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Abstract

We consider a dynamic model of network formation where agents form and sever links
based on the centrality of their potential partners. We show that the existence of capac-
ity constrains in the amount of links an agent can maintain introduces a transition from
dissortative to assortative networks. This effect can shed light on the distinction between
technological and social networks as it gives a simple mechanism explaining how and why
this transition occurs.

1 Introduction

Networks represent connections existing among individuals, firms, and institutions. Connections
may comprise friendship ties, financial exchanges, risk sharing, collaboration between economic
agents in technological areas, exchange of information, trade agreements, conversation, familial
relations, co-membership in associations, joint presence at events, etc. Network analysis examines
the implications of these patterns for social, political, and technological processes. In all these
settings, the outcome of agents depends on the structure of the network.

Key characteristics of real-world social and economic networks are:

1. A small average shortest path length between any pair of agents (Albert and Barabási,
2002).

2. A high clustering, which means that the neighbors of an agent are likely to be connected
(Watts and Strogatz, 1998).

3. An inverse relationship between the clustering coefficient of an agent and her degree
(Goyal et al., 2006; Pastor-Satorras et al., 2001). The neighbors of a high degree agent are
less likely to be connected among each other than the neighbors of an agent with low de-
gree. This means that empirical networks are characterized by a negative clustering-degree
correlation.
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4. A highly skewed degree distribution. While some authors (e.g. Barabási and Albert, 1999)
find power law degree distributions, others find either deviations from power-laws, like e.g.,
Newman (2004), or exponential distributions (Guimera et al., 2006).

5. Degree-degree correlations for economic networks. Newman (2002, 2003) has shown that
many social networks tend to be positively correlated. In that case, the network is
said to be assortative. On the other hand, technological networks such as the internet
(Pastor-Satorras et al., 2001) display negative correlations. In that case, the network is
said to be dissortative. Others, however, find negative correlations in social networks such
as the Ham radio network consisting of interactions between amateur radio operators
(Killworth and Bernard, 1976) or the affiliation network in a Karate club (Zachary, 1977).
Networks in economic contexts may have features of both technological and social rela-
tionships (Jackson, 2008). Indeed, there exist networks with positive degree correlations
such as the venture capitalist one (Mas et al., 2007) as well as negative degree correla-
tions as in the world trade web (Serrano and Boguñá, 2003), online social communities
(Hu and Wang, 2009) and bank networks (De Masi and Gallegati, 2007; May et al., 2008).

To fathom these different aspects and to match the observed structure of real-life networks, one
has to analyse how and why networks form, and what are the mechanisms that describe their
evolution over time.

We are interested in two different approaches describing the emergence of networks. On the
one hand, there are models describing network formation in a purely stochastic way (mostly
developed by mathematicians and physicists): networks are either grown through the sampling
of a stochastic process, and links appear at random according to some distribution, or built
according to some algorithm. In the other approach (mostly developed by economists), the reason
for the formation of a link lays on strategic interactions. Individuals carefully decide with whom
to interact and this decision entails some consent by both parts in a given relationship (see
(Jackson, 2007, 2008) for a complete overview of these two approaches). There is also another
literature, which we will refer to as “games on networks”, which takes the network as given and
studies how the network structure impacts on outcomes and individual decisions. A prominent
paper of this literature is Ballester et al. (2006). Their main finding is that if agents’ pay-offs are
linear-quadratic, and embedded in a network, then the unique interior Nash equilibrium of the
corresponding n−player game, is such that each individual effort is proportional to the Bonacich
centrality measure, a well-known measure in sociology introduced by Bonacich (1987).1

1In fact, centrality is a fundamental measure of the importance of actors in social networks and its importance
was already stressed in early works such as Bavelas (1948). See Wasserman and Faust (1994) for a complete
introduction and survey of this literature. In many situations, it is the centrality of an agent in a network that
explains her outcome and decisions. In the empirical literature, it has been shown that centrality is important
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In a previous paper (König et al., 2009), we have combined all these three different approaches
(i.e. random and strategic network formation as well as games on networks) to characterize the
stationary distribution of emerging networks. In this model, agents form and severe links by
basing their decisions on the centrality of their potential partners. We have considered different
types of centrality measures and have shown that the dynamics of network formation as well
as the stationary distribution do not depend on the type of centrality measure considered. One
of the main results of König et al. (2009) is to show that the networks that emerge at any
moment of time (and of course at the steady state) are nested-split graphs. These networks have
properties which can also be found in many real-world networks. In particular, the stationary
networks (which are nested split graphs) are characterised by short path length, high clustering,
a power-law tail in the degree distribution, and dissortativity.

The aim of the present paper is to extend König et al. (2009) by introducing a new mechanism
that may explain the emergence of assortativity in social networks. We demonstrate that the
existence of capacity constrains in the amount of links an agent can maintain leads to assortative
networks. We show that if agents still decide their link formation and deletion in a strategic
way, i.e. based on the centrality of the possible partners, but are constrained in the number of
links they can maintain, then emerging stationary networks are characterised by positive degree-
degree correlations and thus assortativity. This effect may shed some light on the distinction
between technological and social networks suggested by Newman (2002, 2003). Following our
findings, technological networks are facing capacity constraints to a much lower extent than
social networks. Indeed, consider the internet, a prominent example of a technological network
and the e-mail network in an organisation, a prototype of a social network. The number of
hyper-links a website can contain may not be limited as much as the number of social contacts
(measured e.g. by mutual email exchange) an individual in an organisation may keep. Thus,
the distinction between technological and social networks and the degree of assortativity and
degree-degree correlations can be derived from the severity of capacity constraints imposed on
the number of links an agent can maintain.

We note however, that there may exist exceptions to the above distinction between social and
technological networks in terms of capacity constraints. The neighborhood size might be larger
in a social network than in a technological network, depending on the application and how one
classifies a network according to these categories. However, we restrict our argument to cases in
which nodes in a social networks indeed have smaller neighborhood size (e.g. in mutual email com-
munication networks (Guimera et al., 2006), networks of social acquaintances (Zachary, 1977)

in explaining exchange networks (Cook et al., 1983), peer effects (Calvó-Armengol et al., 2009; Durlauf, 2004;
Haynie, 2001), creativity of workers (Perry-Smith and Shalley, 2003), the flow of information (Borgatti, 2005),
the formation and performance of R&D collaborating firms and inter-organisational networks (Boje and Whetten,
1981; Uzzi, 1997) as well as the success of open-source projects (Grewal et al., 2006).
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or coauthorship networks (Goyal et al., 2006)) than nodes in a technological network (e.g. the
internet (Pastor-Satorras et al., 2001)).

We also note that there have been a number of alternative explanations for the presence of degree-
degree correlations. Johnson et al. (2010) show that dissortativity (prevalent in technological
networks) is the result of a maximum entropy principle. Similarly Catanzaro et al. (2004) propose
a network growth model which is able to generate assortative networks. Their model is a variant
of the preferential attachment model (Barabási and Albert, 1999), where a network grows over
time by successively adding links originating from new nodes added to the network, with the
characteristic that links are also formed between already existing nodes. The authors show that
this mechanism is able to generate assortative networks. Differently to these authors, we show
that assortativity can be the result of capacity constraints in the number of links an agent can
maintain.

This paper is organised as follows. In Section 2, we review the original model of König et al.
(2009) and its main results. Section 3 introduces the model of capacity constrains and the results
are discussed in Section 4. Finally, Section 5 concludes.

2 The model of König et al. (2009)

In König et al. (2009), we consider a network G = (V,E) composed of a set V of n agents and
a set E of m links. We assume that initially, at time t = 0, the network is empty. Then, at time
t = 1, an agent is chosen at random and with probability α ∈ [0, 1] she can form a link. Because
she is indifferent, this agent creates a link with any other agent in the network. At time t = 2,
again, an agent is chosen at random and with probability α decides with whom she wants to
form a link while with probability 1-α this agent has to delete a link if she has already one.
And so forth. In this framework, the randomly chosen agent does not create or delete a link
randomly. On the contrary, she calculates all the possible network configurations and chooses
to form (delete) a link with the agent that gives her the highest utility (reduces the least her
utility). It turns out that connecting to the agent with the highest Bonacich centrality (deleting
the link with the agent that has the lowest Bonacich centrality) is a best-response function for
this agent. In König et al. (2009), there is a game in efforts that rationalizes this behavior. This
is exactly the game developed by Ballester et al. (2006).

To summarize, the dynamics of network formation is as follows: At time t, an agent i is chosen at
random. With probability α agent i creates a link to the most central agent while with comple-
mentary probability 1−α agent i removes a link to the least central agent in her neighbourhood.
Then, time is increased by t → t+ 1/n.
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Importantly, the dynamics of this network formation is not tied to a particular prescription of
the centrality. Indeed, the network formation process remains the same if instead of forming links
to agents with highest Bonacich centrality, they create links with agents that have the highest
degree, closeness, eigenvector or betweenness2 centralities.

In König et al. (2009), it is shown that, at every period, the emerging network is a nested split
graph (Aouchiche et al., 2008) or a threshold network (Hagberg et al., 2006; Mahadev and Peled,
1995), whose matrix representation is stepwise. This means that agents can be rearranged by
their degree rank and agents with degree d are connected to all agents with degrees larger than d.
Moreover, if two agents i, j have degrees such that di < dj , this implies that their neighbourhoods
satisfy Ni ⊂ Nj . An illustration of this is given in Fig. 1. The nested neighbourhood structure
indicates that our networks are strongly hierarchical. An important property of nested split graph
is that the diameter is two, i.e. the maximum distance between two agents in a nested split graph
is at most two. This is because all agents are connected to the one that has the largest number
of links. For our network formation process, this implies that, in a nested split graph, agents can
only form links to second-order neighbours, i.e. neighbours of neighbours.

The stepwise property of the adjacency matrix A, with elements aij ∈ {0, 1}, during the network
evolution can be easily found by induction: At time t = 0, the first link addition generates a
(trivial) stepwise matrix. Next, assume that this is true at time t. We now consider the creation
of a link ij. In case of using the eigenvector centrality3, let λPF be the largest (Perron-Frobenius)
eigenvalue (Horn and Johnson, 1990; Seneta, 2006), and v = {vi}1≤i≤n the associated non-
negative eigenvector of A. Then

vi =
1

λPF

n∑
j=1

aijvj =
1

λPF

∑
j∈Ni

vj . (1)

It follows that the larger is the neighbourhood Ni (degree) of agent i, the higher is its eigenvector
component vi. This means that the eigenvector centrality of the agents is ranked in the same way
as their degree (centrality). The same property can be trivially shown for closeness centrality:
agents with the largest degree in a step-wise matrix are closer to the rest; and betweenness
centrality: agents with the largest degree are part of a larger amount of geodesic paths connecting
two other agents. Therefore, a link is created to the agent with the highest degree not already
connected to agent i. This preserves the stepwise property of A. Similarly, agent agent i will
severe the link to the agent with the lowest degree in agent i’s neighbourhood and, therefore,
the stepwise property of A is maintained.

2Assuming that agents with the same betweenness centrality are ranked according to another centrality mea-
sure, for example their degree.

3Since the dynamic network formation process is invariant to any centrality measure, this is only to facilitate
the presentation. In König et al. (2009), the proof is performed for the Bonacich centrality game.
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Figure 1: Representation of a connected nested split graph G (left) and the associated adjacency
matrix A (right) with n = 10 agents and K = 6 distinct degrees. Di, 1 ≤ i ≤ 6 denotes the
set of nodes in G with the i-th smallest degree. A line between Di and Dj indicates that every
node in Di is linked to every node in Dj . Next to the set Di the degree of the nodes in the
set is indicated. In the corresponding adjacency matrix A to the right the zero-entries can be
separated from the one-entries by a stepfunction.

Given the symmetry in the adjacency matrix A, in order to solve the dynamic evolution of the
network, it is enough to solve the dynamics for the agents with degree smaller or equal than K/2,
when there are K distinct degrees in the network. Denote by N(d, t) the number of agents with
degree d ≤ K/2 at time t. Starting from an empty network, it can be shown that the dynamic
evolution is given by 4

N(d, t′ + 1)−N(d, t′) =
1− α

n
N(d+ 1, t′) +

α

n
N(d− 1, t′)− 1

n
N(d, t′), (2)

N(0, t′ + 1)−N(0, t) =
1− 2α

n
− α

n
N(0, t) +

1− α

n
N(1, t). (3)

These equations mean that the probability to add nodes to the class with degree d is proportional
to the number of nodes with degree d−1 (resp. d+1) when selected for node addition (deletion).
The dynamics of the adjacency matrix (and from this the complete structure of the network)
can be directly recovered from the solution of these equations.

For this purpose, we analyse here the continuous limit for large networks. We perform the follow-
ing change of variables: t′/n → t; d/n → k, and then, k is defined in the interval [0, 1]; δt = 1/n,

4We have assumed that for all agents with degree d < K/2 the difference in the degree of an agent and the
agent with the next higher degree is one.
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δk = 1/n, and z(k, t) = N(d, t′)/n. In this limit, Eqs. (2–3) read

∂tz(k, t) = (1− 2α) ∂kz(k, t) + δk ∂2
kkz(k, t) +O(δk2), (4)

∂tz(0, t) = (1− 2α) (δk + ∂kz(0, t)− α δk z(0, t)) +O(δk2),

z(1, t) = 0 +O(δk2). (5)

The initial condition corresponds to an empty graph with z(k, 0) = δ(0). We have included the
terms of order δk and higher orders (which vanish for infinite networks), because they will play
a central role in the dynamics of the system.

First, when such terms can be neglected, Eq. (4) becomes a usual deterministic drift equation
whose stationary solution is a complete network, z(d) = 1 if α > 1/2; or z(k) = 0 if α < 1/2, i.e.
an empty network. This result explains that, when the link decay is low (α > 1/2), the agents can
keep the connections, and the overall density of the network is high. On the other hand, as we will
show below, when the decay is high, the network rapidly converges to a hierarchical structure
where only a few agents rapidly become central, and without major exogenous disturbances,
they remain in this central position forever. Initial stochastic influences and path dependency
are the deciding factors that determine who will be central. Similar to Anghel et al. (2004) the
competition driven network dynamics leads to the spontaneous emergence of hubs.

The first order transition in the network density gives rise to non-trivial effects around the critical
point α = 1/2. At this point define 1 − 2α = β δk. If β ∼ O(1) the diffusion term in Eq. (4)
is not negligible any more, and the boundary conditions, become a simple reflecting boundary.
Time scales must be reduced once more, so by now rescaling it into τ ≡ t δk, we get the following
Fokker-Planck equation (Gardiner, 2004)

∂τz(k, τ) = β∂kz(k, τ) + ∂2
kz(k, τ), (6)

∂τz(0, τ) = β∂kz(0, τ),

with the same reflecting boundary conditions as in the complete problem. This prescription
allows to relate the width of the transition from sparse to dense networks: β ∼ O(1), i.e. it must
be of the order of one; this implies that ∆α/δk = (1 − 2α)/δk ∼ O(1), and it follows that the
width of the transition scales as ∆α ∼ n−1.

Let us now determine the stationary solutions for all values of α ∈ [0, 1]. First, notice that the
network G obtained for a value of α > 1/2 is the complement of the network obtained for 1−α.
Thus, in the following we consider only values of α ≤ 1/2. Let h(x) be the continuous limit of
the step function in the adjacency matrix A (see Fig. 1), rescaled such that x = 1 − k ∈ [0, 1].
h(x) can be decomposed in a part hu(x) below the diagonal and a part hl(x) above the diagonal
of A. The point x∗ is implicitly defined by hu(x

∗) = hl(x
∗), where the step function intersects
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with the diagonal. Let z(k) = limτ→∞ z(k, τ) be the stationary degree distribution. We have that
hu(x) =

∫ 1−x
0 z(k)dk. From the stationary solution of (6), we find

hu(x) = N e−2(1−2α)x, (7)

with the constant
N =

2(1− 2α)

1− e−2(1−2α)n
, (8)

and limα→1/2N = 1/n.

This result for the functional form of the step-function is valid for the elements below the diagonal,
i.e. for the agents with low degree. We now turn our attention to the high degree, central agents.
From the symmetry of the adjacency matrix, it is easily seen that hl(x) for these agents satisfies
the following equation

x = N e−2(1−2α)hl(x). (9)

Thus, inverting this expression we get

hl(x) =
ln(N )− ln(x)

2(1− 2α)
(10)

Conversely, the degree distribution is given by z(k) = −h′(1−k) and we obtain in the stationary
state

z(k) =

{
N e−2(1−2α)k, if k < 1− x∗,

1
2n(1−2α)k

−1, if k > 1− x∗.
(11)

For α = 1/2 we obtain a uniform distribution z(k) = 1/n. Note that we generate power-law tails
in the degree distribution with an exponent -1. Thus we are able to produce power law degree
distributions in a model without network growth, differently to e.g. the preferential attachment
model by Barabási and Albert (1999).

Since we are able to compute the adjacency matrix, all network statistics of interest can be readily
computed. In particular, one can show that the stationary networks emerging from our link
formation process are characterised by short path length (at most two) with high clustering (so
called “small worlds”), exponential degree distributions with power law tails and negative degree-
clustering correlations. Moreover, we find that stationary networks are dissortative. Also, there
exists a phase transition at α = 1/2 from highly centralised to highly decentralised networks.
This means that for low arrival rates of linking opportunities α (and a strong link decay),
the stationary network is strongly polarised, composed mainly of a star, while for high arrival
rates of linking opportunities (and a weak link decay) stationary networks are dense and largely
homogeneous. We also find that the transition between these states is sharp and becomes sharper
with increasing system size.
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3 Capacity constraints and global search

A natural generalisation of the model discussed so far is to allow for the possibility that agents do
not accept to establish a link with another agent that wants to connect to them. The underlying
assumption is that agents face capacity constraints in the number of links they can maintain.
Such constraints can arise from a possible information overload and congestion (Arenas et al.,
2010; Fagiolo, 2005; Guimerà et al., 2002). Compared to the model of König et al. (2009), if they
are capacity constrained, agents can now refuse a link-creation proposal whereas before it was
always beneficial to accept it. If a link-creation proposal has been refused, then the selected agent
will not only search among her neighbours’ neighbours but also among all agents in the network
(random search). However, agents preferably connect to their neighbours’ neighbours and, only
if this fails, they search for new contacts at random. This means that, if capacity constraints
prevent an agent from forming a link locally, we assume that she tries to link to an agent out of
the whole population at random. This mechanism introduces a global search mechanism in the
link formation process (see Marsili et al., 2004; Vega-Redondo, 2006, for a similar approach). One
of the main consequences of introducing capacity constraints and random search in König et al.
(2009) is that networks are not anymore nested split graphs. This is mainly due to the random
search aspect of the process, which eliminates the very hierarchical structure of nested split
graphs since now agents with low degrees can be asked to form a link.

By introducing capacity constraints and random search in König et al. (2009), we find that
stationary networks become now assortative, a feature that was not possible in the original
model. As a result, the emergence of assortativity and positive degree-correlations, respectively,
can be explained by considering limitations in the number of links an agent can maintain. This
may be of particular relevance for social networks and give an explanation for the distinction
between assortative social networks and dissortative technological networks, as suggested by
Newman (2002).

We assume that capacity constraints arise from the fact that an agent can only interact with one
other agent at a time. Each neighbour requests information with probability β. Assuming that
information requests are independent, the probability that an agent i ∈ N with di links does not
receive any information requests from her neighbours is given by (1− β)di . If an agent does not
receive such an information request, then she can accept an additional link; otherwise she won’t.

Moreover, we allow for the formation of links between agents that are not connected through
a common neighbour. This means that agents search globally for new contacts (see also
Vega-Redondo, 2007) if they cannot connect to the agent with the highest centrality among
their neighbours’ neighbours. When an agent i is selected, she tries to connect to the agent j

with the highest degree in her neighbourhood. However, agent j ∈ N (1)
i only accepts the link

formation with probability (1−β)dj , otherwise agent i selects another agent k ∈ N\{N (1)
i ∪ i∪j}
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out of the whole population of agents (excluding agents i and j) uniformly at random, and this
link also have the same acceptance probability (1− β)dk based on the degree of agent k.5

With probability α, a randomly selected agent i creates a link with the agent j who has the
highest centrality among her second order neighbours. This occurs with probability (1 − β)dj .
With probability

(
1− (1− β)dj

)∑
k∈N\{N (1)

i ∪i∪j}(1 − β)dk , agent i forms a link at random to
another agent out of the whole population. As before, with probability 1 − α, agent i deletes a
link to the agent with the lowest centrality.

We make the following technical assumption. In the model exposed in Section 2, the eigenvector
centrality of an agent increases the most if she forms a link to the agent with the highest degree.
For the current model, we assume that this property is still approximately true. In most cases,
this approximation can be made but there exist exceptions in which the degree and Bonacich
centrality ranking do not coincide (Grassi et al., 2007).

More formally, we define the network formation process (G(t))∞t=0, G(t) = (N,L(t)), as a sequence
of networks G(0), G(1), G(2), ... in which at every step t = 0, 1, 2, ..., an agent i ∈ N is uniformly
selected at random. Then one of the following two events can occur:

1. With probability α ∈ (0, 1) agent i receives the opportunity to create an additional link.
Let j be the agent in N (2)

i with the highest degree, that is dj ≥ dk for all j, k ∈ N (2)
i . Then

with probability (1− β)dj the link ij is formed. Otherwise agent i connects to a randomly
selected agent k ∈ N\ (Ni ∪ {i, j}) with probability

(
1− (1− β)dj

)
(1− β)dk . If agent i is

already connected to all other agents then nothing happens.

2. With probability 1− α , the link to the agent j in Ni with the smallest degree dj ≤ dk for
all j, k ∈ Ni, decays. If agent i does not have any links then nothing happens.

An illustration of the above link formation process (G(t))∞t=0 is shown in Figure 2. An agent i

is selected at random either creates a link or the link to the neighbor with lowest degree decays
with probability 1 − α. However, with probability α agent i is selected to create a link. In this
case, agent i forms the link to agent j with highest degree among her second-order neighbors
with probability (1−β)dj and to another agent out of the whole population of agents at random
with probability

(
1− (1− β)dj

)∑
k∈N\(Ni∪{i,j})(1− β)dk .

5Let Ni = {k ∈ N : ik ∈ L(t)} be the set of neighbors of agent i ∈ N and N (2)
i =

⋃
j∈Ni

Nj\ (Ni ∪ {i})
denote the second-order neighbors of agent i in the current network G(t). Note that the connectivity relation is
symmetric such that j is a second-order neighbor of i if i is a second-order neighbor of j, i.e. i ∈ N (2)

j if and only
if j ∈ N (2)

i for all i, j ∈ N .
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link decay
1− α

α

local link
creation

(1− β)dj

global link
creation

(

1− (1− β)dj
)
∑

k∈N\(Ni∪{i,j})(1− β)dk

Figure 2: Probabilities with which a randomly selected agent i creates a link and a link of
agent i decays, respectively, when capacity constraints are taken into account (assuming that
the agent is neither isolated nor fully connected).

4 Results

Having introduced the extended network formation process, we now investigate its properties by
means of computer simulations for values of α ∈ [0.2, 0.5] and β ∈ [0.01, 1]. We consider a set
of n = 1000 agents and use a sample of 30 to 40 simulation runs from which we compute the
average as an approximation to the stationary network.

Figure 3 shows the clustering and assortativity of stationary networks for different values of α
and β. We find that for values of β around 0.1 and in α ∈ [0.45, 0.5] stationary networks are
assortative while displaying a high clustering (albeit lower than in the basic model without ca-
pacity constraints). It is relatively easy to understand why networks become assortative. Indeed,
if α is high but not too high (links are formed at a relative high rate) while β is quite low (mean-
ing that 1 − β is high so that agents do accept link proposals), then low-degree agents will be
connected to low-degree agents, a feature not possible in the model without capacity constraints
(in a nested split graph, low-degree agents cannot be connected to low-degree agents).

The characteristic path length L is defined as the number of links in the shortest path between
two agents, averaged over all pairs of agents (Watts and Strogatz, 1998). This can be written as

L =
1

n(n− 1)

∑
u 6=v

d(u, v), (12)

where d(u, v) is the geodesic (shortest path) between agent u and agent v. Taking the inverse
of the shortest path length, one can introduce a related measurement, the network efficiency, E ,
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Figure 3: In the left panel we show the clustering coefficient obtained by recourse of numerical
results of the extended model with capacity constrains for different values of α and β in a system
with n = 1000 agents. In the right panel we show the corresponding network assortativity.
Each different curve corresponds to a different value of α. Only agents that are not isolated are
considered.

that is also applicable to disconnected networks (Latora and Marchiori, 2001)

E =
1

n(n− 1)

∑
u 6=v

1

d(u, v)
, (13)

In Figure 4, we show the characteristic path length L and the efficiency E measuring shortest
paths in the network. The plots indicate that stationary networks in the extended model exhibit
short path lengths between the agents.6 However, we find that the stationary network may not
just consist of one connected component and possibly isolated nodes but it may have multiple
components. However, there exists a giant component encompassing at least 90% of the nodes
in all the simulations we studied.

We can further analyse the degree distribution of stationary networks and we find that it is
highly skewed following an exponential function.

Moreover, we find that the results for different centralisation measures show a similar behaviour
as we have seen already in the original model. There exists a sharp, albeit less pronounced,
transition from highly centralised networks to homogeneous networks by increasing α above 1/2.

6The average path lengths generated by our model are at most six, as it is shown in Figure 4. Real-world
networks have average path lengths that are typically larger than two. However, there exist real world networks
with very short average path lengths. Examples are the network of entrepreneurs in Silicon Valley studied by
Assimakopoulos and Kenney (2005); Carayiannis et al. (2008) or the network of banks analyzed by Soramäki et al.
(2007), which has an average path length of around 2.6.
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Figure 4: We show the measures for the network topology obtained by recourse of numerical
results of the model with capacity constrains for different values of α and β in a system comprised
of n = 1000 agents.. The left panel shows the characteristic path length L of the network G∗

and the right panel shows the results for the network efficiency E .
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Figure 5: We show the largest eigenvalue of the adjacency matrix normalised to the largest one
in a complete graph (which is the efficient network (Ballester et al., 2006)), obtained by recourse
of numerical results for the model with capacity constrains for different values of α and β in a
system comprised of n = 1000 agents.

In Figure 5, we show the fraction of the largest real eigenvalue of the stationary network. The
largest real eigenvalue is a measure of efficiency of the network, i.e. the network that maximizes
total welfare (see (König et al., 2009)) For values of α < 1/2 stationary networks are highly
inefficient with respect to the complete network while the extent of inefficiency can be drastically
reduced if one takes the reduced network density into account.

Finally, Figure 6 shows centralization in the stationary network for different values of β. This
figure reveals that stationary networks tend to be highly centralized for low values of β. This
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Figure 6: Degree, closeness, betweenness and eigenvector centralization in the stationary networks
for different values of α, in the constrained model. For all centralization measures we obtain a
sharp transition between strongly centralised networks for lower values of α and decentralised
networks for higher values of α.

indicates that, in this parameter range, stationary networks are highly unequal and characterized
by few central agents.

In this section, we have studied different network statistics for different values of α and β.
We find that, by introducing capacity constraints and global search, stationary networks become
assortative while exhibiting an exponential degree distribution, high clustering, short average path
length and negative clustering-degree correlation. These characteristics can be found in social and
economic networks as well. Thus, our model is able to reproduce the main characteristics of real
world networks to the whole extent, ranging from assortative to dissortative networks.
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5 Concluding remarks

In this paper, we have introduced a network formation process with capacity constrains in which
link creation and removal are based on the position of the agents in the network as measured by
their centrality.

In the original model of König et al. (2009), when agents have only local information when
forming links and their connections are exposed to a volatile environment, the emergence of
hierarchies depends on the level of volatility of the environment. Two different regimes appear:
(i) When linking opportunities are rare, the network rapidly converges to a hierarchical structure
where only a few agents rapidly become central, (ii) when linking opportunities abound, flat
structures arise. It is also found that there exists a sharp transition in the core-periphery structure
of the network from a highly centralised to a decentralised network.

In the present paper, we consider the role of capacity constraints and global search in this net-
work formation process. We find that stationary networks become assortative while exhibit-
ing an exponential degree distribution, high clustering, short average path length and negative
clustering-degree correlation. These characteristics can be found in social and economic networks
as well. Thus, our model is able to reproduce characteristics of real world networks, ranging from
assortative to dissortative networks.

Our findings have an implication for the distinction between assortative and dissortative net-
works. As discussed in the preceding sections, our network formation process generates sta-
tionary networks that are characterised by negative degree-degree correlation and dissortativity.
On the other hand, capacity constraints transform stationary networks to exhibiting positive
degree-degree correlations and assortativity. This effect may shed some light on the origin of the
distinction between technological and social networks suggested by Newman (2002, 2003), where
technological networks are characterised by dissortativity and social networks by assortativity.
Following our findings, technological networks are facing capacity constraints to a much lower
extent than social networks. Consider for example the internet as a technological network and the
email network in an organization as a prototype of a social network. The number of hyper-links
a website can contain may not be limited as much as the number of social contacts (measured
e.g. by mutual email exchange) an individual in an organization may keep. Thus, the distinction
between technological and social networks and the degree of assortativity and degree-degree cor-
relations can be derived from the severity of capacity constraints imposed on the number of links
an agent can maintain.
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