Structure and dynamics of online social networks
Several online social networks have emerged in the past twenty years, each with a different purpose. Some networks are designed for the user to connect to real-life friends (Facebook, Google+, Qzone, Myspace, VKontakte); others serve as a distribution channel for news or blogs (Twitter, Livejournal) without real-life contact; or they are game-related (Habbo, Friendster); or, finally, their scope is to create and maintain professional relationships (LinkedIn).
Social online networks have changed the way how individuals and groups distribute knowledge and information. Some questions logically arise: how does information propagate throughout these networks? Moreover, what are the differences in information flow between several networks? How do these networks emerge and what are the conditions for being robust against failures or collapse of a network?
Such questions pose a number of challenges, since most online social networks are temporal, i.e. their composition continuously changes. Furthermore, the most popular networks are enormous (hundred of millions of users & links), thus making analytic measurements and calculations impossible with the typical computational power available nowadays. Moreover, most of these data are not openly available, as this would infringe privacy of participating users.
Our goal is to address these challenges and use time-averaged or snapshot techniques, numerical approximations or sampling to investigate the structure and dynamics of these networks. By means of our exhaustive empirical analyses, we are able to determine the causes for the rise and the decline of several online social networks.
Ideological and Temporal Components of Network Polarization in Online Political Participatory Media
|
[2015]
|
Garcia, David;
Abisheva, Adiya;
Schweighofer, Simon;
Serdult, Uwe;
Schweitzer, Frank
|
Policy and Internet,
pages: 46-79,
volume: 7,
number: 1
|
more» «less
|
Abstract
Political polarization is traditionally analyzed through the ideological stances of groups and parties, but it also has a behavioral component that manifests in the interactions between individuals. We present an empirical analysis of the digital traces of politicians in politnetz.ch, a Swiss online platform focused on political activity, in which politicians interact by creating support links, comments, and likes. We analyze network polarization as the level of intra-party cohesion with respect to inter-party connectivity, finding that supports show a very strongly polarized structure with respect to party alignment. The analysis of this multiplex network shows that each layer of interaction contains relevant information, where comment groups follow topics related to Swiss politics. Our analysis reveals that polarization in the layer of likes evolves in time, increasing close to the federal elections of 2011. Furthermore, we analyze the internal social network of each party through metrics related to hierarchical structures, information efficiency, and social resilience. Our results suggest that the online social structure of a party is related to its ideology, and reveal that the degree of connectivity across two parties increases when they are close in the ideological space of a multi-party system.
Who Watches ( and Shares ) What on YouTube ? And When ? Using Twitter to Understand YouTube Viewership
|
[2014]
|
Abisheva, Adiya;
Garimella, Venkata Rama Kiran;
Garcia, David;
Weber, Ingmar
|
In Proceedings of the 7th ACM international conference on Web search and data mining, pages: 593-602
|
more» «less
|
Abstract
We combine user-centric Twitter data with video-centric YouTube data to analyze who watches and shares what on YouTube. Combination of two data sets, with 87k Twitter users, 5.6mln YouTube videos and 15mln video sharing events, allows rich analysis going beyond what could be obtained with either of the two data sets individually. For Twitter, we generate user features relating to activity, interests and demographics. For YouTube, we obtain video features for topic, popularity and polarization. These two feature sets are combined through sharing events for YouTube URLs on Twitter. This combination is done both in a user-, a video-and a sharing-event-centric manner. For the user-centric analysis, we show how Twitter user features correlate both with YouTube features and with sharing-related features. As two examples, we show urban users are quicker to share than rural users and for some notions of "influence" influential users on Twitter share videos with a higher number of views. For the video-centric analysis, we find a superlinear relation between initial Twitter shares and the final amounts of views, showing the correlated behavior of Twitter. On user impact, we find the total amount of followers of users that shared the video in the first week does not affect its final popularity. However, aggregated user retweet rates serve as a better predictor for YouTube video popularity. For the sharing-centric analysis, we reveal existence of correlated behavior concerning the time between video creation and sharing within certain timescales, showing the time onset for a coherent response, and the time limit after which collective responses are extremely unlikely. We show that response times depend on video category, revealing that Twitter sharing of a video is highly dependent on its content. To the best of our knowledge this is the first large-scale study combining YouTube and Twitter data.
Gender Asymmetries in Reality and Fiction : The Bechdel Test of Social Media
|
[2014]
|
Garcia, David;
Weber, Ingmar;
Garimella, Rama Venkata Kiran
|
Proceedings of the International AAAI Conference on Weblogs and Social Media
|
more» «less
|
Abstract
The subjective nature of gender inequality motivates the analysis and comparison of data from real and fictional human interaction. We present a computational extension of the Bechdel test: A popular tool to assess if a movie contains a male gender bias, by looking for two female characters who discuss about something besides a man. We provide the tools to quantify Bechdel scores for both genders, and we measure them in movie scripts and large datasets of dialogues between users of MySpace and Twitter. Comparing movies and users of social media, we find that movies and Twitter conversations have a consistent male bias, which does not appear when analyzing MySpace. Furthermore, the narrative of Twitter is closer to the movies that do not pass the Bechdel test than to
those that pass it.
We link the properties of movies and the users that share trailers of those movies. Our analysis reveals some particularities of movies that pass the Bechdel test: Their trailers are less popular, female users are more likely to share them than male users, and users that share them tend to interact less with male users. Based on our datasets, we define gender independence measurements to analyze the gender biases of a society, as manifested through digital traces of online behavior. Using the profile information of Twitter users, we find larger gender independence for urban users in comparison to rural ones. Additionally, the asymmetry between genders is larger for parents and lower for students. Gender asymmetry varies across US states, increasing with higher average income and latitude. This points to the relation between gender inequality and social, economical, and cultural factors of a society, and how gender roles exist in both fictional narratives and public
online dialogues.
Online Privacy as a Collective Phenomenon
|
[2014]
|
Sarigol, Emre;
Garcia, David;
Schweitzer, Frank
|
In Proceedings of the 2nd Conference on Online Social Networks 2014
|
more» «less
|
Abstract
The problem of online privacy is often reduced to individual decisions to hide or reveal personal information in online social networks (OSNs). However, with the increasing use of OSNs, it becomes more important to understand the role of the social network in disclosing personal information that a user has not revealed voluntarily: How much of our private information do our friends disclose about us, and how much of our privacy is lost simply because of online social interaction? Without strong technical effort, an OSN may be able to exploit the assortativity of human private features, this way constructing shadow profiles with information that users chose not to share. Furthermore, because many users share their phone and email contact lists, this allows an OSN to create full shadow profiles for people who do not even have an account for this OSN. We empirically test the feasibility of constructing shadow profiles of sexual orientation for users and non-users, using data from more than 3 Million accounts of a single OSN. We quantify a lower bound for the predictive power derived from the social network of a user, to demonstrate how the predictability of sexual orientation increases with the size of this network and the tendency to share personal information. This allows us to define a privacy leak factor that links individual privacy loss with the decision of other individuals to disclose information. Our statistical analysis reveals that some individuals are at a higher risk of privacy loss, as prediction accuracy increases for users with a larger and more homogeneous first-and second-order neighborhood of their social network. While we do not provide evidence that shadow profiles exist at all, our results show that disclosing of private information is not restricted to an individual choice, but becomes a collective decision that has implications for policy and privacy regulation.
Resilience in Enterprise Social Networks
|
[2013]
|
Burger, Valentin;
Hofeld, Tobias;
Garcia, David;
Seufert, Michael;
Scholtes, Ingo;
Hock, David
|
In Proceedings of Informatik 2013, 43. Jahrestagung der Gesellschaft für Informatik e.V. (GI), Informatik angepasst an Mensch, Organisation und Umwelt, 16.-20. September 2013, Koblenz
|
more» «less
|
Abstract
The goal of human resource management is to ensure an effective company environment. Crucial for a good corporate culture is a comfortable atmosphere and positive social relationships between the employees. The interactions of the people and groups working in the company define their relationships and are reflected in the company's social network. Projections of such networks are Enterprise Social Networks which are more and more integrated in companies. These social networks can be a powerful tool to analyse the structure of a company and indicate potential problems. This extended abstract poses research questions to identify and quantify mechanisms that have an impact on the social network of a company to ensure resilience. To address these questions we make assumptions based on real-world observations for a subsequent model.
Social resilience in online communities: The autopsy of Friendster
|
[2013]
|
Garcia, David;
Mavrodiev, Pavlin;
Schweitzer, Frank
|
Proceedings of the 1st ACM Conference in Online Social Networks (COSN'13)
|
more» «less
|
Abstract
We empirically analyze five online communities: Friendster, Livejournal, Facebook, Orkut, Myspace, to identify causes for the decline of social networks. We define social resilience as the ability of a community to withstand changes. We do not argue about the cause of such changes, but concentrate on their impact. Changes may cause users to leave, which may trigger further leaves of others who lost connection to their friends. This may lead to cascades of users leaving. A social network is said to be resilient if the size of such cascades can be limited. To quantify resilience, we use the k-core analysis, to identify subsets of the network in which all users have at least k friends. These connections generate benefits (b) for each user, which have to outweigh the costs (c) of being a member of the network. If this difference is not positive, users leave. After all cascades, the remaining network is the k-core of the original network determined by the cost-to-benefit c/b ratio. By analysing the cumulative distribution of k-cores we are able to calculate the number of users remaining in each community. This allows us to infer the impact of the c/b ratio on the resilience of these online communities. We find that the different online communities have different k-core distributions. Consequently, similar changes in the c/b ratio have a different impact on the amount of active users. As a case study, we focus on the evolution of Friendster. We identify time periods when new users entering the network observed an insufficient c/b ratio. This measure can be seen as a precursor of the later collapse of the community. Our analysis can be applied to estimate the impact of changes in the user interface, which may temporarily increase the c/b ratio, thus posing a threat for the community to shrink, or even to collapse.
Emotional persistence in online chatting communities
|
[2012]
|
Garas, Antonios;
Garcia, David;
Skowron, Marcin;
Schweitzer, Frank
|
Scientific Reports,
pages: 402,
volume: 2
|
more» «less
|
Abstract
How do users behave in online chatrooms, where they instantaneously read and write posts? We analyzed about 2.5 million posts covering various topics in Internet relay channels, and found that user activity patterns follow known power-law and stretched exponential distributions, indicating that online chat activity is not different from other forms of communication. Analysing the emotional expressions (positive, negative, neutral) of users, we revealed a remarkable persistence both for individual users and channels. I.e. despite their anonymity, users tend to follow social norms in repeated interactions in online chats, which results in a specific emotional “tone” of the channels. We provide an agent-based model of emotional interaction, which recovers qualitatively both the activity patterns in chatrooms and the emotional persistence of users and channels. While our assumptions about agent's emotional expressions are rooted in psychology, the model allows to test different hypothesis regarding their emotional impact in online communication.
Personalised and Dynamic Trust in Social Networks
|
[2009]
|
Walter, Frank Edward;
Battiston, Stefano;
Schweitzer, Frank
|
Proceedings of the third ACM conference on Recommender systems
pages: 197-204
|
more» «less
|
Abstract
We propose a novel trust metric for social networks which is suitable for application in recommender systems. It is personalised and dynamic and allows to compute the indirect trust between two agents which are not neighbours based on the direct trust between agents that are neighbours. In analogy to some personalised versions of PageRank, this metric makes use of the concept of feedback centrality and overcomes some of the limitations of other trust metrics.In particular, it does not neglect cycles and other patterns characterising social networks, as some other algorithms do. In order to apply the metric to recommender systems, we propose a way to make trust dynamic over time. We show by means of analytical approximations and computer simulations that the metric has the desired properties. Finally, we carry out an empirical validation on a dataset crawled from an Internet community and compare the performance of a recommender system using our metric to one using collaborative filtering.
|