
Personalised and Dynamic Trust in Social Networks

Frank E. Walter, Stefano Battiston, and Frank Schweitzer
Chair of Systems Design, ETH Zurich
Kreuzplatz 5, 8032 Zurich, Switzerland

fewalter@ethz.ch, sbattiston@ethz.ch, fschweitzer@ethz.ch

ABSTRACT
We propose a novel trust metric for social networks which
is suitable for application to recommender systems. It is
personalised and dynamic, and allows to compute the in-
direct trust between two agents which are not neighbours
based on the direct trust between agents that are neighbours.
In analogy to some personalised versions of PageRank, this
metric makes use of the concept of feedback centrality and
overcomes some of the limitations of other trust metrics.
In particular, it does not neglect cycles and other patterns
characterising social networks, as some other algorithms do.
In order to apply the metric to recommender systems, we
propose a way to make trust dynamic over time. We show
by means of analytical approximations and computer simu-
lations that the metric has the desired properties. Finally,
we carry out an empirical validation on a dataset crawled
from an Internet community and compare the performance
of a recommender system using our metric to one using col-
laborative filtering.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Filtering

General Terms
Algorithms, Design, Experimentation, Human Factors

Keywords
Information Overload, Personalisation, Recommender
Systems, Social Networks, Trust

1. INTRODUCTION
An increasing number of information technologies focuses

on how web users can effectively share opinions about var-
ious types of products, services or even other users. These
technologies are the basis of several types of Web 2.0 appli-
cations such as collaborative tagging, social bookmarking [5,
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9] and, in particular, also recommender systems. Given the
heterogeneity of web users, a major issue is how to appro-
priately aggregate opinions in order to provide judgements
that are useful for each individual user.

Most of these applications use collaborative filtering algo-
rithms which compute an index of similarity between users
or between items, based on the ratings that users have pro-
vided on these items [8, 12, 19]. When a user belongs to
a community with common, shared tastes, these algorithms
work well in suggesting new items similar to the ones the
users have already rated. There are several other bene-
fits: except providing enough ratings, no further action is
required of users; algorithms for collaborative filtering are
scalable (when similarities are computed across items [22]);
and, finally, they provide some level of personalisation. A
shortcoming is that if users are looking for items which are
seldomly rated by their community, the predictions are poor
– e.g. people who have rated only travel books may not re-
ceive very good recommendations on tools for gardening.

To cope with this, a line of research has focused on basing
recommendations for users not on their similarity, but on
their trust relations to other users. In this context, trust is
meant to be the “expectancy of an agent to be able to rely
on some other agent’s recommendations” [15, 25]. There
has been a body of work on “trust webs” [1, 10, 15, 21]
and on their application to recommender systems [7, 16,
18]. The small-world property of social networks [20] allows
to potentially reach a lot of information, while the trust
allows to filter out the relevant pieces [25]. The benefits of
these trust-based algorithms include strong personalisation,
no need to have a long rating history in the system because
recommendations are not based on similarity, and the ability
to receive recommendations on items different from the ones
already rated. Some limitations of the trust-based approach
concern the scalability and the fact that, in addition to their
ratings of items, users have to provide information about
their level of trust to some other users.

In this paper, we introduce a novel metric for trust in so-
cial networks. A trust metric allows to compute the indirect
trust between two agents in a social network which are not
neighbours, based on the direct trust between agents that
are neighbours. While it is intuitive to do this on a chain,
e.g. from user A via user B to user C, for instance by mul-
tiplying the values of trust along the chain, it is not a priori
trivial how to proceed when a graph contains multiple, re-
dundant paths, cycles, or triangles (because of mathematical
issues related to uniqueness and consistency). This is a cru-
cial issue because these patterns all play an important role in
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social networks, in particular for the diffusion of information
and the build-up of social capital [27, 24]. Some trust met-
rics address these issues by reducing the direct trust graph
to an acyclic graph before applying their computation of in-
direct trust [7, 16]. Other metrics use only the path of the
shortest distance or of the highest trust [25]. Our trust met-
ric takes all the paths in the graph into account and it is
well-defined on any given graph. It provides each user with
personalised trust ratings about other users in the network.
Our metric also is dynamic, i.e. it evolves in time depend-
ing on how useful the information received by users is to
them. This makes the metric suitable for application in rec-
ommender systems, as we will illustrate in the remainder of
the paper.

2. BACKGROUND AND MOTIVATION
Consider a scenario in which there is a social network

of agents which have trust relationships among each other.
This can be described by a graph in which the nodes rep-
resent the agents and the links represent the trust relation-
ships. There also is a set of objects which can be rated by
agents. Since each agent only knows a few objects, it may
want to know other agent’s opinions on unknown objects.
However, since there are potentially many opinions of other
agents, it needs to be able to determine which of these are
trustworthy. This implies that an agent needs to reason
about the trustworthiness of other agents [25]. However,
since its time and resources are constrained, an agent can
only build and maintain trust relationships with a limited
number of other agents. Thus, if Tij ∈ [0, 1] represents
the level of direct trust of agent i towards j, how
do we compute the indirect trust T̃kl between two
agents k and l that are not neighbours1?

In the following, we will describe the TrustWebRank met-
ric for computing indirect trust in a network with direct
trust. This metric builds on the concept of feedback cen-
trality which assigns a centrality score to the nodes of a net-
work based on the centrality scores of the node’s neighbours.
In other words, in feedback centrality, the higher (or lower)
the centrality score of a node’s neighbours, the higher (or
lower) this node’s own centrality is. These principles can be
adapted to define a metric for the trustworthiness of agents
in a social network with trust relationships.

We briefly review PageRank, one of the most widely known
and studied feedback centrality algorithms [4, 3]. In our sce-
nario this would assign a trustworthiness score ci to an agent
i depending on the trustworthiness of its neighbours j:

ci = β
X

{j:i∈Nj}

cj
|Nj |

+ (1− β) ∀i, (cf. [3]) (1)

where Ni is the set of neighbours of i, and β ∈ [0, 1) is a
damping factor which is chosen around 0.8 [4]. In vector
notation:

c = βPc+ (1− β)1 , (2)

where 1 is the vector consisting of ones and P is a stochastic2

1Variables expressing indirect trust are as the corresponding
ones expressing direct trust, but with a tilde: e.g. T and T̃ .
2We will always assume row-stochastic when we state
“stochastic”; this does not imply that the matrix need (or
not) to be column-stochastic.

transition matrix defined as

Pij =

 1
|Nj |

if there exists a link from j to i

0 otherwise.
(3)

Eq. (1) can easily be extended to weighted graphs [3]. Solv-
ing Eq. (2) for c we obtain:

c = (I − βP )−1(1− β)1 , (4)

where I is the identity matrix. Since P is, by construc-
tion, stochastic and thus, by the Perron-Frobenius theorem
[23], the largest eigenvalue is λPF(P ) = 1, it follows that
λPF(βP ) = β < 1. This ensures the existence of a unique
solution of c. Usually, one uses Jacobi iteration to compute
such a solution.

The result of applying this algorithm to a graph is a vector
which gives a score of the trustworthiness ci for each node i
in the graph. Note that this is a global metric, i.e. there is
one score for each agent. It has been observed in the litera-
ture that, for recommender systems, such metrics are often
not appropriate and that local metrics, which are person-
alised for each agent (“how trustworthy is agent i from the
perspective of agent j”), are required [16]. EigenTrust, for
example, is a PageRank-inspired, global trust metric [14].

3. A NOVEL TRUST METRIC

3.1 From Centrality to Trust
Proceeding in analogy to PageRank and using the princi-

ples of feedback centrality to construct a personalised metric
for trust, one could define the indirect trust of agent i to j
as the indirect trust of the neighbour agents k of agent i to
agent j, weighted by the trust of agent i towards these neigh-
bour agents k. Let T be the trust matrix, where Tij ∈ [0, 1]
reflects the direct trust from agent i to agent j (Tij = 0
if there is no link between agent i and agent j). S is the
stochastic matrix

Sij =
TijP

k∈Ni
Tik

, (5)

where Ni is the set of neighbours of agent i. S is a normali-
sation of T . We define T̃ij to be the indirect trustworthiness
score from i to j:

T̃ij =
X

k∈Ni

SikT̃kj ∀i, j. (6)

This allows us to estimate the trust between any two agents
i and j: if there is a link between i and j, Tij reflects the
trust between them; if there is no link between i and j, T̃ij

reflects the trust between them. Notice that this definition
is similar to to the approaches used in [7, 16]. In matrix
notation, this is the recursive definition

T̃ = ST̃ . (7)

Notice that this approach has several limitations:
1) Uniqueness of the solution: Let ṽ∗j be one column of

T̃ , i.e. the vector that expresses how much agent j is trusted
by other agents. Then, Eq. (7) gives

ṽ∗j = Sṽ∗j ∀j. (8)

If S is acyclic [23] (i.e. the underlying graph is so), then there
is a unique solution of Eq. (8). If S is not acyclic, it can
be either primitive or non-primitive [13]. If S is primitive

198



(and stochastic), there is a unique solution of Eq. (8), a
vector with all components being identical [23]. This would
imply that all agents i would trust agent j equally, which
is obviously not desirable. If S is not primitive, there are
multiple solutions for Eq. (8), which also is not desirable.

One way of dealing with this could be to make S acyclic,
for example by constructing a tree with a breadth-first search
(BFS) from a chosen node, as for example [7, 16] do. The
BFS selects one node as a root, and from there on, explores
the neighbours of the nodes, proceeding in levels 1, 2, 3, . . .
and removing links within a level and links from level k to
level l where l < k at each step. However, this entails further
limitations:

Social networks are characterised by a high clustering co-
efficient [27, 20, 24]. By making the underlying graph of
a social network acyclic, one removes the links within each
level and the links from levels k to l where l ≤ k, thus making
the clustering coefficient 0. This implies that, subsequent to
this procedure, the trust metric will not be able to differen-
tiate well between regions of high clustering (thus, possibly
high trust) and regions with lower clustering (thus, possibly
lower trust) as on the original graph.

Further, depending on which node is chosen as the root
of the BFS, the acyclic graph will be different. This is not a
problem in a decentralised scenario, when the computation
is spread over many nodes. In this case, each node computes
its own set of ṽ∗j by being root of its own breadth-first explo-
ration. However, this is a problem in a centralised scenario,
where such an approach is not scalable and also not mathe-
matically tractable: as a result of a BFS rooting at each i,
the computation uses a different matrix T for each node.

2) Combination of direct and indirect trust : The metric
defined in Eq. (6) is not able to account properly for the
following situation: consider an agent i that trusts a neigh-
bour agent j with intermediate level of trust, e.g. Tij ≈ 0.5,
because it does not yet know this agent well. If many of
the other neighbours of agent i trust agent j, this should
increase the trust between agent i and j. This does not
happen with the current definition of trust.

3) Normalisation of trust : another property, resulting
from Eq. (5), is that the normalisation removes knowledge
from the system. If an agent i trusts n neighbours equally, it
does not matter whether it trusts them a lot or a little – the
normalisation would assign the same value of trust of 1

n
to

each of the neighbours. Then, during propagation, only the
relative trust compared to other neighbours is considered.
Equally, suppose that an agent i has just one neighbour
agent j – no matter whether i trusts j highly or lowly, in
each case the normalisation would cause the trust from i to
j to be 1. The normalisation is necessary, however, to have
values of direct and indirect trust which are in the same
range.

3.2 The TrustWebRank Metric
Thus, given these limitations, can we modify Eq. (6) in

such a way that the following requirements are met?
Requirement 1: The solution of the equation over graphs

with cycles is unique, but not trivial.
Requirement 2: The range of indirect trust is the same

as for direct trust, i.e. [0, 1], so that direct and indirect trust
can be compared.

Requirement 3: In the metric, direct trust “adds on” to
indirect trust (capturing the fact that it complements it).

One possibility to address these issues is the following: we
compute the indirect value of trust between two agents i and
j based on the direct trust between them, if there is any, but
also based on the trust that the neighbours of i have in j:

T̃ij = Sij + β
X

k∈Ni

SikT̃kj ∀i, j, (9)

where β ∈ [0, 1). Now, in matrix form Eq. (9) is

T̃ = S + βST̃ , (10)

and, using elementary algebra, we can derive

T̃ = (I − βS)−1S. (11)

There exists a unique, non-trivial solution to Eq. (11) if
λPF(βS) < 1, [13]. Since S is stochastic, i.e. λPF(S) = 1,
and β ∈ [0, 1), it follows that λPF(βS) < 1 (Requirement 1).

The parameter β has a similar role as the damping factor
in PageRank in Eq. (1): given β ∈ [0, 1), the impact of
agents far away in the social network is discounted. This
can be seen more clearly when expressing (1 − βS)−1 as a
geometric sum in Eq. (11) [13]:

T̃ = (1− βS)−1S =

∞X
k=0

(βS)kS = S + βS2 + β2S3 + . . . (12)

The kth power of the adjacency matrix of a graph gives the
number of walks of length k between any two nodes in the
graph. Similarly, the kth power of the matrix S gives the
sum of the products of the weights along all walks of length
k in the underlying graph of S. In Eq. (12), the higher the
length of the walks, the stronger the discount (since β < 1).
As in PageRank, a reasonable value of β turns out to be
around 0.75 to 0.85 (see Section 4.5). Note that T̃ij /∈ [0, 1].
We can normalise it to

S̃ij =
T̃ijP

k∈Ni
T̃ik

(13)

to ensure the comparability of values of direct and indirect
trust (Requirement 2).

Furthermore, if agents i and j are not neighbours, the
indirect trust of i to j is entirely based on how much the
neighbours of i trust j. However, if agent i has agent j as a
neighbour, the indirect trust of i to j will also incorporate
how much the other neighbours of agent i trust or do not
trust agent j (Requirement 3).

The definition of Eq. (9) naturally takes the real struc-
ture of a social network into account without needing to
prune any link. Unlike to what would happen during the
conversion of the underlying graph to a tree using a BFS,
the algorithm preserves the links which, in a social network,
lead to a high clustering coefficient, and are not negligible
when reasoning about the social network itself [27, 20, 24].

When dealing with huge graphs, however, inverting a ma-
trix as required by Eq. (11) poses an issue of computation
time and memory. Yet, instead of inverting a matrix or com-
puting eigenvectors, it is possible to use an iterative method
[3] as follows:

T̃
(k+1)
ij = Sij + β

X
l∈Ni

SilT̃
(k)
lj ∀i, j. (14)

At each step k, one only needs the neighbourhood Ni of a
given agent i, as well as access to the matrix of T̃ (k−1) com-
puted at the previous step k − 1. Notice that now we are
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computing a matrix while, with the centrality, e.g. in PageR-
ank, we were computing a vector. This is natural since the
centrality is one value per agent (it is a global notion), while
trust is a value per pair of agents (it is a local, personalised
notion). Therefore computing trust (∼ O(N2)) is inherently
more expensive than computing centrality (∼ O(N)). How-
ever, do we really need to compute indirect trust among all
agents? In fact, for a given agent i, computing the trust
to a selected amount of other agents j, if well chosen, will
be sufficient, as the trust to agents far away in the network
will be damped out anyway. So, the scalability of the trust
computation rather is (∼ O(mN)), where m is the number
of other agents j to consider for each agent i.

4. AN APPLICATION OF THE METRIC
So far, we have described a trust metric which allows to

compute a measure of trust between two agents which are
not necessarily neighbours in a social network. We will now
construct a simple model which applies this metric in the
context of a recommender system. The purpose is to show
how it is possible to compute predictions of how an agent i
likes a particular object o (suppose a book, CD, or movie)
based on how other agents j liked that item combined with
how much i trusts j.

4.1 A Simple Model
Suppose we have a system of agents embedded in a social

network, defined by a graph and associated to an adjacency
matrix A. Each agent i keeps track of its trust relationships
to neighbours j. These are reflected in the matrix of direct
trust T . Obviously, Tij > 0 only if Aij = 1. For the moment,
we take the network to be described by a random graph [6,
2] in which each agent roughly has the degree d.

Let each agent i be characterised by a profile πi. The pro-
file expresses which ratings an agent would give to all pos-
sible objects; however, agents only know a subset of their
ratings on objects. Given an object o, ro

i ∈ {−1, 1} is the
rating of agent i on object o. If an agent is willing to share
all its opinions with other agents, then the set of all of its rat-
ings corresponds to its profile; however, there may be agents
which are not willing (because they want to keep their se-
crets) or able (because they simply do not know particular
objects) to share ratings. This can be captured by a param-
eter η which reflects the probability of an agent to share –
i.e. signal – its rating with other agents. E.g., a value of
η = 0.1 would imply that, on average, at each time step
10% of the agents are willing to share their ratings with
other agents. At the moment, η is the same value for all
agents, but it could also be set differently for each agent i
or even for each pair of agents i and j.

If an agent i is not willing or able to share its rating for
an object o, the system computes a prediction po

i as follows:

po
i =

X
j∈Ni

S̃ijr
o
j , (15)

so po
i ∈ [−1, 1], since

P
j∈Ni

S̃ij = 1 and ro
j ∈ {−1, 1}. In

vector notation,

p = S̃r, (16)

i.e. the prediction for an agent i is the sum of the ratings of
all neighbours j weighted by the indirect, normalised trust
that agent i has in these neighbours j.

Note that this bears resemblance to Collaborative Filter-
ing (CF) [8, 12] in which the prediction for an agent i is also
computed as a weighted sum of the ratings of all neighbours
j (not neighbours in a graph-theoretic sense, but neighbours
in terms of similarity of ratings). The more similar a neigh-
bour, the more influential its rating will be for the predic-
tion. In our case, making a prediction based on the ratings
of the trusted neighbours implies that we make the assump-
tion that agents who are connected by trust have similar
mind-sets. Notice that this does not imply that they have
rated the same items – for example, one user could appreci-
ate the knowledge of another user in gardening, even though
his own domain are travel books. Thus, unlike the similar-
ity that could be computed e.g. by Pearson correlation, this
notion of similarity extends not just across rated items, but
rather is an “expected” similarity reflecting a similar mind-
set of two agents.

4.2 Trust Dynamics
So far, we have a static model which, based on the trust

web of a particular agent i and the ratings ro
j of its neigh-

bours j, is able to compute predictions po
i for that agent.

We now would like to model the evolution of the trust net-
work over time in the sense that, based on the quality of a
particular recommendation, agent i can update its trust to
its neighbours j. This adds a time dimension to the model
and requires a mechanism to update the trust between neigh-
bours. This can be done by adding a utility function: agents
experience a utility by using the ratings or predictions of
neighbours and then the trust update is coupled with the
utility experienced. We define each agent i to experience
a utility uij(t) by following the recommendation from each
neighbour j at time t as follows:

uij(t) =


1− |ro

i (t)− ro
j (t)| if j signals to i

1− |ro
i (t)− po

j (t)| otherwise.
(17)

Note that uij(t) ∈ [−1, 1]. If the neighbour j signals to
agent i, it knows the rating ro

j (t); otherwise, it only knows
a prediction po

j (t). The closer the recommendation of agent
j for agent i to the rating of agent i is, the greater the
agents’ similarity is and thus the higher the utility uij(t)
that agent i experiences from the recommendation of agent
j at step t is. Note that because of the level of cooperation η
– which affects whether agent j signals to i – the utility takes
into account not only similarity [28], but also cooperation
between agents. Based on the utility, agent i can update
the trust towards its neighbour agents j. We distinguish four
cases, based on the sign and the magnitude of the utility:

• If the sign is positive, this means that the rating or
prediction of a neighbour was good; if it is negative, it
means that the rating or prediction was bad.

• If the magnitude is large, the neighbour had a lot of
trust in the rating/prediction of its own neighbours; if
it is small, the neighbour had little trust in the rat-
ing/prediction of its own neighbours.

This leads us to the following definition of how an agent
i updates its trust to agent j from time t to t+ 1:

T̆ij(t+ 1) =

8>><>>:
γTij(t) + (1− γ)|uij(t)|
if uij(t) > uthr or − uthr ≤ uij(t) ≤ 0
γTij(t)− (1− γ)|uij(t)|
if uij(t) < −uthr or 0 < uij(t) ≤ uthr

(18)
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Figure 1: Social network of agents and trust build-up over time in case of a fraction of agents not signalling
as well as cycles in the underlying network: there are two profiles, red and blue, indicated by the cores of the
node. Only square nodes are signalling; e.g., nodes 2, 3, and 4 are not signalling. There are two cycles from
4 to 7 and 8, respectively, to 9 and then to 4. After a few steps, the nodes learn which other nodes to trust.

where we take uthr = 0.5 and γ ∈ [0, 1] is a parameter that
controls the relative weights of the current history of trust
between two agents, Tij(t), and of the current utility, uij(t).
For γ > 0.5, this gives the history of trust more weight than
the current utility. In the analysis and simulations (next
section), we found that γ = 0.75 is a reasonable value. Since

T̆ij ∈ [−1, 1], but we want Tij ∈ [0, 1], we cap it to [0, 1]:

Tij(t+ 1) = max(0,min(1, T̆ij)). (19)

As an example, the effects of these dynamics are illustrated
in Figure 1: this is an example of a network of agents hav-
ing two profiles (red and blue). Some nodes are signalling
(squares), others are not (circles). The network contains
cycles. At t = 1, the agents are just connected, the trust be-
tween all agents is equal to zero. At t = 2, agent 3 and agent
4 have received recommendations from agents 5 and 6, and
from agents 7 and 8, respectively. Since agent 3 (4) has the
same profile as agents 5 and 6 (7 and 8), namely red (blue),
it perceives a high positive utility from the recommendation
and thus increases its trust to the recommending agents. At
t = 3, the system can now provide a recommendation to
agent 2, even though agents 3 and 4 are not signalling their
own rating. Since agent 2 has the same profile as agent 3,
trust between these two agents increases. Agent 2 perceives
a high negative utility from the recommendation of agent
4, thus its trust remains zero. At the same time, the links
from 3 to 5 and 6 reinforce. The same happens in the cy-
cles. These mechanisms continue and we see that at t = 5,
paths of trust have developed between agents of the same
profile. Although agent 1 has no agents of its profile that are
signalling in one or two levels of distance, it is still able to
discover a path to two agents of its profile that are signalling
and further away in the network.

4.3 Analysis of the Model
In this section we derive a self-consistent equation for the

matrix of trust which allows to investigate the dynamics of
trust. We analyse the case of a population of agents with
only two opposite profiles (see Section 4.1) which provide
ratings on objects as +1 or −1, respectively.

We want to compute the expected value of trust at the
equilibrium of the dynamics defined in Eqs. (18-19). We do
so by a mean-field approximation in which we replace the
utility uij(t) in Eq. (18) with the expected utility over time,
denoted by uij := E(uij(t)) (without the time dependency).
We impose Tij(t) = Tij(t+ 1) at the equilibrium, obtaining

Tij = max(min(uij , 1), 0), (20)

which requires us to estimate uij . Given the definition of
uij(t) in Eq. (17) and the fact that agents signal a rating
with probability η and they do not with probability 1 − η,
it follows that the expected utility uij is

uij = η(1− |πi − πj |) + (1− η)(1− |πi −
X

k

S̃jkπk|). (21)

Since we are considering the simple case in which agents
signal faithfully, the expected rating provided by an agent j
coincides with its profile: E(ro

j ) = πj . We can thus express

the expected prediction for agent j as E(po
j ) =

P
k S̃jkπk.

In future work, we will also consider more complicated cases,
e.g. including non-faithful (selfish or malicious) behaviour.
Substituting into Eq. (20), we get:

Tij = max(0,min(1, η(1− |πi − πj |)

+ (1− η)(1− |πi −
X

k

S̃jkπk|))). (22)

Since the profiles π are given, T is a function of S̃. Notice
that by combining Eqs. (12-13-5), we can express S̃jk in
terms of the components Tjk, (T 2)jk, (T 3)jk, . . . as well as
Tjl, (T 2)jl, (T 3)jl, . . . where l are the other neighbours of j:

S̃jk =
Tjk + β(T 2)jk + β2(T 3)jk + . . .P

l

P∞
m=0(Tm)jl

. (23)

It follows that we can express the value of trust Tij between
any pair of agents in terms of the value of trust among the
other pairs. This leads to a self-consistent equation for T ,
where the only parameters are the initial values of trust
T (0), the probability to signal, η, the discount factor along
the walks of the graphs, β, and the profiles of the agents, π:

Tij = f(T, T (0), η, β, π) ∀i, j. (24)

Notice that Eq. (24) is obtained without any assumption on
the structure of the network that is reflected in T .

One is, of course, interested in the fixed points of Eq. (24),
their stability and whether they are attained by the dynam-
ics. On the one hand, it is trivial to check that the matrix
T with Tij = 1 among agents with the same profile and
Tij = 0 among agents with opposite profile is a fixed point
of Eq. (24). Denote this configuration as {T+ = 1, T− = 0}.
On the other hand, the configuration with trust equal zero
among all pairs {T+,− = 0} is not a fixed point.

In the next section, we find, by means of computer simu-
lations, that the system, starting from a configuration with
no trust among the agents, {T+,− = 0}, always evolves to a
configuration in which agents with similar profile trust each
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Figure 2: Trust between agents of the same profile
over time, for a fixed average degree of agents but
variable level of cooperation.

other {T+ = 1, T− = 0}. This is true even if agents do not
signal all the time (i.e. η < 1). A formal investigation of the
stability of all the fixed points of Eq. (24) will be performed
in future work.

4.4 Simulations
The simulations that we carried out were done on an agent

population of 500 agents. We considered two opposite pro-
files with ratings on objects as +1 or −1. The agents are
connected in a random graph [6, 2]. Initially, Tij = 0 ∀i, j,
i.e. the agents have to learn who to trust. We varied the
average degree d of each agent, as well as the level of co-
operation η in the system. The following figures illustrate
the system behaviour over 50 steps; all results were averaged
over 100 runs.

Figure 2 illustrates the average trust between agents of
the same profile over time: the average degree of agents
is fixed, d = 7, and the level of cooperation η is variable,
ranging from 0.01 to 0.25 in steps of 0.01. The average trust
between agents of the same profile converges to 1 for almost
all η. For larger η, this process takes place much faster than
for smaller η. Given a sufficient level of cooperation in the
system, the agents develop trust to the agents that have the
same profile. Furthermore (not shown in the figure), agents
of opposite profiles do not develop trust between each other.

Figure 3 illustrates the trust between agents of the same
profile as a function of the level of cooperation and the av-
erage degree of agents at t = 5, and t = 10. Initially, at
t = 0, agents still have to learn who to trust (and the whole
figure would be blue, corresponding to zero trust between
everyone). At t = 5, trust is already developing; for larger
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Figure 3: Trust between agents of the same profile as
a function of level of cooperation and average degree
of agents at t = 5 (left), and t = 10 (right).
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Figure 4: Performance over time, for a variable aver-
age degree of agents, but a fixed level of cooperation.

average degrees of agents d as well as for larger levels of co-
operation η, this happens faster. At t = 10, trust between
agents of the same profile has developed for an average de-
gree of agents d > 5 and a level of cooperation η > 0.05.

The obvious consequence of the evolution of trust is that
predictions tend to match the profiles. We test this by mea-
suring the performance of the system. Let the performance
be defined as the sum of the products of the utility and the
trust between all pairs of agents i and j:

Φ =
1

n

X
i

X
j

uij
TijP
k Tik

, (25)

where n is the number of agents, e.g. in our case n = 500.
Agents are exposed to ratings which lead to both positive
or negative utility. By building trust, they give more weight
to the positive utility and less weight to the negative utility.
Therefore, this measures “how well agents use their trust”.

Figure 4 illustrates the performance over time: again, the
average degree of agents is fixed, d = 7, and the level of
cooperation η is variable, ranging from 0.01 to 0.25 in steps
of 0.01. The performance converges to 1 for almost all d.
The similarity to Figure 2 is due to the fact that agents who
have developed trust to other agents of the same profile are
provided with good recommendations; these agents perceive
high utility, leading to high performance.

Finally, Figure 5 illustrates the performance as a function
of the level of cooperation and the average degree of agents
at t = 1 and at t = 5. Again, just as the trust between
agents of the same profile increases in Figure 3, the perfor-
mance increases with increasing average degree of agents and
level of cooperation. One might wonder how, at t = 1, the
performance can already be nonzero – this is due to the fact
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Figure 5: Performance as a function of level of co-
operation and average degree of agents at t = 1 (left)
and at t = 5 (right).
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that there are only two opposite profiles; this implies that
half of the neighbours of an agent are of the same profile
and, as soon as an agent has developed some trust to one of
these neighbours, it will benefit from their recommendations
which, again, drives the performance up.

4.5 Empirical Validation
To support the analytical approximations of the model

and the results of the computer simulations, we empirically
tested the performance of a recommender system using our
TrustWebRank (TW) metric against one using a standard
Collaborative Filtering (CF) approach, similarly to what has
been done in [17]. We crawled Epinions.com, an on-line
platform which allows consumers to read and write reviews
about products. The unique feature of Epinions is that users
can also form a “web-of-trust” and specify other users that
they trust with respect to their reviews. The crawling was
performed in mid-2007 and led to a dataset of 60,918 users
with 896,969 reviews on 223,687 products and with 518,505
relationships. We cleaned this dataset and removed users
that either had not written any reviews or had no relation-
ships to other users because no reasonable validation can be
done with these users. Furthermore, we focus on the great-
est strongly connected component (SCC) because a) there
is only one large SCC and many small SCC (1-3 users) and
b) membership in this SCC can be seen as a proxy for hav-
ing a properly formed web of trust. Having applied this
procedure, we are left with 29,478 users, 731,220 reviews
on 201,674 products, and 471,888 relationships. The data
sparsity is 99.9877%. Reviews have a rating which is on the
scale of 1 (min) to 5 stars (max). There is a bias to review
favourably, as 75% of the ratings are either 4 or 5 stars and
only 25% of the ratings are 1, 2, or 3 stars – probably be-
cause users are more likely to spend time to write a review
when they like a product.

We split the reviews into a training set RTraining and a
test set RTest. We then compare the performance of TW
and CF by training the algorithms on RTraining and testing
with RTest. TW, in general, has comparable performance to
CF, and performs better in particular situations, as we will
describe in the following. The complete empirical validation
will, together with some statistical analyses of the Epinions
community, be reported on in a separate paper [26].

Mean Absolute Error: the mean absolute error (MAE)
is defined as

eMAE =
1

|RTest|
X

RTest

|ro
i − po

i |. (26)

Figure 6 shows the MAE of TW for changing β and CF.
Depending on the value of β, TW performs (marginally)
better than CF. There is an optimal βopt ≈ 0.8.

However, the fact that most ratings are 4 or 5 limits the
meaning of the MAE as a measure of performance. Indeed,
predictions based on the Simple Average (SA) of ratings
on a product, a global algorithm which is not personalised
for users, outperform both TW and CF: eMAE(SA) = 0.21.
Similar results were found in [17] using a different dataset
of Epinions (from 2003). An explanation for this is that re-
views are very homogeneous and almost all ratings are posi-
tive. Other datasets, such as the commonly used MovieLens
dataset, are more heterogeneous and SA performs worse
than CF on such datasets. Unfortunately, at the moment,
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Figure 6: Mean Absolute Error of TW (blue/circles)
against β and CF (red/squares). The MAE is nor-
malised to a scale in [0, 1], i.e. it reflects percentages.

Epinions is the only available dataset which combines rating
data and a social network – and which is thus suitable to
test the performance of TW.

Coverage: coverage measures the percentage of elements
that can be predicted from the training set. Both TW and
CF cannot compute predictions for all elements in the test
set. For example, if there is no similar or trusted user who
has rated a particular product, CF or TW are not able to
compute a prediction for that product. CF was able to com-
pute 41.65% of the predictions and TW was able to compute
75.11% of the predictions. Thus, coverage with TW is much
higher than with CF. The reason for this is that TW is able
to reach a large neighbourhood even when the neighbour-
hood based on co-ratings, as in CF, is small.

Top-N Set Overlap: as noted, the value of ratings in
Epinions does not seem to carry a lot of meaning – probably
because people tend to rely more on the text of reviews
than on the rating. Therefore, it makes sense to compare
the performance based on the ability to predict the subset of
products rated by a user. We define the following measures
of overlap between sets:

oN
i =

|Pi ∩RN |
min(|Pi|, N)

and oN
X,i =

|Pi ∩RN
X,i|

min(|Pi|, N)
, (27)

where Pi is the set of products rated by a user i; RN is
the set of the N most rated products overall in the system;
X denotes either CF or TW and thus RN

CF,i and RN
TW,i are

the sets of the N most rated products in the neighbourhood
of a user i constructed by CF and TW. Note that RN is a
global set which is the same for all users i. Thus, oN

i is the
counterpart of eMAE(SA) in this context. RN

CF,i and RN
TW,i

are personalised sets which depend on the neighbourhood of
user i and thus are different for any two users. We define
the average overlap across all users as ON , ON

CF , and ON
TW .

For N = 100, we obtain ON ≈ 0.0819, ON
CF ≈ 0.2526 and

ON
TW ≈ 0.1724. Since a larger overlap signifies a better pre-

diction, the larger the values, the better the performance.
This implies that the global measure ON performs worse
than both ON

CF and ON
TW . In addition, CF performs bet-

ter than TW. However, it should be emphasised that this
measure is obviously biased in favour of CF: by definition,
Pi ∩ RN

CF,i 6= ∅. In contrast, Pi ∩ RN
TW,i can be empty,

as a user does not necessarily declare trust to people who
have rated the same items. Still, TW performs significantly
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better than the global measure ON . This illustrates the dif-
ficulty to compare the performance of TW with CF. In fact,
the most appropriate way to measure performance would
be based on user-provided feedback subsequent to having
followed a recommendation.

In conclusion, we found that TW and CF have compara-
ble performance. TW seems mostly useful for recommenda-
tions of items different from those a user has already rated
– e.g. recommendations on travel books for people usually
interested in tools for gardening.

5. EXTENSIONS AND CONCLUSION
We introduced a novel metric for computing indirect trust

in social networks. We derived this metric from feedback
centrality measures in graphs and illustrated how it ad-
dresses some limitations of other trust metrics; most im-
portantly, that it takes cycles in the underlying graph into
account. We constructed a simple model of a recommender
system that makes use of our metric and showed how in-
direct trust can be used to generate recommendations. We
performed analytical approximations and computer simula-
tions to characterise the system behaviour. Finally, we also
tested the model by validating it with empirical data of an
Internet community devoted to product reviews.

Some extensions to this model could involve changing the
trust dynamics:

Trust update as a slow-positive, fast-negative dynamics.
It has been observed in the literature that trust follows
a slow-positive, fast-negative dynamics [1, 10, 15, 21, 25].
This means that trust builds up slowly, but gets torn down
quickly and this behaviour could be implemented by modi-
fying Eq. (18).

Coupling the utility with the level of cooperation η. In
real applications, if, initially, the utility for users is zero,
then nobody will signal and this is a fixed point – and a
social dilemma [11]. Thus, we could couple the probability
of signalling to the utility and investigate how to make the
system escape from this undesirable fixed point.

With this work, we have shown that incorporating this
novel trust metric in recommender systems is a promising
and viable approach.
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