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Abstract

Drawing on a large database of publicly announced R&D alliances, we empirically investigate the

evolution of R&D networks and the process of alliance formation in several manufacturing sectors

over a 24-year period (1986–2009). Our goal is to empirically evaluate the temporal and sectoral

robustness of a large set of network indicators, thus providing a more complete description of R&D

networks with respect to the existing literature. We find that most network properties are not only in-

variant across sectors, but also independent of the scale of aggregation at which they are observed,

and we highlight the presence of core-periphery architectures in explaining some properties

emphasized in previous empirical studies (e.g. asymmetric degree distributions and small worlds).

In addition, we show that many properties of R&D networks are characterized by a rise-and-fall

dynamics with a peak in the mid-nineties. We find that such dynamics is driven by mechanisms of

accumulative advantage, structural homophily, and multiconnectivity. In particular, the change

from the “rise” to the “fall” phase is associated to a structural break in the importance of

multiconnectivity.

JEL classification: : O32; D23; C33; C35

1. Introduction

This work investigates the structural properties of empirical R&D networks and the rules of alliance formation by

firms. In several industries, and especially in those with rapid technological growth, innovation relies on general and

abstract knowledge often built on scientific research (Dosi, 1993; Powell et al., 1996). This has allowed for a division

of innovative labor and fostered collaboration across firms (Arora and Gambardella, 1994a,b; Dosi, 1995).

Accordingly, the past three decades have witnessed a significant growth in the number of formal and informal R&D

collaborations (e.g. Hagedoorn, 2002; Powell et al., 2005), and several studies have documented the importance of

networks for knowledge spillovers and firms’ innovative performance (see e.g. Powell et al., 1996; Ahuja, 2000;

Giuliani, 2007).

The growing importance of R&D networks has resulted in a significant amount of empirical research about the

structural properties of those networks and on the determinants of their evolution. On the one hand, these empirical
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works have shown that R&D networks are typically sparse and characterized by heavily asymmetric distributions of

the number of alliances (e.g. Powell et al., 2005; Rosenkopf and Schilling, 2007; Hanaki et al., 2010). Furthermore,

R&D networks exhibit the so-called small world property (as shown by Fleming and Marx, 2006; Fleming et al.,

2007), i.e. they are characterized by short average path length and high clustering (Watts and Strogatz, 1998). On

the other hand, another group of empirical studies (see e.g. Gulati, 1995b; Powell et al., 2005; Rosenkopf and

Padula, 2008; Gulati et al., 2012) has proposed and tested models for the process of alliance formation driving the

evolution of R&D networks. This latter research stream is firmly rooted on the idea that the process of network evo-

lution is strongly path-dependent. In that, the existing structures of the network, and the position of the firms therein,

capture different technological as well as social and organizational characteristics, and shape firms’ decisions about

future creation and deletion of alliances.1

The above empirical studies have greatly contributed to the understanding of empirically observed R&D net-

works. However, they have often focused only on a small number of industries and/or they have rarely considered

how the properties of the network may evolve over time. Finally, they have focused on a small set of network meas-

ures (e.g. size, degree heterogeneity, small world properties), which limits the understanding of the path-dependent

process of alliance formation.

On these premises, our work improves on the foregoing literature along several dimensions. First, we analyze a

global inter-firm R&D network (the pooled R&D network), as well as its decomposition in a series of subnetworks

for several representative manufacturing sectors (the sectoral R&D networks). Through such an analysis, we are able

to check whether the network properties that have been analyzed by the current literature for sectors like computers

(e.g. Hanaki et al., 2010) or pharmaceuticals (e.g. Powell et al., 2005) are robust across different sectors of activity.

In addition, by comparing the properties at the pooled and at the sectoral levels, we are able to check for the presence

of universal properties of R&D networks that hold irrespectively of the scale of aggregation at which they are

observed.

Second, we investigate a broad set of network properties. The object of our analysis are not only the basic meas-

ures that have so far been considered in the empirical literature (size, degree heterogeneity, small world properties),

but also indicators related to more complex features of the network, such as assortativity (i.e. the presence of positive

correlation in the number of alliances among firms; see also Newman, 2003) and the presence of “nested” core-

periphery architectures (see Bascompte et al., 2003). In this way, we refine the existing knowledge on R&D networks

by detecting new stylized facts about the structural features of those networks and shed further lights on the drivers

of the process of alliance formation.

Third, building on the above-mentioned structural analysis, we perform a longitudinal analysis of the determin-

ants of R&D alliance formation. In this analysis, our dependent variable is a firm dyad, and the observation unit is

every potential pair of firms in the R&D network. We then investigate which combination of attachment rules pro-

vides a good description of the empirical evolution of alliances in the sample considered. We focus on the mechan-

isms of alliance formation which have received more attention in the literature so far, namely, (i) accumulative

advantage, (ii) structural homophily (or diversity), and (iii) multiconnectivity (see Powell et al., 2005; Rosenkopf and

Padula, 2008). Moreover, we conduct regression analyses for different time periods. In this way we are able to check

if different attachment rules may account for different evolutions of the network over the observed sample. Finally,

we also consider separately alliances formed among incumbent firms in the network, and alliances where at least one

firm is entering the network, to check whether drivers of alliance formation are different across incumbents and

entrants.

Our results show, first, that the evolution of R&D networks has been universal across different scales of aggrega-

tion. Indeed, many structural properties of the network (e.g. asymmetric degree distributions, assortativity, and pres-

ence of small worlds) robustly hold both when alliances are considered irrespectively of the sectors of the firms and

when sectoral networks are analyzed. Second, we show that the dynamics of R&D networks has been characterized

by two distinctive phases: in the first of them (the “rise” phase, from 1986 to 1997), alliances gave rise to dense net-

work structures, organized into very few large components displaying core-periphery nested architectures. In the se-

cond phase (the “fall” phase, from 1998 to 2009), networks become sparser and fragmented into many small

1 Besides, the hypothesis about the path-dependent character of R&D network evolution also underlies another stream of

theoretical works, which in the latter years have tried to account for the observed properties of R&D networks and their

dynamics (see in particular the works of Goyal and Joshi, 2003; Cowan and Jonard, 2004; König et al., 2012, 2014).
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components with few firms. Third, our regression results bring support to the idea that the process of alliance forma-

tion has largely been driven by accumulative advantage and by the search for similar partners (“homophily”).

Moreover, we find that in the rise phase firms also tried to form alliances to increase the number of paths through

which other firms could be directly or indirectly reached (“multiconnectivity”), whereas in the fall phase such an alli-

ance driver lost significance. In turn, such a structural break in the importance of multiconnectivity underlies the

emergence of densely connected networks and their subsequent fragmentation.

Our results have several implications. First, the universality of the structural properties of the network reinforces

the idea that R&D alliances can be analyzed independently of the characteristics of the sectors to which firms belong,

and by focusing on simple rules of alliance formation capturing different organizational and technological drivers,

given the existing network structure. Second, our findings on the rise and fall of the networks confirm previous re-

sults about the presence of a life cycle in the evolution of networks (see in particular Gulati et al., 2012). At the same

time, they show that such dynamics is not specific to a single industry but is rather a general property of many sec-

toral networks and it also holds independently of the scale of aggregation. In addition, the finding that network com-

ponents are organized into core-periphery architectures in the rise phase is able to jointly explain two features that

have so far received a great deal of attention in the empirical literature, namely, the presence of small worlds and fat-

tailed degree distributions. Finally, and in line with Powell et al. (2005), our results show that multiconnectivity mat-

ters besides more traditional drivers of R&D alliances, and in particular to explain structural breaks in the R&D net-

work evolution.

The article is organized as follows. Section 2 describes the data and the methodology used to build the networks

of R&D alliances. Section 3 presents a set of basic network properties, such as size, density, the emergence of a giant

component and discusses their evolution over time. Section 4 studies the heterogeneity and the homophily in the net-

work, by analyzing degree distributions and degree correlations (assortativity). Section 5 studies the emergence of

small-world and nested core-periphery structures in the R&D networks. Section 6 investigates the determinants of al-

liance formation through a set of regression models, discussing the results in light of the existing theoretical and em-

pirical literature on R&D networks. Finally, Section 7 concludes. The Appendix contains a description of all

network measures used in the article.

2. R&D alliance data and the construction of R&D networks

An R&D network is a representation of the research and development alliances occurring between firms in one or

more industrial sectors within a given period. Every network consists of a set of nodes and links connecting pairs of

nodes. In our representation, each node of the network is a firm and every link represents an R&D alliance between

two firms. By R&D alliance, we refer to an event of partnership between two firms, that can span from formal joint

ventures to more informal research agreements, specifically aimed at research and development purposes. To detect

such events, we use the SDC Platinum database, provided by Thomson Reuters, that reports all publicly announced

alliances, from 1984 to 2009, between several kinds of economic actors (including manufacturing firms, investors,

banks, and universities). We then select all the alliances concerning manufacturing firms and displaying the “R&D”

tag; after applying this filter, we obtain 8835 listed alliances.

Information in the SDC data set is gathered only from announcements in public sources, such as press releases or

journal articles. Nevertheless, despite the bias that could be introduced by such a collection procedure, Schilling

(2009) shows that the SDC Thomson data set provides a consistent picture with respect to alternative databases (e.g.

CORE and MERIT-CATI, see also Hagedoorn et al., 2000) in terms of alliance activity over time, industry compos-

ition, and geographical location of companies. The country coverage of the SDC data set is also consistent with the

alternative data sets: 55% of the listed firms are registered in the United States, 8.5% in Japan, 4.4% in Canada,

4.3% in the UK, and so on. See Table 1 for more details.

We check all firm names and control for all legal extensions (e.g. “ltd” and “inc”) and other recurrent keywords

(e.g. “bio,” “tech,” “pharma,” and “lab”) that could affect the matching between entries referring to the same firm.

We keep as separated entities the subsidiaries of the same firm located in different countries. The raw data set con-

tains 16,313 firms, which are reduced to 9499 after running such an extensive standardization procedure.

In our network representation, we draw a link connecting two nodes every time an alliance between the two cor-

responding firms is announced in the data set. An alliance is associated with an undirected link, as we do not have

any information about the initiator of the alliance. When an alliance involves more than two firms (consortium), all
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the involved firms are connected in pairs, resulting into a fully connected clique. Following this procedure, the 8835

alliance events listed in the data set result in 11,827 links. Similarly to Rosenkopf and Schilling (2007), the R&D net-

work that we consider in our study is unipartite, as we only have one set of actors (“the firms”), whose elements may

be connected—or not—by publicly announced alliances.2

Multiple links between the same nodes are in principle allowed (two firms can have more than one alliance on dif-

ferent projects). Nevertheless, as we aim at studying the connections between firms, and not the number of alliances

a firm is involved in, we discard this information and use unweighted links in our network representation. For this

reason, we define the degree of a node as the number of other nodes to which it is linked, i.e. the number of partners

that a firm has—not the number of alliances. Furthermore, a firm appears in the R&D network only if it is involved

in at least one alliance. Our study is focused exclusively on the embeddedness of firms into an alliance network; for

this reason, isolated nodes are not part of our network representation.

Both the links and the nodes of the R&D network are characterized by an entry/exit dynamics. Alliances between

firms have a finite duration (see Deeds and Hill, 1999; Phelps, 2003). This causes some firms to disappear from the

network, after they no longer participate in any alliance. Likewise, many new firms that are not listed in any previous

alliance may enter the network at the beginning of a new year. Our longitudinal study obviously requires precise tem-

poral information about the formation and the deletion of alliances. The SDC Platinum data set contains the begin-

ning date of every alliance, but there is no information about any of the ending dates (firms do not usually organize

press releases to announce the end of an alliance). We are thus forced to make some assumptions about the alliance

durations. We draw the duration of every alliance from a normal distribution with mean value from 1 to 5 years and

standard deviation from 1 to 5 years, and we find that all our results remain qualitatively unchanged within these

ranges.3 Given the strong robustness of the R&D network to the variation of alliance lengths, we take a conservative

approach and assume a fixed 3-year length for every partnership, consistently with previous empirical work (e.g.

Deeds and Hill, 1999; Phelps, 2003; Rosenkopf and Schilling, 2007). More precisely, we link two nodes when an alli-

ance between the corresponding firms occurs, and we delete this link 3 years after its formation. This is also the rea-

son why, even though our data set starts reporting R&D alliances from the year 1984, we start building the

corresponding R&D network from the year 1986. In this way, we are able to build 26 snapshots of the R&D

Table 1. Network composition with respect to the geographical provenience of the firms listed in our data set

Country Number of firms Fraction

Pooled 9499 1.000

United States 5245 0.552

Japan 804 0.085

Canada 421 0.044

UK 411 0.043

Germany 358 0.038

China 331 0.035

France 236 0.025

Australia 202 0.021

India 119 0.013

Italy 109 0.011

Other 1263 0.133

The top-10 represented countries account for 87% of all listed firms.

2 Our work differs from previous empirical studies (e.g. Cantner and Graf, 2006; Hanaki et al., 2010; Lissoni et al., 2013)

which construct the network through the association of firms with patents and/or inventors. Those studies use patent

data to build the network and associate elements in the set “firms” to the elements in the set “patents.” This way, the

network they obtain is bipartite.
3 The variation of the standard deviation has nearly no influence on the patterns exhibited by all network measures,

whereas a variation of the mean would only shift some trends in terms of absolute value, but not in terms of time-

evolution and peak positions.
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network—one for every year—from 1986 to 2009. From now on we call the network containing all companies, irre-

spectively of their industrial sector, the pooled R&D network.

Every firm in the data set is associated to a SIC code (Standard Industrial Classification). This allows us to build a

series of sectoral R&D networks, one for each sector that we identify in the data set. A sectoral R&D network con-

tains only alliances in which at least one of the partners has a three-digit SIC code matching the selected sector (see

also Rosenkopf and Schilling, 2007, for a similar approach). The rules for link deletion are the same as in the pooled

R&D network. More precisely, we focus on the 10 largest manufacturing sectors (in terms of numbers of firms in the

network). Table 2 provides the list of the sectors considered, together with the number of reported firms and alli-

ances, both in absolute and in relative terms.

We study both the pooled R&D network and the sectoral R&D networks by computing a set of network indica-

tors along the whole observation period. We group our descriptive analysis of the network into three sections. We

begin by discussing basic facts about the evolution of the network, such as its size, density, and connectedness. Next,

we discuss the degree of heterogeneity and homophily in the network, by studying the evolution of the degree distri-

butions and of assortativity patterns. Finally, we discuss how network components are organized, by studying the

presence of small worlds and of core-periphery structures.

3. Basic facts about the evolution of R&D networks

We begin our analysis by discussing some basic properties concerning the evolution of the pooled R&D network.

Following Powell et al. (2005); Rosenkopf and Schilling (2007); Rosenkopf and Padula (2008) we employ network

visualization techniques to provide a first assessment of how network structures evolved over the years analyzed.

More precisely, Figures 1 and 2 show several snapshots of, respectively, the pooled and five sectoral networks. The

plots are produced using the igraph library4 for R, and the networks are displayed using the Fruchterman–Reingold

algorithm (cf. Fruchterman and Reingold, 1991). This is a force-based algorithm for network visualization which

positions the nodes of a graph in a two-dimensional space so that all the edges are of similar length and there are as

few crossing edges as possible. The result is that the most interconnected nodes are displayed close to each other in

the resulting two-dimensional plot. We use node colors to identify the sectors to which firms belong. More precisely,

in Figure 1 each different color indicates a different sector. In Figure 2, instead, different colors indicate whether the

firm belongs to the same sector on which the network is centered or not. This is to provide a visual indication on the

share of intra-sectoral and inter-sectoral alliances in each industry.

Table 2. Network composition with respect to the industrial sectors

Sector Number of firms Fraction Number of alliances Fraction

Pooled 9499 1.000 8835 1.000

Pharmaceuticals 2,224 0.234 2576 0.292

Computer Software 1,826 0.192 1533 0.174

Electronic Components 596 0.063 787 0.089

Computer Hardware 498 0.052 741 0.084

Medical Supplies 439 0.046 285 0.032

Communications Equipment 436 0.046 399 0.045

Laboratory Apparatus 301 0.032 207 0.023

Motor Vehicles 243 0.026 240 0.027

Inorganic Chemicals 147 0.015 129 0.015

Aircrafts and parts 146 0.015 132 0.015

Other 2,643 0.278 1805 0.204

The top-10 represented sectors account for 72% of all listed firms and 80% of all listed alliances.

Note: When an alliance event involves firms from different sectors, the weight of the alliance is equally distributed between the partners.

4 The igraph library is freely available at http://igraph.sourceforge.net/.
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Figure 1 denotes the presence of different phases in the evolution of the R&D network. The plots suggest a signifi-

cant growth of the network until 1997, and a reversal of this trend aftermath. Interestingly, such a rise-and-fall pat-

tern is also present in sectoral networks. Indeed, Figure 2 shows that—although with different intensities—all plotted

sectors display a concentration of alliance activities in 1993 and 1997, followed by a decline in the number of

Figure 1. Evolution of the pooled R&D network. Pooled R&D network snapshots in 1989, 1993, 1997, 2001, and 2005. To ease the

visualization, we only plot the nodes belonging to the 10 largest sectors and their alliance partners.

Figure 2. Evolution of five selected sectoral R&D networks. Snapshots in 1989, 1993, 1997, 2001, 2005, and 2009 for five selected

sectoral R&D networks: Pharmaceuticals, Computer Software, Communication Equipment, Aircrafts and parts, Medical Supplies.

Blue nodes represent the firms strictly belonging to the examined sector, while orange nodes represent their alliance partners be-

longing to different sectors.
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alliances in the 2000s decade. This result is confirmed by Table 3, which reports the size of the pooled and the sec-

toral R&D networks. Incidentally, notice that the same rise-and-fall dynamics is displayed by sectors which are very

different in terms of technological characteristics (e.g. Pharmaceutical and Aircrafts and Parts, see Rosenkopf and

Schilling, 2007).

Figure 3 provides important additional elements about the network dynamics in our sample. The figure shows the

evolution of the network density (number of existing links divided by the number of all possible links in the network)

and the network size of the pooled network, and shows quite starkly that the growth in the size of the network has

been associated to a significant fall in its density. This means that the expansion of the R&D network was heavily

driven by new alliances created by entrant firms. Moreover, after the “golden age,” the fall of the network has been

associated with a decrease in the number of nodes. Because of the importance of entry in the observed R&D network

dynamics, in Section 6 we perform separate regression analyses to investigate the determinants of the formation of al-

liances by entrants.

Another interesting feature of network dynamics in our sample is the emergence of densely connected giant com-

ponents, both at the pooled and sectoral level. This is evident not only from the plots in Figures 1 and 2, but also

from the time-evolution of the number of firms in such components, and reported in Table 4.5 The emergence

of a giant component in the network is of particular interest, as both previous empirical and theoretical works

(e.g. Goyal and Joshi, 2003; Powell et al., 2005; König et al., 2012) have stressed that high network connectedness

favors technological spillovers and overall knowledge growth by increasing the number of knowledge sources to

which single firms have direct or indirect access via alliances. Figure 1 also shows significant heterogeneity in terms

of the type of sectors present in the giant component although two categories of sectors seems to be prevalent in

the component: pharmaceuticals and ICT-related sectors (computer software and hardware, electronic compo-

nents, communications equipment). The foregoing giant component has then significantly shrunk in the 2000s, leav-

ing space to a growing periphery of disconnected dyads (pairs of allied firms). Such a process of increasing

connectedness and subsequent fragmentation of the network is present also at the sectoral level (see Figure 2), al-

though the intensity of the network fragmentation in the 2000s looks much lower in pharmaceuticals than in the

other plotted sectors.

The above analysis shows the existence of patterns that are invariant to the scale of aggregation or the sector

where they are observed. Namely, both the pooled and sectoral R&D networks experience a robust growth in both

size and connectedness until 1997. In particular, the years between 1994 and 1997 (the “golden age” of R&D
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Figure 3. Size and density evolution of the pooled R&D network. Time-evolution of size (solid line, right y-axis) and density (dashed

line, left y-axis) of the pooled R&D network. Note that the density is visualized on a logarithmic scale.

5 A connected component is defined as a set of nodes which are connected to each other by at least one path (i.e. a se-

quence of links). We refer to the largest connected component as the giant component of the network. The giant com-

ponent size to the overall network size ratio (or giant component fraction) is a rough indicator of the network

connectedness.
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networks) witness not only a higher number of alliances, but also the emergence of a significantly large giant compo-

nent. This robust growth is then replaced by a decline phase, characterized by both a reduction in the number of alli-

ances and by the breakdown of the network into smaller components. In the next section, we add further details to

the above picture of network evolution by investigating heterogeneity and homophily in the formation of alliances.

4. Heterogeneity and homophily in R&D alliances

A good deal of literature has analyzed the properties of the degree distributions in R&D networks. Empirical studies

have shown that degree distributions in R&D networks tend to be broad and highly skewed. However, some studies

find exponential distributions (Riccaboni and Pammolli, 2002), while others find power-law distributions (Powell

et al., 2005). The presence of a power-law distribution would indicate the existence of an underlying multiplicative

growth process (Simon, 1955; Reed, 2001). In the context of R&D networks the presence of skewed and fat-tailed

distributions, such as power-laws, in the firms’ degrees indicates that a few firms have a disproportionate number of

ties compared to other firms. This may in turn indicate some form of accumulative advantage at work in the process

of alliance formation, where firms that are able to get an initial advantage position in a technological field, or in

terms of alliance experience, are then able to attract a large number of partners (see Powell et al., 2005). One model

capturing the idea of accumulative advantage is the so-called “preferential attachment” model by Barabasi and

Albert (1999), which predicts the emergence of a power-law degree distribution on the basis of a mechanism where

Table 4. Fraction of the giant component for the pooled and the sectoral R&D networks

Sector 1986–1989 1990–1993 1994–1997 1998–2001 2002–2005 2006–2009

Pooled 0.112 0.507 0.536 0.367 0.179 0.216

Pharmaceuticals 0.107 0.583 0.663 0.495 0.240 0.334

Computer Software 0.287 0.664 0.613 0.354 0.244 0.096

Electronic Components 0.152 0.665 0.726 0.583 0.387 0.106

Computer Hardware 0.257 0.681 0.757 0.652 0.526 0.152

Medical Supplies 0.254 0.189 0.294 0.117 0.091 0.061

Communications Equipment 0.222 0.665 0.697 0.577 0.400 0.181

Laboratory Apparatus 0.242 0.439 0.372 0.311 0.181 0.088

Motor Vehicles 0.289 0.537 0.529 0.472 0.311 0.098

Inorganic Chemicals 0.253 0.373 0.408 0.147 0.231 0.266

Aircrafts and parts 0.483 0.628 0.463 0.355 0.237 0.152

The values are averages within each sub-period.

Table 3. Network size for the pooled and the sectoral R&D networks

Sector 1986–1989 1990–1993 1994–1997 1998–2001 2002–2005 2006–2009

Pooled 207 1,529 2846 1358 1122 1069

Pharmaceuticals 63 440 617 461 508 666

Computer Software 74 485 1145 406 198 94

Electronic Components 66 312 528 246 188 144

Computer Hardware 65 372 650 208 90 40

Medical Supplies 10 142 236 120 86 111

Communications Equipment 26 210 408 172 104 51

Laboratory Apparatus 22 148 225 118 84 65

Motor Vehicles 15 104 178 104 89 69

Inorganic Chemicals 18 100 132 54 41 32

Aircrafts and parts 12 82 127 65 42 24

The values are averages within each sub-period.
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entrant firms tend to attach to incumbent partners with higher degree. Power-law distributions can also emerge in

network models (e.g. König et al., 2014) where accumulative advantage is captured by the centrality of the position

of a firm in the network. In this respect, connections to a more central actor in the network can allow for higher

knowledge growth, by granting access to larger and more diversified knowledge sources (see Ahuja, 2000; Powell

et al., 2005; König et al., 2012).

We contribute to the existing debate about degree distributions in R&D networks by studying their evolution

over time and comparing the results across different sectors.6 All the analyses performed in this section consider net-

works which are obtained by pooling, i.e. adding up, all the observations for each node over a 4-year period.7

Table 5 shows the first four moments of the degree distribution of the pooled network in each sub-period. In all

periods examined, the degree distribution displays high variance associated with high right-skewness and excess kur-

tosis. In addition, the P-values of the Kolmogorov–Smirnov test show that the degree distributions of the pooled net-

work are extremely far from the Normal benchmark. In particular, the very high values of the kurtosis coefficient

(especially in the period 1994–1997) are indicative of heavy tails in the degree distribution, which in turn imply the

presence of network “hubs” concentrating a high number of alliances. This is also confirmed by the visual analysis of

such distributions, reported in Figure 4.

Furthermore, Table 5 shows that all the four moments of the degree distribution increase in the first years of the

sample, reaching a peak in the 1994–1997 period, and then decrease again. This indicates that the “golden age” of

R&D networks has been characterized by more alliance activity per firm, but also by more alliance inequality.

The degree distributions of the sectoral R&D networks display patterns that are similar to those of the pooled

R&D network.8 In particular, all sectoral degree distributions are characterized by high variance associated with sig-

nificant skewness and kurtosis in all sub-periods. Again, also in sectoral networks, firms have on average more col-

laborators during the “golden age” of alliance activity (1994–1997) but also more unequal alliance activity.

The previous analysis thus suggests the significant presence of heavy tails in both the pooled and sectoral degree

distributions. To get an estimate of the “heaviness” of those tails from a non-parametric point of view, we compute

the Hill Estimator (HE; Hill, 1975), a tool commonly used to study the tails of economic data (see the Appendix for

more details). It is important to recall here that the theoretical HE value predicted by the preferential attachment

model of Barabasi and Albert (1999) is 3. A value of the HE lower than 2 indicates an extremely heavy-tailed distri-

bution—“super heavy-tailedness.” At the other extreme, a value higher than 4 is indicative of degree distributions

whose fat-tail property is not very pronounced—“sub heavy-tailedness.”

Table 6 reports the values of the HE for both the pooled and the sectoral R&D networks in all the considered

time periods. Starting with the pooled network, we observe that the HE first decreases, reaching a minimum in the

Table 5. Degree distribution statistics and P-values of Kolmogorov–Smirnov test for the pooled R&D network

Statistics 1986–1989 1990–1993 1994–1997 1998–2001 2002–2005 2006–2009

Mean 1.44 2.25 2.40 1.91 1.57 1.47

SD 1.09 3.77 4.75 2.87 1.70 1.42

Skewness 5.85 8.93 9.65 8.04 7.74 7.03

Kurtosis 62.06 134.90 141.27 99.42 98.20 77.81

Kolmogorov–Smirnov

test P-value

< 10�15 < 10�15 < 10�15 < 10�15 < 10�15 < 10�15

6 As already mentioned in Section 2, we define the degree as the number of partners of a firm, and not the number of alli-

ances. In addition, we utilize the complementary cumulative distribution function (see Appendix) to display all the ana-

lyzed degree distributions, given its higher stability and ease of visualization.

7 We adopt this approach because it is the most suitable for the visualization of individual firm properties and their cor-

responding distributions, as opposed to global network measures (see Sections 5), which have to be computed separ-

ately in every year and then averaged. However, we have found that our results for the heterogeneity and homophily

indicators are not affected by double counting and are robust to the choice of averaging or pooling the observations

over 4-year time periods.
8 These results are not shown here, but are available from the authors upon request.
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golden-age period 1994–1997, and then increases again. The values of the HE computed on the sectoral R&D net-

works reveal a rise-and-fall pattern similar to the one detected in the pooled network (see Table 6). Again, most sec-

tors display fatter tails in the periods of higher alliance activity. All this shows that the degree of tail-heaviness

undergoes a rise-and-fall dynamics similar to the other network measures discussed so far. Moreover, Table 6 also

shows that, in all periods, the HE mostly ranges between 2 and 4. This rules out both super and sub heavy-tailedness.

Figure 4. Degree distribution in the pooled R&D network. Complementary cumulative degree distributions of the pooled R&D net-

work in six sub-periods. Note: The insets in the top right corner show the average network size in each of the sub-periods.

Table 6. HE for degree distributions in the pooled and the sectoral R&D networks

Sector 1986–1989 1990–1993 1994–1997 1998–2001 2002–2005 2006–2009

Pooled 3.43 2.36 2.30 2.52 2.86 2.92

Pharmaceuticals 4.72 3.10 2.29 2.53 2.95 3.02

Computer Software 3.24 2.16 2.07 2.98 2.51 3.29

Electronic Components 3.33 2.81 2.11 2.16 2.42 3.03

Computer Hardware 2.82 2.09 1.96 2.60 2.33 4.28

Medical Supplies – 3.10 2.63 3.68 4.20 4.18

Communications Equipment 5.10 3.00 1.97 1.95 2.30 3.13

Laboratory Apparatus 4.09 2.19 3.39 2.57 2.68 4.26

Motor Vehicles 5.07 3.65 2.06 3.10 2.85 2.73

Inorganic Chemicals 3.29 2.59 2.22 3.28 3.08 3.45

Aircrafts and parts 3.15 2.77 3.30 4.19 2.79 6.47

Note: Missing values refer to sectors with not enough observations).

For each degree distribution, we also compute the P-value of a Kolmogorov–Smirnov test; our null hypothesis is that the data are drawn from a distribution having

the fitted HE value. We find that, in all cases, the null hypothesis cannot be rejected, thus supporting the significance of all reported HE values (see Appendix for more

details).
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Finally, in all time periods, except the first and the last one, the values of the HE are significantly below 3, and the

minimum is reached in the golden age period 1994–1997 (2.30, for the pooled R&D network).9 In line with previous

empirical works (e.g. Powell et al., 2005), this finding indicates that in those periods the degree distributions of R&D

networks are not consistent with the preferential-attachment model—being their tails “fatter” than what predicted

by that model. Accordingly, a simple accumulative advantage process is not enough to fully account for the observed

heterogeneity in R&D networks.

Overall, the above results show that the process of R&D alliance formation has been characterized by huge and

persistent cross-firm heterogeneity in terms of number of alliances. We now turn to investigate how partners’ choices

of firms having similar characteristics are correlated. One example of this is provided by the visualization of sectoral

networks, presented in Figure 2. Indeed, the figure shows that firms in the pharmaceutical sector have displayed a

stronger preference toward alliances with firms in the same sector, whereas this has been less the case in the other

studied sectors. Such a preference for the formation of alliances with actors of similar type (e.g. of the same sector) is

an instance of structural homophily. The existing literature on R&D networks has explained how homophily may re-

flect a series of technological as well as organizational drivers. It may, for instance, be driven by the similarity in

knowledge bases, and therefore by the need to establish connections with firms with whom it is possible to “commu-

nicate” and therefore absorb knowledge (see e.g. Powell et al., 2005; Cowan and Jonard, 2009; Gulati et al., 2012).

Homophily may also be generated by the preference for forming relationships with firms having similar organiza-

tional structure and thus displaying the same capacity in managing alliances (e.g. Rosenkopf and Padula, 2008).

Finally, and especially for ICT-related sectors, it can be due to the need to establish technological standards

(Rosenkopf and Padula, 2008; Gulati et al., 2012).

One indicator of structural homophily traditionally used in the network literature is the degree of network assor-

tativity, measured by the correlation in degree across partners (assortativity mixing coefficient; see Pastor-

Satorras et al., 2001; Newman, 2002). A network is assortative if it is characterized by a positive correlation across

the degrees of linked nodes. Assortative networks display high homophily as firms tend to be connected to firms

with similar degree. At the other extreme, disassortative networks have negative degree–degree correlation, i.e.

nodes tend to be connected to nodes with dissimilar degree. Newman (2003) finds that technological networks, such

as the Internet, are disassortative, while social networks, such as the network of scientific co-authorships, are

assortative.

We compute the assortativity mixing coefficient r, defined in Newman (2003), on both the pooled and the sectoral

R&D sub-networks (see the Appendix for more details). Similar to the previous section, the whole observation period

is divided into six sub-periods of 4 years each and all the observations of every firm’s degree are taken together within

each sub-period. The degree correlation coefficients are then computed for each sub-period. The results are reported

in Table 7.

We find that both the pooled and the sectoral R&D networks are generally assortative. Correlation coefficients

are low but positive during the whole observation period (see Table 7) and in line with similar works in the complex

networks literature (e.g. Newman, 2003). This means that, on average, high-centrality (low-centrality) firms tend to

connect to other high-centrality (low-centrality) firms. Moreover, although correlation coefficients tend in general to

be higher in the golden age phase, no particular rise-and-fall dynamics seems to be present.10

To shed more light on the mechanics of alliance behavior generating assortativity, we plot in Figure 5 average

neighbors’ degree as a function of firm’s degree, for three different periods of our sample. In such a plot, assortativity

should correspond to an increasing relation between the two variables. In contrast, the plots show quite neatly that

such an increasing relation is present, at best, only in the golden age period (1994–1997). No relation is instead pre-

sent at the beginning and the end of the observation period (respectively, 1986–1989 and 2006–2009). Moreover, in

9 As an additional check, we perform a series of Kolmogorov–Smirnov (KS) tests. The corresponding P-values are re-

ported in the Appendix. For all networks in all time periods, the KS test could not reject the hypothesis that the original

data are drawn from a distribution having the fitted HE value.
10 We also calculated the assortativity network coefficient on the network including service sectors (e.g. business ser-

vices, management, and consulting) as well as universities. Such a network is still assortative when alliances are con-

sidered irrespective of the sector of the partners, but it turns out to be disassortative when sectoral networks are

considered. Such differences hint to a peculiar role played by universities and service firms in the process of formation

of R&D alliances, a topic that we leave to future research.
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the golden age, the relation between average neighbors’ degree and firm’s degree is highly non-linear. More specific-

ally, hubs (i.e. nodes with degree larger than 20) tend on average to connect to nodes with intermediate degrees ra-

ther than to other hubs. It follows that the assortativity one observes in the pooled network masks quite different

alliance behaviors from different types of firms. On the one hand, the behavior of firms having a low or intermediate

degree tends to be dictated by homophily considerations, as indicated by the search for partners having similar de-

gree. On the other hand, hubs exhibit a different strategy, mainly forming partnerships with more peripheral firms—

in terms of number of alliances.

5. From small worlds to core-periphery architectures

One basic fact about R&D network dynamics that we have spotted in Section 3 is the emergence of dense giant com-

ponents in the peak years of alliance formation. Large network components allow high connectedness and thus in-

crease the number of knowledge sources that single firms can reach, either directly or indirectly. In this section we

turn to analyze more in depth how these components were organized. This is important because different component

architectures reflect different models of alliance formation. Accordingly, their analysis sheds further light on which

type of processes governs the evolution of R&D networks in our sample. In this respect, small worlds are one type of

network architecture that has received significant attention both in the empirical and theoretical literature on R&D

networks (see e.g. Uzzi et al., 2007; Fleming et al., 2007; Gulati et al., 2012; Cowan and Jonard, 2009, 2004). A net-

work is a small world if it is characterized by two key features (Watts and Strogatz, 1998): (i) high local clustering,

Figure 5. Average neighbors’ degree as a function of firm’s degree in the pooled R&D network. The whiskers measure 62*standard

deviation from the mean. Note: On the top-right corner of each plot we report the corresponding value of the assortativity mixing

coefficient in the sub-period under analysis.

Table 7. Assortativity mixing coefficient in the pooled and the sectoral R&D networks (SIC codes are in brackets)

Sector 1986–1989 1990–1993 1994–1997 1998–2001 2002–2005 2006–2009

Pooled 0.018 0.128 0.115 0.210 0.262 0.004

Pharmaceuticals 0.271 0.328 0.336 0.306 �0.046 �0.051

Computer Software �0.113 0.010 0.009 0.104 0.505 �0.027

Electronic Components 0.209 0.112 0.068 0.201 0.316 0.595

Computer Hardware �0.106 �0.020 �0.047 0.033 0.186 0.317

Medical Supplies �0.100 0.545 0.476 0.259 0.045 �0.004

Communications Equipment 0.188 0.057 0.036 0.312 0.407 0.303

Laboratory Apparatus �0.046 0.312 0.207 0.396 0.487 0.059

Motor Vehicles �0.151 0.337 0.317 0.383 0.386 0.864

Inorganic Chemicals 0.245 �0.052 0.233 0.297 0.422 �0.153

Aircrafts and parts 0.173 0.195 0.417 0.291 0.423 0.556
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i.e. a structure where the neighbors of a node are in their turn connected among themselves, and (ii) low average path

length, i.e. the existence of short paths connecting a node to any other node in the network.11

Small worlds are typical of many technological and social domains (see Newman, 2010). In the context of R&D

collaborations, they may emerge as a result of a tension between homophily and diversity in the search of partners.

On the one hand, densely connected components can be generated by the need to ensure trust among partners and

discourage non-cooperative behavior (Gulati, 1995a). Likewise, they can occur because of technological similarity,

when firms are trying to exploit scale economies in their search for innovation (Gulati et al., 2012). On the other

hand, low average path length can be the result of the effort of some firms to establish bridging ties across different

communities, to get access to new ideas and sources of knowledge, and thus to dampen the possible adverse effects

on innovation of the redundancy characterizing knowledge exchanges in closely interconnected clusters (Rosenkopf

and Almeida, 2003; Sytch and Gulati, 2008).

We compute the small world coefficient, defined as the ratio between the clustering coefficient and the average

path length of the network (Watts and Strogatz, 1998, see also Appendix for more details), on the pooled and the sec-

toral R&D networks, and compare it to the small world coefficient that would emerge in randomly generated net-

works having the same size as the empirical ones. The results of our computations are listed in Table 8. Once again,

the results are presented for six different sub-periods.12 Values higher (lower) than 1 indicate that the degree of

small-worldliness of the empirical network under scrutiny is higher (lower) than what would be predicted by a ran-

dom network

First, Table 8 shows that small worlds are a universal characteristic of both the pooled and the sectoral networks

that we analyze. The ratios in the table are in general higher than one, especially in the periods of more intense alli-

ance activity (from 1990 to 2001). Second, periods of more intense alliance activity are also characterized by signifi-

cant cross-sectoral heterogeneity, in terms of small-worldliness. Small world ratios are indeed considerably higher in

sectors like Pharmaceuticals and Electronic Components than in sectors like Laboratory Apparatus, and Aircrafts

and Parts (cf. Table 8). Third, the evolution of the small world quotient exhibits a universal marked rise-and-fall pat-

tern over time. Both at the pooled and sectoral level the small world property is basically absent at the beginning of

Table 8. Small world quotient of pooled and sectoral R&D networks, for the giant component

Sector 1986–1989 1990–1993 1994–1997 1998–2001 2002–2005 2006–2009

Pooled 1.38 42.93 90.43 32.08 9.81 2.55

Pharmaceuticals 0.00 19.83 44.87 20.75 4.06 2.36

Computer Software 0.90 17.56 39.34 12.08 4.86 0.35

Electronic Components 1.47 12.13 20.53 11.72 6.79 2.06

Computer Hardware 0.42 14.52 25.56 10.22 4.50 0.00

Medical Supplies 0.00 2.82 7.03 1.46 0.39 0.23

Communications Equipment 1.78 8.28 15.34 8.10 4.19 1.46

Laboratory Apparatus 0.00 5.25 5.58 2.95 1.84 0.64

Motor Vehicles 0.99 4.17 7.15 4.28 3.09 1.18

Inorganic Chemicals 1.29 3.66 6.38 1.24 1.23 0.00

Aircrafts and parts 0.83 4.50 5.38 3.02 1.93 2.09

The values are averages within each sub-period.

11 Local clustering is defined as the number of existing links between the neighbors of a focal node, divided by the num-

ber of all possible links between these neighbors. Average path length is defined as the average of all shortest dis-

tances, i.e. the lowest number of links that must be traversed to connect every pair of nodes in the network. See

Appendix for further details.
12 The small world quotient is computed separately for every year during the whole observation period, in both the pooled

and the sectoral R&D networks, and then averaged within each sub-period. We do not aggregate the observations in-

side every time period, because the small world quotient is a global network measure, and not an ego-network meas-

ure centered around single nodes.
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our observation period (1986–1989), then it increases, reaching a peak in the “golden age” (1994–1997), and then

disappears again.

The above findings generalize previous results in the empirical literature that were limited to single industries or

geographical areas (e.g. Fleming and Frenken, 2007; Fleming et al., 2007; Gulati et al., 2012), by showing that, in-

deed, small worlds are a robust property of the global network of R&D alliances as well as of many sectoral net-

works. In addition, they show that small worlds have displayed a rise-and-fall dynamics similar to other measures

discussed so far. As it is argued at more length in Gulati et al. (2012), this evolution can be explained by the fact that

the same forces leading to small worlds (the above-mentioned tension between homophily and diversity in the search

for partners) have also set the premises for their own destruction. On the one hand, technological similarity and self-

reinforcing trust may lead actors within clusters to refuse the entry of new organizations. In addition, increasingly

homogeneous clusters lacking diversity may also become less attractive to newcomers searching for new ideas. On

the other hand, the diversity underlying the establishment of bridging ties may disappear as the small world matures,

because knowledge exchanges render the knowledge bases of firms more homogeneous over time, even in different

clusters (Cowan and Jonard, 2004). Accordingly, the incentive to keep bridging ties may decay and the network may

become fragmented. Of course this fragmentation may lead to knowledge heterogeneity across clusters, which even-

tually will pave the way for a new cycle to emerge. A similar rise-and-fall dynamics can also be explained by models

based on the idea of multiconnectivity (Powell et al., 2005), according to which the rate of knowledge growth in a

network is determined by the sources of knowledge to which a firm has either direct or indirect access (in other

words, the degree of network connectedness). In such a framework, when the network is sparse, creating highly inter-

connected clusters and bridging ties is a way to increase connectivity within the system, and therefore to create mul-

tiple knowledge paths. However, once the network is dense and connected, more paths can be created by reinforcing

ties within existing clusters, rather than keeping connections with more distant partners. The result is, again, a stron-

ger incentive to remove bridging ties, resulting in the fragmentation of the network and the disappearance of the

small world structure (see König et al., 2011, for an example of model based on the idea of multiconnectivity and

generating similar dynamics).

The above analysis provides important insights into how R&D alliances are organized within connected net-

works. At the same time, many diverse network architectures may co-exist under the umbrella of “small worlds,”

which—by themselves—do not place strong restrictions on the class of possible generating alliance mechanisms. In

particular, the small world property can be displayed both by a network where many clusters, populated by firms

with relatively homogeneous degree, are sparsely connected among themselves, and by a “core-periphery” network,

where a core of densely inter-connected firms is linked to a periphery of firms having only a few ties. Interestingly,

our analysis performed in Section 4 has shown that the degree distribution of the R&D networks is fat-tailed, a typ-

ical property of core-periphery structures.

A generalization of the concept of core-periphery architectures is represented by the so-called nestedness.

Developed and studied for the first time in the domain of ecological networks (see Bascompte et al., 2003), nestedness

quantifies the presence of hierarchies in a network’s topology. In a nested network, the set of partners of a node (its

neighborhood) is contained in the set of partners of nodes with higher degree. In that respect, nested networks are a

more general notion than standard single-core single-periphery structures, as they may feature several cores con-

nected to several peripheries. A number of works in the domain of inter-firm networks have pointed out that nested

networks can facilitate knowledge growth in models based on multiconnectivity (e.g. König et al., 2012). In addition,

nested structures can arise in R&D network growth models where alliance formation is determined by competition

in the search for centrality (e.g. König et al., 2014).

Nestedness can be quantified through an indicator, that we call the nestedness coefficient of the

network. In Table 9 we report the values of such coefficient for the pooled and the sectoral R&D networks, across

different periods.13 The coefficients in the table are normalized so that 1 corresponds to a fully nested network,

whereas 0 corresponds to a completely random network (see the Appendix for more details on the computing

procedure).

13 We have also computed the values of a different network indicator, namely, the core-periphery coefficient Ccp sug-

gested by Holme (2005). Our results are robust to such a different choice of indicator.
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Table 9 shows that the normalized nested coefficients are always very high, both for the pooled and sectoral net-

works. In addition, in the golden age (1994–1997), all values are extremely close to one, indicate the presence of fully

nested structures.14 Finally, similar to other network measures discussed in this article, also the nestedness follows a

rise-and-fall pattern over time, in both the pooled and the sectoral networks. In the next section, we focus on the im-

plications arising from the descriptive analysis performed so far, and we investigate the validity of different statistical

models on R&D alliance formation via regression analyses.

6. Investigating the determinants of alliance formation

In the previous sections, we have shown that the dynamics of R&D networks in the years 1986–2009 is characterized

by two distinct growth phases. During the first of them (the “rise” phase, from 1986 to 1997), the number of R&D

alliances boosted and gave rise to highly connected network components displaying significant unevenness and mod-

erate homophily in terms of alliance activity (as indicated, respectively, by fat-tailed degree distributions and low but

positive assortativity mixing coefficients, cf. Section 4). In addition, connected components were organized into core-

periphery architectures displaying the small world property (see Section 5). In the second phase (the “fall” phase,

from 1998 to 2009), the rate of alliance activity declined, and the R&D network became more fragmented into

smaller components not displaying the properties of the previous phase. Finally, the above-described network evolu-

tion has been universal, the same growth patterns emerging both when alliances were considered regardless of the

firms’ sectors and when different sectoral networks were analyzed.

We now turn to a statistical analysis of the determinants of R&D alliance formation. Following the previous em-

pirical literature on such alliance determinants (e.g. Powell et al., 2005; Rosenkopf and Padula, 2008), we assume

that the process of R&D alliance formation is highly path-dependent and that the topological characteristics of the

existing network structures and the rules of attachment among its constituents determine the choice of future part-

ners, thus shaping the evolution of the network itself.

Network characteristics can be firm-specific (e.g. the degree of a potential partner in the network) or re-

late to the structure of the component to which potential partners belong to (e.g. the number of paths within the com-

ponent). Moreover, they capture important technological as well as organizational and social factors

driving alliances. For instance, the position of a firm in the network (e.g. its centrality) captures its access to mul-

tiple knowledge sources, or a better experience in managing R&D collaborations (see Section 4). In addition, the

Table 9. Nestedness coefficients for the pooled and the sectoral R&D networks

Sector 1986–1989 1990–1993 1994–1997 1998–2001 2002–2005 2006–2009

Pooled 0.791 0.996 0.999 0.996 0.988 0.994

Pharmaceuticals 0.706 0.983 0.993 0.990 0.988 0.994

Computer Software 0.823 0.991 0.997 0.979 0.930 0.805

Electronic Components 0.778 0.979 0.991 0.980 0.950 0.820

Computer Hardware 0.804 0.991 0.995 0.982 0.921 0.662

Medical Supplies 0.680 0.838 0.926 0.701 0.750 0.775

Communications Equipment 0.464 0.955 0.988 0.966 0.893 0.585

Laboratory Apparatus 0.728 0.879 0.945 0.911 0.799 0.732

Motor Vehicles 0.630 0.835 0.949 0.898 0.813 0.651

Inorganic Chemicals 0.561 0.925 0.924 0.762 0.678 0.805

Aircrafts and parts 0.688 0.848 0.874 0.827 0.801 0.570

The values are averaged in six sub-periods.

14 The only exception is represented by the coefficient of the sector “Aircrafts and Parts,” whose value is nonetheless

very high (0.874). Moreover, we have found that most nestedness coefficients found in our R&D networks (and all coef-

ficients in the “golden age”) are significantly different from the average values of a set of random networks used as

benchmark; see Appendix for more details.
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fact of being part of a highly interconnected cluster can improve trust and communication among partners

(cf. Section 5).

As far as rules of attachment are concerned, we focus on the following hypotheses.

H1: Accumulative Advantage. The probability of forming an alliance with a firm increases with the centrality of that firm in the

network.

H2: Structural Homophily (or Diversity). The probability of an alliance between two firms increases with their similarity

(diversity).

H3: Multiconnectivity. The probability of forming an alliance with a firm increases if that firm allows to reach other firms in the

network through multiple independent paths.

Similarly to topological characteristics, rules of attachment are stylized representations of different evolutionary

drivers underlying the formation of alliances. For instance, accumulative advantage captures the presence of increas-

ing returns in the alliance process, i.e. a situation where firms that are already more visible in the network are also

able to attract more partners. Likewise, processes based on structural homophily reflect settings where firms search

for similar partners in terms of technological (e.g. same sector), spatial (e.g. same geographical area), or network

(e.g. being part of the same alliance cluster) characteristics. With these partners, communication and trust occur

faster, facilitating the exchange and the absorption of knowledge and the sharing of resources (see e.g. Gulati, 2007).

In contrast, structural diversity mainly reflects firms’ exploratory search for novel and different knowledge paths (see

e.g. Rowley et al., 2000; Rosenkopf and Almeida, 2003; Rosenkopf and Padula, 2008). Finally, multiconnectivity re-

flects alliance behavior in contexts where innovation is driven by knowledge recombination, and thus where it be-

comes of fundamental importance to have access to multiple knowledge sources (see Powell et al., 2005).

We have selected the above-mentioned attachment rules partly because of the attention that they have received in

previous empirical studies (see e.g. Gulati, 1995b; Powell et al., 2005; Rosenkopf and Padula, 2008) and partly be-

cause of the hints stemming from our previous descriptive analysis. Indeed, fat-tailed degree distributions and core-

periphery structures (cf. Sections 4 and 5) can be the result of an accumulative advantage process where firms with a

more central position in the network (e.g. with higher degree) are able to attract more partners.15 Likewise, small

worlds (and their rise and fall) can be the result of processes based on structural homophily or multiconnectivity.

Finally, multiconnectivity can also account for the high network connectedness documented in Section 3.

In what follows, we perform a statistical analysis of the above-described attachment rules. As the characteristics

of network dynamics appear to be universal across sectors and scale of aggregation, we focus only on the pooled net-

work. Our observation unit is not a firm, but a dyad of firms—i.e. a pair of potential partners in the R&D network.

Moreover, given the importance of firm entry in the network dynamics, we perform regressions on two different sets

of firm dyads (also called “risk sets”): one where both potential partners are incumbents, i.e. they have at least one al-

liance in their history, and one where at least one firm is an entrant firm, i.e. it has no previous alliance activity (see

also Rosenkopf and Padula, 2008, for a similar exercise). Finally, we analyze whether different attachment rules are

at work in the phase of rise and in the one of fall. For this reason, we run separate regressions for the period 1986–

1997 and the period 1998–2009. We begin by describing the variables used in our regressions. Next, we present the

employed statistical methodology and discuss the results of our analysis.

6.1 Variables

6.1.1 Dependent variable

We record the alliance history of all firm dyads in the network, in each year, from 1986 to 2009. Given the huge

number of potential observations, we exclude from the analysis firms that have been involved in less than five alliance

events during the entire observation period. Even after this censoring, we still obtain a sample with over 1 million

dyad-year observations. Next, for each dyad-year observation, we record a binary dependent variable, Alliance for-

mation, expressing whether the considered dyad forms an R&D alliance in the considered year. Consistently with

our network representation (cf. Section 2), alliance consortia are coded as multiple two-party alliances between each

15 However, our results also indicate that such a process is different from a standard preferential attachment dynamics �a

la Barabasi and Albert (see Section 4).
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pair of members of the consortium, and reverse-ordered dyads are excluded from the sample (our R&D network is

undirected).

As explained before, we select two different “risk sets” on which we perform our dyadic regressions, the distinc-

tion being based on the alliance history of the potential partners: (i) incumbent dyads, where both firms have already

been involved in at least one alliance; (ii) mixed dyads, where one firm is incumbent and the other one is a new-

entrant in the R&D network. Moreover, we divide our sample in two observation periods, rise (1986–1997) and fall

(1998–2009). Accordingly, we run four different batteries of regressions: (i) on incumbent dyads in the rise phase; (ii)

on incumbent dyads in the fall phase; (iii) on mixed dyads in the rise phase; (iv) on mixed dyads in the fall phase.

6.1.2 Independent variables

All of our dyadic independent variables are computed in the year preceding the dyad-year observation under examin-

ation. Some of them relate to structural features of the involved firms, while others relate to their network character-

istics. To compute the latter, we construct year by year networks using the same procedure described in Section 2.

Following Powell et al. (2005) and Rosenkopf and Padula (2008), we focus on structural features and network char-

acteristics identifying the different attachment rules that are the object of our investigation.

Accumulative advantage. We assume that the formation of a new alliance will most likely involve the most central

firms in the network. This is captured by the variable Joint centrality for incumbent dyads, which expresses the aver-

age of the degree centrality of the two firms, and by the variable Incumbent centrality for mixed dyads, which

expresses the degree centrality of the incumbent firm in the dyad.16 We expect the probability of an alliance between

two firms to be positively correlated with both joint and incumbent centrality if the alliance formation process is

driven by accumulative advantage.

Structural homophily and diversity. This group of variables quantifies the extent to which the two firms in the

dyad are similar, with respect to both network related and structural, non-network related, characteristics. The

dummy variables Same nation and Same SIC measure, respectively, whether the firms are registered in the same

country and whether they have the same SIC code (at a three-digit level), are recorded in the SDC data set. They cap-

ture geographical and technological similarity. The latter is also captured by the variable Technological distance, a

real number that expresses how different the technological positions of the two companies are, computed through

their patents. For that, we use data provided by the NBER patent database (see Hall et al., 2001), listing all patent

applications in the United States and their respective categories, by US and non-US firms, from 1976 to 2006. See the

Appendix for more details on the calculation of this measure. The last three variables are computed in the same way

for both the incumbent and mixed dyads risk set. If alliance formation is based on homophily (resp. diversity) we ex-

pect the probability of an alliance to be positively (resp. negatively) correlated with sector and nation dummies, and

negatively (resp. positively) correlated with technological distance. Network similarity is defined only for incumbent

dyads (mixed dyads include firms that are not part of the network yet, and for which network measures are by defin-

ition null), and it is measured by the variables Centrality inequality, Inverse path length, and Common neighbors.

The first variable expresses the ratio between the degree centralities of the two firms (the largest divided by the small-

est). The second variable expresses the network distance (as opposed to technological distance) of the two firms.

Following the approach adopted in Section 5, we define the shortest path length as the number of links in the net-

work that have to be traversed to connect the two firms. This is an integer number ranging from 1 (if the firms are

directly connected) to infinite (if the firms belong to disconnected network components); accordingly, the value of

Inverse path length ranges from 0 (disconnected firms) to 1 (directly connected firms). Common neighbors expresses

the number of alliance partners that the two firms have in common. Positive (negative) coefficients of these two vari-

ables indicate the presence of structural homophily (diversity) in the firms’ attachment rules.

Multiconnectivity. As shown by Powell et al. (2005), partners that allow a firm to reach many other firms through

multiple independent paths are the most attractive alliance partners. For incumbent dyads, we capture this idea via

16 Given the skewed nature of the degree centrality distributions (see Section 4), and the multiplicative—rather than

additive—mechanism behind them, we take the logarithm of the variables Joint centrality and Incumbent centrality.

We have also tested models with other centrality measures—such as closeness, betweenness, and eigenvector cen-

trality. Results were robust to the use of these alternative measures. Notice that all these measures are strongly corre-

lated with each other and give rise to collinearity if used together in the same model.
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the use of the variable Average multi-path growth, that measures the average largest eigenvalue of the connected

components to which the two potential partners belong. As explained in König et al. (2011), the largest eigenvalue of

the adjacency matrix of a connected component in a network is directly proportional to the number of multiple inde-

pendent paths within the component.17 We expect the probability of an alliance to be negatively correlated with the

average multi-path growth. Indeed, low values of this variable indicate that at least one of the potential partners (or

both) is not in a component with a strong multi-path growth, thus increasing the incentive to form an alliance.18 For

mixed dyads we use instead Incumbent multi-path growth, that corresponds to the largest eigenvalue of the con-

nected component to which the potential incumbent partner belongs. In a multiconnectivity-based dynamics, the

probability of observing an alliance between an incumbent and an entrant can, on the one hand, increase with incum-

bent multi-path growth, as new firms benefit from attaching to a firm that has already access to many paths. On the

other hand, incumbents that have already access to many paths may have less incentive to form an alliance with the

entrant, which is completely disconnected from the network, thus reducing the probability of observing an alliance

between the two.

6.1.3 Control variables

We control for a set of variables that can affect the formation of alliances, both at the dyadic and at the aggregate

level.

Time. We employ time-fixed effect models, including dummy variables for the year in which the dyads are

observed. In this way we control for unobserved effects present at the time an alliance is formed. Similar to

(Rosenkopf and Padula, 2008), we have also tested a series of models including a time-trend variable. However, all

these models were characterized by a lower goodness of fit than time-fixed effect models.

Repeated alliances. To control for repeated ties we include an integer variable, Past alliances, expressing the num-

ber of alliances between the two firms in the dyad until the observation year. In addition, as suggested by Rosenkopf

and Padula (2008), we also consider the square value of such a variable to control for possible non-linear effects.

Sectoral alliance activity. To control for sectoral trends in alliances (see e.g. Powell et al., 2005) we compute the

number of alliances formed in the industrial sectors of the two firms in the year preceding our observation. We then

average the values for the two firms in the observed dyad, obtaining the variable Sector alliances.

We summarize the nomenclature and the meaning of all our variables in Table 10, and their correlations and basic

statistics in Table 11.

6.2 Statistical methodology and regressions results

Given the binary nature of our dependent variable, we use binomial regressions for all our models. The model fitting

is done through Maximum Likelihood Estimation. Following the approach proposed by Nesta et al. (2010), we em-

ploy a complementary log–log link function, particularly suited for an abundance of rare events. Differently from the

logit and the probit link functions, the complementary log–log function is asymmetrical, and thus frequently used

when the probability of the examined event is very large or very small.19 If we call the binary dependent variable

17 Powell et al. (2005) use a different measure of multiconnectivity, namely the k-coreness. We believe that the largest

eigenvalue provides a better description of the idea of multiconnectivity, as it directly measures the growth of multiple

paths within a component. Moreover, the k-coreness is strongly correlated with the largest eigenvalue; we also per-

formed regressions using the k-coreness instead of multi-path growth and the results remained basically unchanged.
18 The largest eigenvalue of a component is the same for two potential partners if they are already part of the same com-

ponent and increases with the number of links within the component. Moreover, the change in such eigenvalue de-

creases with the size of the component in many network structures. This implies a lower incentive to form an alliance

if the two partners are already part of components with many independent multiple paths. See König et al. (2011, 2012)

for more details.
19 However, even though the number of successes, or “ones,” in our dependent variable is low compared to the total

number of observations (0.12%), it is high enough in absolute value—we have 2597 link formation events in our

sample—thus making our results statistically significant (see King and Zeng, 2001; Nesta et al., 2010, for a more de-

tailed discussion on the topic).
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Alliance formation A, adopting the definitions of Nesta et al. (2010), the dependence of A on the independent vari-

ables X can be written as follows:

ProbðA ¼ 1jXÞ ¼ 1� exp½� expðXbÞ� (1)

where b is the vector of coefficients. We report their estimates and their confidence intervals for our different models,

risk sets and time periods, in Table 12. The goodness of fit of each models in each risk set is expressed through the

Akaike Information Criterion (AIC), and the Likelihood ratio with respect to the baseline model, which is the one

including only the variables related to accumulative advantage.

6.2.1 Results

By comparing the AIC scores of the different model sets, we find that the variables related to the accumulative advan-

tage mechanism alone are already sufficient to achieve a fairly good predictive power, both in the rise phase (models

1A and 1B) and in the fall one (models 4A and 4B). In particular, the variable Joint centrality for the incumbent

dyads displays always positive and significant coefficients in all models (models 2A, 3A, 5A, and 6A), thus validating

the hypothesis that alliances are more likely to be formed between more central firms—in particular, firms with more

Table 10. Nomenclature, type, and meaning of all the variables employed in our econometric model

Variable Type Meaning

Dependent variable

Alliance formation Binary Formation of a link between the two considered firms in the con-

sidered year.

Independent variables

1. Accumulative advantage

Joint centrality Positive real Logarithm of the arithmetic mean of the degree centrality of the

two firms (for incumbent dyads).

Incumbent centrality Positive real Logarithm of the degree centrality of the incumbent firm (for

mixed dyads).

2. Structural homophily and diversity

Same nation Binary 1 if the two firms are registered in the same nation.

Same SIC Binary 1 if the considered firms have the same SIC code.

Technological distance Positive real Distance between the two firms in a technology space (measured

through patent similarity).

Centrality inequality Positive real Logarithm of the ratio of the degree centralities—the largest div-

ided by the smallest—of the two firms (only for incumbent

dyads).

Inverse path length Positive real Inverse of the length of the shortest network path connecting the

two firms (only for incumbent dyads).

Common neighbors Positive integer Number of the alliance partners that the two firms have in common

(only for incumbent dyads).

3. Multiconnectivity

Average multi-path growth Real Arithmetic mean of the largest eigenvalues of the connected com-

ponents to which the two firms belong (for incumbent dyads)

Incumbent multi-path growth Real Largest eigenvalue of the connected components to which the in-

cumbent firm belongs (for mixed dyads).

Control variables

Year dummies Binary 23 dummy variables (the observation period consists of 24 years)

for the time-fixed effect models.

Past alliances Positive integer Number of alliances established between the two firms in all previ-

ous years (only for incumbent dyads).

(Past alliances)2 Positive integer Square of the variable Past alliances (only for incumbent dyads).

Sector alliances Positive real Arithmetic mean of the number of alliances in the industrial sectors

of the two firms, in the year preceding the observation.

The observation unit consists of a firm dyad, i.e. every potential pair of firms in the network.

The rise and fall of R&D networks 635

Downloaded from https://academic.oup.com/icc/article-abstract/26/4/617/2567086
by University of Zurich user
on 22 November 2017

Deleted Text:  &ndash; 


T
a
b

le
1
1
.
D

e
sc

ri
p

ti
v

e
st

a
ti

st
ic

s
a

n
d

co
rr

e
la

ti
o

n
s

o
f

a
ll

th
e

v
a

ri
a

b
le

s
e

m
p

lo
y

e
d

in
o

u
r

re
g

re
ss

io
n

m
o

d
e

ls
,
fo

r
in

cu
m

b
e

n
t

d
y

a
d

s
(r

is
k

se
t

A
)

a
n

d
m

ix
e

d
d

y
a

d
s

(r
is

k
se

t
B

)

R
is

k
se

t
A

:
b
o
th

fi
rm

s
in

th
e

d
y
a
d

a
re

in
cu

m
b
en

ts
(n

u
m

b
er

o
f

o
b
se

rv
a
ti

o
n
s
¼

7
6
6
,7

3
3
)

V
a
ri

a
b
le

M
ea

n
S
D

M
in

im
u
m

M
a
x
im

u
m

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
.
A

ll
ia

n
ce

fo
rm

at
io

n
0
.0

0
0
.0

5
0

1
–

–
–

–
–

–
–

–
–

–
–

–

2
.
Jo

in
t

ce
n
tr

al
it

y
1
.1

4
0
.8

0
0

4
.2

8
0
.0

5
–

–
–

–
–

–
–

–
–

–
–

3
.
Sa

m
e

n
at

io
n

0
.4

2
0
.4

9
0

1
0
.0

1
0
.0

3
–

–
–

–
–

–
–

–
–

–

4
.
Sa

m
e

SI
C

0
.1

5
0
.3

6
0

1
0
.0

3
�

0
.0

8
0
.0

2
–

–
–

–
–

–
–

–
–

5
.
T

ec
h
n
o
lo

gi
ca

l
d
is

ta
n
ce

0
.7

5
0
.3

0
0

1
.4

1
�

0
.0

6
�

0
.0

6
0
.0

4
�

0
.3

7
–

–
–

–
–

–
–

–

6
.
C

en
tr

al
it

y
in

eq
u
al

it
y

0
.9

8
0
.8

2
0

4
.3

7
0
.0

1
0
.6

5
0
.0

1
�

0
.0

5
�

0
.0

2
–

–
–

–
–

–
–

7
.
In

ve
rs

e
p
at

h
le

n
gt

h
0
.1

8
0
.1

6
0

1
0
.0

9
0
.4

6
0
.0

8
0
.1

1
�

0
.2

1
0
.1

4
–

–
–

–
–

–

8
.
C

o
m

m
o
n

n
ei

gh
b
o
rs

0
.1

1
0
.6

9
0

3
0

0
.1

3
0
.2

7
0
.0

4
0
.0

6
�

0
.1

4
0
.0

1
0
.4

9
–

–
–

–
–

9
.
A

ve
ra

ge
m

u
lt

i-
p
at

h
gr

o
w

th
1
3
.4

1
5
.4

9
1

1
9
.1

0
.0

0
0
.3

8
0
.0

9
�

0
.0

8
0
.0

6
0
.1

7
0
.5

3
0
.0

8
–

–
–

–

1
0
.
T

im
e

1
0
.7

5
3
.4

4
0

2
3

�
0
.0

2
�

0
.1

7
�

0
.0

8
0
.0

8
�

0
.0

6
�

0
.0

6
�

0
.2

1
�

0
.0

1
�

0
.3

7
–

–
–

1
1
.
P

as
t

al
li
an

ce
s

0
.0

1
0
.1

5
0

1
5

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

1
0
.0

0
0
.0

1
0
.0

0
–

–

1
2
.
(P

as
t

al
li
an

ce
s)

2
0
.0

2
1
.0

2
0

2
2
5

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.7

1
–

1
3
.
Se

ct
o
r

al
li
an

ce
s

8
0
.8

0
5
6
.0

7
0

2
8
6

0
.0

1
0
.1

2
0
.1

2
0
.3

2
0
.1

1
0
.0

4
0
.1

5
0
.0

2
0
.2

7
�

0
.2

3
0
.0

0
0
.0

0

R
is

k
se

t
B

:
o
n
e

fi
rm

in
th

e
d
y
a
d

is
a

n
ew

-e
n
tr

a
n
t

(n
u
m

b
er

o
f

o
b
se

rv
a
ti

o
n
s
¼

1
,4

3
2
,8

1
1
)

1
.
A

ll
ia

n
ce

fo
rm

at
io

n
0
.0

0
0
.0

2
0

1
–

–
–

–
–

–
–

2
.
In

cu
m

b
en

t
ce

n
tr

al
it

y
0
.7

6
0
.8

6
0

4
.3

7
0
.0

2
–

–
–

–
–

–

3
.
Sa

m
e

n
at

io
n

0
.3

6
0
.4

8
0

1
0
.0

1
0
.0

0
–

–
–

–
–

4
.
Sa

m
e

SI
C

0
.1

4
0
.3

4
0

1
0
.0

2
�

0
.0

4
0
.0

0
–

–
–

–

5
.
T

ec
h
n
o
lo

gi
ca

l
d
is

ta
n
ce

0
.7

8
0
.3

0
0

1
.4

1
�

0
.0

2
�

0
.0

4
0
.0

3
�

0
.3

1
–

–
–

6
.
In

cu
m

b
en

t
m

u
lt

i-
p
at

h
gr

o
w

th
9
.2

9
6
.5

6
1

1
9
.1

0
.0

0
0
.4

1
0
.0

4
�

0
.0

4
0
.0

1
–

–

7
.
T

im
e

1
2
.4

6
5
.1

6
0

2
3

�
0
.0

1
�

0
.0

8
�

0
.0

7
0
.0

5
�

0
.0

1
�

0
.2

6
–

8
.
Se

ct
o
r

al
li
an

ce
s

5
6
.8

2
4
8
.0

5
0

2
8
6

0
.0

1
0
.1

0
0
.0

4
0
.3

7
0
.1

0
0
.2

5
�

0
.0

1

636 M. V. Tomasello et al.

Downloaded from https://academic.oup.com/icc/article-abstract/26/4/617/2567086
by University of Zurich user
on 22 November 2017



distinct partners. The same finding holds for the mixed dyads (see the variable Incumbent centrality in models 2B,

3B, 5B, and 6B), proving that new-entrant firms are more likely to become part of the R&D network by attaching to

the most central incumbents.

The inclusion of the variables related to the structural homophily and diversity of the dyad yields a better predict-

ive power than the baseline model, as indicated both by the likelihood test ratios and the AIC scores (compare model

2A with 1A, 5A with 4A, 2B with 1B, and 5B with 4B). Remarkably, we obtain robust results across models and risk

sets. The variable Same SIC exhibits a positive and significant effect for both incumbent and mixed dyads, in both

the rise and the fall phases, indicating that firms tend to form intra-sectoral rather than inter-sectoral R&D alliances.

In contrast, the variable Same nation exhibits a positive and significant effect in the rise phase—both for incumbent

and mixed dyads—but not in the fall phase (where it is not significant), indicating that firms lose the tendency to

form geographically close alliances during the “fall” of R&D networks. The variable Technological distance exhibits

a negative and significant effect for both incumbent and mixed dyads, in both the rise and the fall phases, bringing

Table 12. Estimates of the model coefficients on the incumbent dyads (standard error in parentheses)

Risk set A Rise phase (1986–1997) Fall phase (1998–2009)

Incumbent dyads Model 1A Model 2A Model 3A Model 4A Model 5A Model 6A

(Intercept) �4.766** �4.375** �4.337** �9.577** �7.168** �7.127**

(0.998) (0.978) (0.979) (0.264) (0.288) (0.494)

Joint centrality 1.552** 1.016** 1.043** 1.402** 1.003** 1.006**

(0.036) (0.048) (0.049) (0.077) (0.105) (0.109)

Same nation 0.368** 0.370** 0.039 0.039

(0.054) (0.054) (0.120) (0.120)

Same SIC 0.659** 0.657** 0.353* 0.352*

(0.066) (0.065) (0.146) (0.146)

Technological distance �2.315** �2.305** �3.439** �3.440**

(0.111) (0.111) (0.272) (0.272)

Centrality inequality �0.099** �0.114** �0.412** �0.412**

(0.036) (0.036) (0.087) (0.087)

Inverse path length 2.362** 2.443** 2.134** 2.139**

(0.115) (0.114) (0.223) (0.228)

Common neighbors 0.016 0.010 �0.040 �0.041

(0.010) (0.011) (0.029) (0.029)

Average multi-path growth �0.080** �0.003

(0.019) (0.030)

Past alliances 0.250 0.135 0.126 0.602 0.518 0.517

(0.452) (0.414) (0.411) (0.709) (0.795) (0.796)

(Past alliances)2 �0.155 �0.088 �0.084 �0.138 �0.116 �0.116

(0.272) (0.231) (0.228) (0.321) (0.396) (0.397)

Sector alliances 0.001 �0.001* �0.001* �0.001 �0.001 �0.001

(0.001) (0.001) (0.001) (0.002) (0.002) (0.002)

Year dummies (Yes) (Yes) (Yes) (Yes) (Yes) (Yes)

AIC 17712.974 15404.617 15390.905 4359.410 3741.857 3743.846

BIC 17891.093 15649.530 15646.951 4527.007 3972.303 3984.767

Log Likelihood �8840.487 �7680.308 �7672.452 �2163.705 �1848.928 �1848.923

Likelihood ratio test 0 2320.358 2336.070 0 629.554 629.564

Deviance 17680.974 15360.617 15344.905 4327.410 3697.857 3697.846

Number of observations 505,067 505,067 505,067 261,666 261,666 261,666

Models 1A and 4A test the effect of accumulative advantage only; models 2A and 5A test the effect of accumulative advantage and structural homophily (diver-

sity); models 3A and 6A test the effect of accumulative advantage, structural homophily (diversity), and multiconnectivity. Models 1A, 2A, and 3A are related to the

rise phase (1986–1997) of the R&D network, while models 4A, 5A, and 6A are related to its fall phase (1998–2009). The likelihood ratio test of the models 2A and

3A is computed with respect to model 1A; the likelihood ratio test of the models 5A and 6A is computed with respect to model 4A.

**P < 0.01; *P < 0.05.
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additional support to the argument of the importance of absorptive capacity considerations in the formation of R&D

alliances (see Cohen and Levinthal, 1990). To sum up, geographical, sectoral, and technological similarities are posi-

tively correlated with the formation of a new alliance.

Next, the variable Centrality inequality, computed only on incumbent dyads, exhibits a negative and significant

effect in both the rise and the fall phases. This means that the dyads in which one firm is much more central than the

other one are less likely to form an alliance; on the contrary, firms with similar degree centrality are more likely to

form an alliance. This finding is in agreement with the positive assortativity coefficient that we have reported for the

R&D networks in Section 4, showing that firms with similar degree centrality are more likely to be connected.

Furthermore, the variable Inverse path length exhibits a positive and significant effect across models and time peri-

ods, stressing the importance of network-endogenous mechanisms for selecting new alliance partners (see Rosenkopf

and Padula, 2008). We find that firms which are already connected by a path in the network are more likely to form

an alliance. Moreover, the shorter this path is, the more likely the alliance is formed. Finally, the variable Common

neighbors is not significant at any time for any type of dyads, indicating that structural homophily in terms of part-

ners similarity is not an effective predictor of the formation of a new R&D alliance.

Regarding multiconnectivity we find that, for incumbent dyads, the variable Average multi-path growth shows a

negative and significant effect in the rise phase, indicating that firms embedded in a network component with a small

eigenvalue are more likely to form an alliance. Likewise, in mixed dyads, the new-entrant firm tends to connect to an

incumbent that is located in a component with a small eigenvalue, as shown by the coefficient of the variable

Incumbent multi-path growth. This result supports the hypothesis of a network-growth mechanism in which firms

try to increase both the number of new partners and the number of new independent pathways to which they can get

access when they form new alliances. The fact that firms with a small multi-path growth score are more likely to

Table 13. Estimates of the model coefficients on the mixed dyads (standard error in parentheses)

Risk set B Rise phase (1986–1997) Fall phase (1998–2009)

Mixed dyads Model 1B Model 2B Model 3B Model 4B Model 5B Model 6B

(Intercept) �8.641** �7.874** �7.824** �9.934** �7.510** �7.106**

(1.000) (1.007) (1.007) (0.285) (0.311) (0.403)

Incumbent centrality 0.759** 0.717** 0.753** 0.673** 0.604** 0.654**

(0.044) (0.043) (0.045) (0.072) (0.072) (0.080)

Same nation 0.915** 0.921** 0.120 0.121

(0.084) (0.084) (0.140) (0.140)

Same SIC 1.203** 1.204** 1.430** 1.427**

(0.105) (0.105) (0.179) (0.179)

Technology distance �2.316** �2.314** �3.140** �3.152**

(0.153) (0.153) (0.285) (0.286)

Incumbent multi-path growth �0.051** �0.032

(0.017) (0.021)

Sector alliances 0.001 �0.003** �0.003** 0.010** �0.002 �0.002

(0.001) (0.001) (0.001) (0.002) (0.002) (0.002)

Year dummies (Yes) (Yes) (Yes) (Yes) (Yes) (Yes)

AIC 8927.428 8239.980 8234.192 4004.853 3647.701 3647.537

BIC 9085.523 8431.951 8437.456 4167.831 3845.603 3857.080

Log Likelihood �4449.714 �4102.990 �4099.096 �1988.427 �1806.850 �1805.768

Likelihood ratio test 0 693.448 701.236 0 363.154 365.318

Deviance 8899.428 8205.980 8198.192 3976.853 3613.701 3611.537

Number of observations 592,703 592,703 592,703 840,108 840,108 840,108

Models 1B and 4B test the effect of accumulative advantage only; models 2B and 5B test the effect of accumulative advantage and structural homophily (diversity);

models 3B and 6B test the effect of accumulative advantage, structural homophily (diversity), and multiconnectivity. Models 1B, 2B, and 3B are related to the rise

phase (1986–1997) of the R&D network, while models 4B, 5B, and 6B are related to its fall phase (1998–2009). The likelihood ratio test of the models 2B and 3B is

computed with respect to model 1B; the likelihood ratio test of the models 5B and 6B is computed with respect to model 4B.

**P < 0.01; *P < 0.05.
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form alliances indicates that they actually attempt to increase this score by means of new network ties. However, dif-

ferently from all the other modes of alliance formation, multiconnectivity does not matter in the fall phase of the net-

work, as shown by the fact the variable Average multi-path growth is not significant in the period 1998–2009, both

for incumbents and mixed dyads.

Finally, for incumbent dyads, the control variables Past alliances and its square exhibit, respectively, a positive

and a negative coefficient. In principle, this is consistent with the prediction of the non-linear effect of repeated alli-

ances on the formation of a new link (see Rosenkopf and Padula, 2008). However, these coefficients are never signifi-

cant in our regressions, in any risk set or model variant, thus preventing us from drawing any conclusion. The

control variable Sector alliances exhibits a negative effect, in the rise phase of the R&D network, which is more sig-

nificant for mixed dyads rather than incumbent dyads. This confirms the presence of competition and saturation ef-

fects during the fast growth of the R&D network (1986–1997), which make the establishment of a new R&D

alliance less likely in sectors already showing a high alliance activity in the previous year. Such effects are stronger

when a new-entrant firm is involved in the alliance, clearly showing the presence of an entry barrier to the R&D

network.

The above finding can be summarized as follows: The rise of the global network of R&D alliances has largely

been driven by accumulative advantage factors as well as by structural homophily—rather than diversity—consider-

ations. In their search for R&D partners, firms were influenced both by the need of establishing connections with

more central partners in the network, and by similarity in technological and (at least in the rise phase) spatial proxim-

ity. In turn, these trends were reinforced by alliance formation strategies based on multiconnectivity aimed at increas-

ing the number of pathways through which other partners could be reached. The last driver is compatible with the

emergence of a large and densely connected network, observed at the end of the rise phase. During the fall phase, in-

stead, alliance formation was still driven by accumulative advantage and structural homophily, but not by multicon-

nectivity. It follows than in such a phase, firms were still looking for more central and more similar partners, but

disregarding the possibility of getting indirect access to other firms in the network. In its turn, this explains the dis-

appearance of bridging ties and the fragmentation of the R&D network.

7 Concluding remarks

In this study we have empirically investigated the dynamics and the properties of a set of global inter-firm networks

of R&D alliances, from 1986 to 2009. We considered both a “pooled” R&D network, i.e. a network where alliances

are considered independently of the sectors of the partners, as well as 10 sectoral R&D networks for the largest in-

dustrial sectors represented in our data set. On the grounds of this structural analysis we have then investigated via

binomial regressions the drivers of alliance formation, by testing the relevance of some mechanisms that have so far

been proposed in the empirical literature.

Our results provide strong support to the claim that several properties of R&D networks are not only robust

across several manufacturing sectors, but also invariant across different scales of aggregation. In other words, they

are stable if one considers the pooled R&D network or the sectoral networks. These properties do not only relate to

basic network characteristics like size, density, degree distributions. They also include more complex features con-

cerning the organization of the network components, such as the degree of structural homophily (captured by the

assortativity coefficient) and the presence of small worlds. Our results generalize previous findings in the literature,

that have been limited to the analysis of few sectors. They also provide empirical support to the idea that the process

of alliance formation can be analyzed independently of the sectoral specificities of the firms involved in R&D alli-

ances and—similar to many previous empirical studies (e.g. Powell et al., 2005; Rosenkopf and Padula, 2008; Gulati

et al., 2012)—it can be described in terms of simple rules. Such rules determine the probability of forming alliances

on the basis of the firms’ position in the network and on the properties of the existing network structures. In addition,

the finding that networks display a core-periphery architecture provides an important refinement with respect to the

existing knowledge on network properties, as this feature is able to jointly explain both fat-tailed degree distributions

and the presence of small worlds, which have received great attention in previous empirical studies.

Furthermore, we find that the last three decades have witnessed a rise-and-fall of R&D networks at all scales of

aggregation. Such a rise-and-fall dynamics has been previously emphasized only with respect to the presence of small

worlds in the computer industry (Gulati et al., 2012). We show that it is instead a general property of the network dy-

namics, involving many network indicators (and not only the presence of small worlds). Our regression results
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indicate that a structural break in some drivers of alliance formation is likely to be at the basis of the above life cycle

in R&D networks. In particular, we find that both in the rise and in the fall phase the alliance formation has been

driven by both “accumulative advantage” (the search for more central partners in the network) and “structural

homophily” (the search for more similar partners, in terms of industrial sector, technology, and geographical proxim-

ity). In contrast, firms have formed alliances to expand the number of indirect paths to other firms in the network

(the “multiconnectivity” driver, see Powell et al., 2005) in the rise phase only. We have, indeed, detected a loss of sig-

nificance of the latter alliance driver in the fall phase, thus providing an explanation for the observed disappearance

of bridging ties and the subsequent fragmentation of the network.

Our work could be extended in at least two ways. First, one could improve the regression analyses with

measures related to the industry demand and market structure, to check how the characteristics of within-

industry competition may affect the formation of intra- and inter-industry R&D collaboration. Second, building

on the empirical evidence one could develop an agent-based model to reproduce the emergent network

properties through a bottom-up approach. In particular, such a new agent-based model should be able to predict

at the same time all the features that we have empirically observed in the R&D networks, namely, degree distribu-

tions, assortativity, presence of small-world, and nested architectures. The goal is to eventually unveil the complex

interdependencies and mutual feedbacks between the emergent network structures and the individual firms’

decisions.
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Appendix

Degree distributions

In our network representation, we count multiple R&D alliances between the same two firms as one, and we

count all the firms participating in the same consortia as distinct partners. Furthermore, similarly to Section 3, the

whole observation period is divided into six sub-periods lasting 4 years. All the measures we present are computed by

aggregating firm degree data relative to the same sub-period. Figure 4 shows the degree distributions of the pooled

R&D network in the six analyzed sub-periods. More precisely, given each degree distribution, we report its comple-

mentary cumulative distribution function P(x), defined as the fraction of nodes having degree greater than or equal

to x:

PðxÞ ¼
ð1

x

pðx0Þdx0: (2)

where pðx0Þ is the probability density function, defining the fraction of nodes in the network with degree x. The com-

plementary cumulative distribution function is more robust than the probability density function against fluctuations

due to finite sample sizes (particularly in the tail).

Hill estimator

Let us assume that we have a network with N nodes. If N is the number of observations (in our case, the number of

node degrees that we measure in the R&D network) and t is the number of tail observations (t � N), the inverse of

the HE is defined as:

HE�1 ¼ t�1
Xt

i¼1

½log ðxiÞ � log ðxminÞ�; (3)

where xmin represents the beginning of the tail and xi, i ¼ 1 . . . t are the tail observations, i.e. the degree values such

that xi � xmin. The smaller the HE value, the “heavier” the tail of the degree distribution is. In particular, the degree

distributions of most biological, social, and economic systems display values of the HE between 2 and 4 (see Clauset

et al., 2009).

In Table A1 we report the P-values of the Kolmogorov–Smirnov tests performed on each R&D network and time

period—cf. the fitted HE values reported in Section 4, Table 6. Small P-values (less than 0.05) would indicate that
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the test rejects the hypothesis that the original data are drawn from a distribution having the fitted HE value. In all

cases, we obtain values greater than 0.05, confirming the significance of all reported HE values.

Assortativity mixing coefficient

To investigate assortativity–disassortativity in our R&D networks, we use the assortativity mixing coefficient r pro-

posed by Newman (2002). This quantity, as described by Equation (4), is the Pearson correlation coefficient of the

degrees at both ends of all links in the network:

r ¼ 4M�1
P

i jiki � ½M�1
P

iðji þ kiÞ�2

2M�1
P

iðj2i þ k2
i Þ � ½M�1

P
iðji þ kiÞ�2

; (4)

where ji, ki are the degrees of the firms at the ends of the i-th link, with i ¼ 1; . . .;M. The coefficient r ranges

between –1 for a totally disassortative network to 1 for a totally assortative network; a network in which

links are formed randomly would exhibit r¼ 0. For instance, Ramasco et al. (2004) develop models wherein

agents establish links with most central actors in the network, and show that such a mechanism gives rise to

disassortative networks. However, König et al. (2010) show that the same mechanism of search for high centrality

can give rise to assortative networks if agents face limitations in the number of collaborations they are able to

maintain.

Small world coefficient

According to Watts and Strogatz (1998), the small world properties of a network have to be evaluated using a

corresponding random network as the baseline. If the examined network is both large and sparse, i.e. N � �k,

where N is the network size and �k is the average degree, the basic requirement for small world is satisfied. Under

this assumption, the values of clustering coefficient C and average path length L for the baseline random net-

work will tend to: CR ¼ �k=N and LR ¼ log ðNÞ= log ð�kÞ. The small world quotient QSW we use for our analysis is

defined as:

QSW ¼
ðC=LÞ
ðCR=LRÞ

¼ ðC=CRÞ
ðL=LRÞ

: (5)

In our study, the condition of sparse network is always fulfilled for the pooled and the sectoral R&D net-

works (the average degrees are always smaller than 3 in our sample, and much smaller than the corresponding

Table A1. P-values of the Kolmogorov–Smirnov tests for the HEs of the degree distributions in the pooled and the sectoral

R&D networks

Sector 1986–1989 1990–1993 1994–1997 1998–2001 2002–2005 2006–2009

Pooled 0.38 0.54 0.67 0.62 0.46 0.62

Pharmaceuticals 0.42 0.42 0.42 0.50 0.46 0.46

Computer Software 0.33 0.67 0.42 0.50 0.50 0.46

Electronic Components 0.54 0.42 0.54 0.50 0.50 0.46

Computer Hardware 0.62 0.62 0.29 0.21 0.38 0.46

Medical Supplies – 0.42 0.29 0.58 0.58 0.67

Communications Equipment 0.54 0.54 0.50 0.54 0.46 0.46

Laboratory Apparatus 0.42 0.21 0.46 0.50 0.38 0.38

Motor Vehicles 0.54 0.46 0.21 0.58 0.67 0.46

Inorganic Chemicals 0.50 0.46 0.46 0.58 0.38 0.42

Aircrafts and parts 0.38 0.38 0.42 0.42 0.67 0.50

The null hypothesis is that the empirical data are drawn from a distribution having the fitted HE value. Note: Small P-values (less than 0.05) would indicate that

the null hypothesis has to be rejected, while large P-values (greater than 0.05) indicate that the null hypothesis cannot be rejected.
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network sizes). Some of the sectoral R&D networks have relatively small sizes in the first (1986–1989) and in the

last (2006–2009) observation periods (as can be seen from Table 3), but in these cases they exhibit an

even smaller average degree �k, still validating the assumption of sparse networks. When computing the observed to

random ratios, a small world network will show C=CR � 1 and L=LR ’ 1, which is the case for all the R&D net-

works we analyze.

Nestedness coefficient

To quantify the extent to which a network displays core-periphery nested structures, we use the BINMATNEST

algorithm, proposed by Rodriguez-Girones and Santamaria (2006). The algorithm uses the unweighted adjacency

matrix of the network to compute its nestedness score. The adjacency matrix is rearranged in such a way that all the

“ones” (existing links) are concentrated in the top-left side of the matrix, and the “zeros” (missing links) in

the bottom-right side. The algorithm then computes the optimal theoretical isocline separating the “ones” from the

“zeros” and counts the number of holes in these regions of the matrix—i.e. how many “zeros” are in the region of

the “ones”, and vice versa. The number of such holes is proportional to the score computed by the algorithm.

Note: The lower the score, the more nested the network is (and vice versa). The value returned by the algorithm,

Tn, ranges from 0, for a totally nested network, to 100, for a completely random (non-nested) network. Instead of

directly using the value generated by the algorithm, we use a normalized nestedness coefficient C0n, which we define

as follows:

C0n ¼
100� Tn

100
; (6)

where Tn is the nestedness score generated by the BINMATNEST algorithm. Our normalized nestedness

coefficient C0n has a more direct interpretation and spans from 0 for a totally random (non-nested) network, to

1 for a totally nested network. An important remark is that the nestedness, by definition, can be computed only

on connected networks. For this reason, we consider the largest connected component for each of the R&D net-

works that we analyze. The algorithm is also able to compute the P-values, by building and analyzing 100 ran-

dom networks having the same size and density as the giant component of the network under examination.

Here, the null hypothesis is that a random network with the same size and density as the network at hand exhibits

the same nestedness coefficient. In Table A2 we report the nestedness coefficients for all R&D networks in all

years—not only the time averages (see Table 9)—with the corresponding P-values visually encoded as significance

stars.

We find that the null hypothesis cannot be rejected only for a few R&D networks, especially outside of the “golden

age.” However, during the “golden age,” the P-values show that the null hypothesis can be rejected for all R&D net-

works, confirming the presence of nested architectures that cannot be explained by taking into account only the net-

work size and density, but are indicative of firms’ peculiar alliance strategies.

Computation of the technological distance

The approach that we use to determine the knowledge position of a firm is to compute the shares of its patents in a

set of given categories, identified by the International Patent Classification (IPC). The IPC, introduced in 1971 by the

Strasbourg Agreement, is a hierarchical system of symbols for the classification of patents according to the different

areas of technology to which they pertain.20 A generic IPC category consists of a letter, the so-called “section sym-

bol,” followed by two digits, the so-called “class symbol,” and a final letter, the “subclass.” This four-character term

is then followed by a group/subgroup indication, represented by additional digits. A typical IPC term can be written

as follows: B34H 6/99. The sections identified by the IPC are historically stable and amount to 8, from A (human

necessities) to H (electricity). Given that we have to compute such a technological indicator on a broad set of firms,

belonging to several industrial sectors, we have decided to consider only the section symbol (i.e. the first letter) in our

20 For more information on the International Patent Classification, see http://www.wipo.int/classifications/ipc.
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empirical patent classification. Choosing a class- or subclass-level division would result in an excessive patent granu-

larity (see Tomasello et al., 2015, for a more detailed discussion on the topic). Next, we define the knowledge pos-

ition of a firm xi � ðxiA;xiB; . . . ; xiHÞ as the set of normalized patent counts xis in each section, xis � Nis=ð
P

s NisÞ,
where Nis is the number of patents that the firm i has in a given IPC section s. We then use the Euclidean metric, simi-

lar to Tomasello et al. (2015), to compute the technological distance between two firms i and j:

jxi � xjj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XH
s¼A

ðxis � xjsÞ2
vuut : (7)

In particular, for the variable that we employ in our regression models, we consider only the patents for which the

firm has applied in the past 5 years. Note that, if the considered firm has no patent applications in this time window,

its technological position is considered to be undetermined, thus generating a missing observation.
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