size as a function of wc (after Garas
et al [21]). (E) Fraction of nodes and links of the original network that remain
for different wc values.

Using the Uk-shell decomposition method, as shown in table 2 and figure 3, we identify
a core of 41 countries. However, we expect that in the current state of the global economy, a
smaller set of countries are the major players (G8, G20, etc). In order to reduce the size of
the core and to highlight which are the potentially more important nodes of this network by
using the classic k-shell decomposition method, a cutoff value of wc = 100 was assumed by
Garas et al [21]. It was shown that the remaining network after filtering the links with wc < 100
contains only 66 out of the original 206 nodes. However, a core formed by the following 12
countries: the United States of America (US), the United Kingdom (GB), France (FR), Germany
(DE), the Netherlands (NL), Japan (JP), Sweden (SE), Italy (IT), Switzerland (CH), Spain (ES),
Belgium (BE) and Luxembourg (LU), was identified. In figure 3 the evolution of the core and
network size of the CON is shown, as a function of the weight cutoff value wc.

Using the Wk-shell decomposition method, we obtain the layered structure of the network
including all the 206 nodes, without using any arbitrary cutoff parameter. The core of the
network obtained with this method consists of the following 11 counties: US, GB, FR, DE, NL,
JP, Canada (CA), IT, CH, ES and BE. Comparing these two cores we find a striking similarity.
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The only two differences are the presence of CA in the core calculated using our new weighted
k-shell approach, while SE and LU have moved to the second innermost layer. These differences
can be well understood considering that CA is a major economy; it is part of G7, and all the
other six members of G7 are already part of the core. Furthermore, CA outperforms SE and
LU in terms of population and other macroeconomic indicators, such as total import/exports
and GDP. It is thus natural to conclude that the core obtained using the Wk-shell decomposition
method is more meaningful from an economic perspective, since it groups together some of the
largest (developed) global economies.

5. Dynamics: shell positioning and spreading potential

In recent years, models such as the susceptible infectious recovered (SIR) model [56] have
been used extensively in network research in order to explore epidemic spreading [27, 56–58],
economic crisis spreading [21] as well as information and rumor spreading [26, 28] in social
processes. In such processes the topology of the network is not the only thing that matters; the
position of the node where the spreading begins plays an important role as well. In the recent
work of Kitsak et al [48], it was shown that the spreading power of a node cannot be predicted
solely based on its degree. A better measure is its actual position in the network, as it is described
by the k-shell where it belongs.

Using this perspective, it is reasonable to assume that a k-shell partitioning method
provides us with a more accurate node ranking for representing the nodes’ spreading power. In
addition, since the individual nodes are grouped in k-shells, it is reasonable to assume that every
k-shell should contain nodes with similar spreading power. In what follows, we will use these
assumptions to evaluate and compare the performance of the Uk-shell and Wk-shell decomposition
methods.

We modeled the spreading process by applying the SIR model on all the networks described
above. However, since we are interested in the weights of the network, we used a version of the
SIR model which takes into account the weight of the links that mediate the spreading. This
model was originally introduced to simulate the spreading of an economic crisis [21]; for this
model the probability of infection is different for every link and is calculated by

pi j ∝ m · wi j/w̃ j , (2)

where wi j is the weight of the link that connects the origin node i with the destination node
j , and w̃ j is the total weight (w̃ j =

∑
i wi j ) of the destination node j . The factor m is a free

amplification parameter that can determine, for example, the severity of a crisis, how infectious
a virus is, the importance of a rumor, etc. In what follows, we will call this model weighted SIR
(W-SIR).

The modeling procedure of the W-SIR is the following. Initially, we assign all nodes to be
susceptible (S) to an infection. Next, one node, i , is chosen and is assumed to be infected (I).
This node will infect all its neighboring nodes with probability pi j during the first time step.
This causes all infected nodes to switch their status from S to I, while the node that initiated
this process changes to the recovered state (R), and can no longer infect other nodes or become
infected. At every consecutive time step the process is repeated, and all the infected nodes are
trying to infect their susceptible (S) neighbors in the network. The process lasts until there are
no infected nodes left in the network.
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Figure 4. Average infected fraction of a k-shell versus the shell’s distance from
the core of the network.

For each individual node we performed 100 realizations of the W-SIR model, and we
calculated the average infected fraction of the network for different values of m ∈ [0, 10]. This
fraction is used as score in order to rank the nodes according to their spreading potential.
We restricted ourselves to values of m in this interval, as for much larger m values the role
of individual nodes is no longer important, and an epidemic outbreak emerges no matter
where the infection starts. Next, we partitioned the network using the Uk-shell and the Wk-shell

decomposition methods, and ranked the obtained k-shells according to their distance from
the core. By calculating the average infected fraction that results from an epidemic starting
separately from all nodes of every individual k-shell, we estimated the shell’s spreading
potential.

In figure 4, we study how the average infected fraction changes versus the distance of
each k-shell from the core of the network for both methods. We find that, in general, the central
k-shells obtained by the Wk-shell method are more able to initiate a severe outbreak in comparison
with the central k-shells obtained using the Uk-shell method. This result is robust for all networks
used in this study, and for different values of the parameter m. The above finding means that the
Wk-shell decomposition method positions the nodes with the higher average spreading potential
in shells closer to the core.

Next, we tested how homogeneous are the obtained k-shells with respect to the spreading
potential of their containing nodes. In order to do so, we calculated the standard deviation, σ ,
of a node’s infected fraction (spreading potential) for every k-shell for a given value of the
parameter m. Next we calculated the average value over all the shells, 〈σ 〉, and we plotted
it versus m (figure 5). We find that the average standard deviation of the spreading potential
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Figure 5. Average value of the spreading potential of nodes within a k-shell over
all shells, 〈σ 〉, versus m.

using W-SIR is always lower when we partition the network using the Wk-shell method, with
respect to partitioning using the Uk-shell method. This means that the Wk-shell method gives more
homogeneous k-shells, where all nodes in the shell have similar importance for the dynamical
process in question.

As a final step and given that the Wk-shell method performs better in positioning the nodes
according to their W-SIR spreading potential in weighted graphs, it is interesting to further
explore the role of the weights in this process. To do so, we created ten realizations of the CON
network with shuffled weights, and we performed 100 runs of the W-SIR model on every one
of these ten networks. Next, we calculated the average spreading potential per k-shell using
the infected fraction obtained by the implementation of W-SIR on the network with shuffled
weights. As shown in figure 6, in the shuffled case the k-shells are becoming significantly more
inhomogeneous, and their 〈σ 〉 is always larger that the 〈σ 〉 obtained by the original, unshuffled
network. This procedure highlights the role of the weights in the process, since in the case when
the weights do not to play any role these two curves should collapse into one.

6. Conclusion

In summary, we presented a generalized k-shell decomposition method (Wk-shell) that considers
the link weights of networks, without applying any arbitrary cutoff threshold on their value.
The method resumes the same shell structure obtained by the classic k-shell decomposition
in the absence of weights, but when weights are present, it is able to partition the network in
a more refined way. In its general formulation, our method allows us to vary the importance
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Figure 6. Comparison of 〈σ 〉 versus m for two different configurations of the
CON. Wk-shell—W-SIR is the original case (also shown in figure 5) where the
nodes’ spreading potential is obtained by applying the W-SIR in the original
network. Wk-shell—(Sh)W-SIR is a case when we calculated the nodes’ spreading
potential by applying the W-SIR on the ten realizations of the CON with shuffled
weights.

assigned to either the node weights or the node degree, by adjusting the exponents α and β of
equation (1). While in this paper we did not fully explore the parameter space, we would like to
stress that this additional flexibility provides a more accurate ranking for various applications.
Here, using α = β = 1 we showed that the partitioning obtained by the Wk-shell method is
particularly meaningful in terms of the spreading potential of the nodes. We demonstrated the
weighted version of the SIR model in four different networks, and showed that nodes with
higher spreading potential were positioned in the core or in shells closer to the core better in
comparison with the Uk-shell method.
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