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Abstract

We study the evolution of networks when the creation and decay of links are based

on the position of nodes in the network measured by their centrality. We show that the

same network dynamics arises under various centrality measures, and solve analytically the

network evolution. During the complete evolution, the network is characterized by nestedness:

the neighborhood of a node is contained in the neighborhood of the nodes with larger degree.

We find a sharp transition between hierarchical and homogeneous networks, depending on

the rate of link decay. We also show that this evolution mechanism may lead to double

power-law degree distributions, with interrelated exponents.

PACS numbers: 87.23.Ge, 89.75.Fb

The underlying mechanisms of link formation governing the evolution of a network ultimately

determine its emergent properties at the aggregate level [1, 8]. In particular, there exists numerous

empirical evidences that the network evolution can be driven by centrality, where nodes with

higher centrality are more likely to form or receive links [10, 19]. The notion of centrality was

recognized to play a fundamental role in the most despair fields, ranging from dynamical systems

[23], synchronization [20], biology [14], and economics [10, 19]. In spite of its importance, a formal

understanding of how networks evolve when the formation of links depends on the centrality of

the nodes involved is still missing.

Depending on the context, several measures of centrality have been introduced to quantify the

central position of a node in a network: degree, eigenvector, betweenness, closeness, PageRank

and Bonacich centrality are the most prominent ones [6, 26]. Due to this variety, few attempts

have been made so far to elucidate the common features underlying the emergent properties of

networks evolving by centrality [13].

Going from the microlevel of link formation to the macroscopic level, some real world networks

exhibit a high degree of clustering while, coincidentally, their degree distributions show power-

law tails. Taken together, these two characteristics indicate a hierarchical organization in the

network [22]. In social and economic [17], as well as biological systems [4], it has been found that

the hierarchical organization of networks can further be characterized by nestedness [4, 25]: the

neighborhood of a node is contained in the neighborhood of the nodes with higher degrees. In

these examples, the degree of nestedness (defined as the fraction of links belonging to the nested

structure) was shown to be above 93% [25].
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In this Letter, we study a model of network evolution where links are created or removed based

on the centrality of the nodes incident to the links. We show that the network evolution is

independent of the centrality measure used. Thus, for the first time, this model provides a general

framework to study the evolution of networks under various measures of centrality. In this model,

there exist stationary networks which are highly hierarchical when the rate of link creation is

low. Moreover, the networks are nested during the complete evolution. As we show, both, a

hierarchical organization as well as network nestedness can be the outcomes of a centrality based

network formation process. Finally, we show that in this framework, double power-law degree

distributions [5, 7] can be stationary solutions, and that each power-law exponent unequivocally

determines the other.

Model. We consider a network composed of N nodes, initially connected by an arbitrary

network. Each node has a centrality associated to it. Note that it is not specified which centrality

measure this refers to. There is a single parameter α ∈ [0, 1] that determines the relative weight

between edge addition and deletion. At a rate –that is equal for all nodes– a node is randomly

selected and modifies its neighborhood: with probability α, it creates a link to the node with

the highest centrality it is not already connected to. Otherwise, with probability 1−α, a link of

the selected node decays. If this happens then the node removes the link to the neighbor with

the lowest centrality. If the node is connected to all the other nodes in the network (resp. it is

isolated), and it has to create (resp. remove) a link, nothing happens. It is simple to show that

the network formation process is ergodic, and thus starting from any initial network yields the

same asymptotic results. Thus, and without any loss of generality, in the following we consider

an empty network as initial condition.

Alternatively, we could assume that a node has only local information of the network [9] and

creates a link to another one in its second-order neighborhood with the highest centrality. It

turns out that this leads to the same network evolution process as the one described above.

This makes sense in situations where centrality is known ex ante, for example, when centrality

is a measure of performance in inter-organizational networks [18], or it indicates the fitness of

biological species [14].

Different measures of centrality can be used in the above network formation process, depending

on the context. For example, consider a population of biological species in a catalytic network

[14]. Let species i = 1, . . . , N have a fitness value yi ≥ 0 that evolves according to the dynamics

ẏi =
∑N

j=1 aijyj −φyi, φ ≥ 0, where aij ∈ {0, 1} is the ij-th element of the symmetric adjacency

matrix A. In terms of relative fitness xi = yi/
∑N

j=1 yj , we get ẋi =
∑N

j=1 aijxj−xi
∑N

k,j=1 akjxj .

This dynamics have a fixed point given by the eigenvector v ≥ 0 corresponding to the largest

real (Perron-Frobenius) eigenvalue λPF of A. Hence, in this model, fitness is directly given by the

eigenvector centrality. A second example comes from a socio-economic context. Consider a set
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of agents whose payoffs are interdependent in a network. The agents choose a contribution level

xi ≥ 0 and receive a payoff given by πi = xi − x2
i /2 + λ

∑N
j=1 aijxixj with λ < 1/λPF [3]. Then

the unique Nash equilibrium is given by their Bonacich centrality [26]. The dynamics introduced

above correspond to a game in which agents form links that maximize their equilibrium payoffs in

each period [15]. Further examples include degree centrality, closeness centrality [13], betweenness

centrality [26], PageRank [6] and random walk centrality [21]. Finally, links created (removed)

are the ones which increase the most (decrease the least) the largest eigenvalue λPF. These links

were shown to modify the most the dynamical properties of the system [24].

At every time step, this dynamics yield a network whose adjacency matrix A is stepwise: the

nodes can be ordered by their degree, such that the zero/one entries in the adjacency matrix are

separated by a monotonic step-function h(x) (see Fig. 1, right), where x = 1 − r, and r is the

degree rank of a node. Networks with stepwise adjacency matrix are threshold networks [11, 16].

In such a network, if two nodes i and j have degrees such that di < dj , then their neighborhoods

satisfy Ni ⊂ Nj . Thus, these networks are characterized by nestedness. Moreover, the nodes can

be partitioned into a dominating set and independent sets. In the dominating set S, every node

not in S is linked to at least one member of S. Conversely, an independent set is one in which

no two nodes are adjacent (see Fig. 1, left).

We now prove by induction that the adjacency matrix representing the state of the network at

every time step is stepwise for the case of eigenvector centrality. First, at time t = 0, the first

link added generates a (trivial) stepwise matrix. Next, let us assume that this is true at time

t ≥ 0. Consider the creation of a link ij. Then vi = 1/λPF

∑n
k=1 aikvk = 1/λPF

∑

k∈Ni
vk. Thus,

the larger is the degree of a node i, the higher is its eigenvector component vi. In this way, the

eigenvector centrality of the nodes is ranked in the same way as their degree. Therefore, for the

model studied, a node has to establish a link to a node with the highest degree it is still not

connected to. This preserves the stepwise property of A (see Fig. 1, right). Similarly, for the

removal of links, the node with the lowest degree among the neighbors is the least central one,

and removing a link to it preserves the stepwise property of A.

The nested neighborhood structure allows us to use similar arguments for other centrality mea-

sures. Consider two nodes i and j in a nested graph with di > dj . All walks starting at node

j are contained in the set of all walks starting from node i (after exchanging the starting node

j with i). This implies that i has a higher centrality than j for any centrality measure that is

based on walks or paths in the network. Hence, a proof by induction shows that the ranking of

nodes by degree is equivalent to the ranking by centrality for this family of centrality measures.

In general, this dynamics leads to a self-reinforcement of the nested structure.

Given the symmetry of the adjacency matrix A, in order to solve the dynamic evolution of the

network, it is enough to solve the dynamics for the nodes belonging to the independent sets (see

Fig. 1). Let us denote by n(d, t) the number of nodes in the independent sets with degree d at
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d = 2K̄2

d = 3K̄2

d = 4K̄2

d = 9 K2

d = 7 K1

d = 5 K1

Figure 1: Representation of a nested network (left) and the associated stepwise adjacency matrix

(right) with N = 10 nodes. A nested network can be partitioned into subsets of nodes with the

same degree (each subset is represented by circle, next to which the degree d of the nodes in

the subset is indicated). A line connecting two subsets indicates that there exists a link between

each node in one set to all nodes in the other set. The union of the sets represented by the

circles to the left of the dashed line induce a dominating set, while to the right the circles

indicate independent sets. In the matrix A to the right, the zero-entries are separated from the

one-entries by a step-function.

time t. The dynamic evolution of these populations can be written as a rate equation,

∂tn(d, t) = ω[d + 1 → d] n(d + 1, t) + (1)

ω[d − 1 → d)n(d − 1, t) −

(ω[d → d − 1] + ω[d → d + 1]) n(d, t),

where the transition rates are simply ω[d → d + 1] = α/N , ω[d → d− 1] = (1−α)/N . In Eq. (1)

we have neglected the contributions of the nodes in the corresponding dominating set (which are

selected with probability O(N−1)) to the dynamics of the nodes in the independent sets. The

dynamics studied is restricted to the profile separating (non-)existing edges, and is thus related

to surface-growth models, such as those of polynuclear growth; then, it can also be linked to the

one-dimensional Ising model with Kawasaki dynamics [12].

The dynamic evolution of the network can be written in terms of its degree distribution

P (k; t) = n(d, t)/N , where k = d/N denotes the normalized degree. For a finite population,

the minimum increment possible in degree is δk = 1/N . At leading order in δk, the dynamic
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evolution corresponding to Eq. (1) is given by

∂tP (k; t) = (1 − 2α) ∂kP (k; t)

+ δk ∂2
kkP (k; t) + O(δk2),

∂tP (0; t) = (1 − 2α) (δk + ∂kP (0; t)

−α δk P (0; t)) + O(δk2),

(2)

with the additional boundary condition P (1, t) = O(δk2) and an initial condition P (k, 0) = δ(k).

When the terms of order δk can be neglected, Eq. (2) becomes a usual drift equation whose

stationary solution is either a complete network for α > 1/2 (when the link decay is low), or

empty for α < 1/2. If α is small (and the link decay is high), the network rapidly converges to

a hierarchical structure, where only a few nodes immediately become central, and they remain

in this central position during the network evolution. In this case it is the competition driven

dynamics for centrality which leads to the spontaneous emergence of hubs [2].

There exists a first order phase transition in the network density that gives rise to nontrivial

effects around the critical point α = 1/2. If |1 − 2α|/δk ∼ O(1), then the diffusion term in

Eq. (2) is not negligible anymore. Time scales must be rescaled to τ ≡ t δk, and we get the

Fokker-Planck equations

∂τP (k; τ) = (1 − 2α) ∂kP (k; τ) + ∂2
kkP (k; τ) (3)

∂τP (0; τ) =
(1 − 2α)

δk
∂kP (0; τ). (4)

This prescription allows to relate the width of the transition from sparse to dense networks: it

must be that |1 − 2α| ∼ O(1), or conversely, ∆α ∼ N−1.

We now study the stationary solutions for all values of α ∈ [0, 1]. First, notice that the network

obtained for a value of α > 1/2 is the complement of the network obtained for 1−α < 1/2. Thus,

in the following we consider only values of α ≤ 1/2. The step-function h(x) can be decomposed

in a part hu(x) below the diagonal and a part hl(x) above the diagonal of A (see Fig. 1, right

panel). The point x∗ is implicitly defined by hu(x∗) = hl(x
∗), where the step-function h(x)

intersects with the diagonal. Let P (k) denote the stationary degree distribution. We have that

hu(x) =
∫ 1−x
0 P (k)dk. From the stationary solution of Eq. (2) we find hu(x) = N e−2(1−2α)x,

with N = 2(1 − 2α)/(1 − e−2(1−2α)N ).

This result for the functional form of the step-function is valid for the elements below the diagonal,

i.e. for the nodes with low degree. We now turn our attention to the high degree, central nodes.

From the symmetry of the adjacency matrix, one finds that hl(x) for these nodes satisfies x =

N e−2(1−2α)hl(x). Thus, inverting this expression we get hl(x) = (ln(N ) − ln(x))/(2(1 − 2α)).
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Figure 2: (Left) Eigenvector centralization Cv in stationary networks as a function of the link

formation probability α for different system sizes N = 100 (◦), N = 1000 (�) and N = 5000

(♦). Results of numerical simulations are superimposed with lines representing the analytical

prediction. (Right) Degree distributions of stationary networks for different values of α = 0.45

(◦), 0.48 (�), 0.49 (♦), 0.495 (△) and system size N = 5000. The figure reveals that the leading

part of the distribution is exponential, while a logarithmic binning shows a power-law tail with

exponent −1.

Conversely, the degree distribution is given by P (k) = −h′(1 − k), from which the following

stationary degree distribution is found

P (k) =

{

N e−2(1−2α)k, if k < 1 − x∗,
1

2(1−2α)k
−1, if k > 1 − x∗.

(5)

In particular, for α = 1/2, it results in a uniform distribution P (k) = 1/N . Degree distributions

for different values of α in the stationary state can be seen in Fig. 2.

In these nested structures, the adjacency matrix is completely determined by the correspond-

ing degree distribution from Eq. (5) or, conversely, from the profile function h(x). Thus, it is

possible to compute any network statistic of interest when the degree distribution is known. In

doing so, one can show that the stationary networks emerging in the link formation process are

characterized by short path length, high clustering, negative degree-clustering correlations and

dissortativity. The emerging networks also show a clear core-periphery structure, which can be

measured by their centralization, defined as the normalized sum of differences between the cen-

trality of the nodes and the maximum centrality in the network [26]. Fig. 2 shows the eigenvector

centralization Cv. It can be seen that there exists a transition at α = 1/2 from highly centralized

to highly decentralized networks. This means that for low arrival rates of linking opportunities
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α (and a strong link decay) the stationary network is strongly centralized, while for high arrival

rates of linking opportunities, stationary networks are dense and largely homogeneous.

The symmetry condition for the step-function h(x) implies an important result when part of the

degree distribution (for example around the head, i.e. k → 0) shows a power-law decay: The tail of

the distribution (i.e. k → ∞) also follows a power-law distribution, but with a different exponent.

To see this, let us assume that the head of the distribution has the functional dependence

P (k) = βk−η. If η > 0, this implies that the step-function hl(x) for low degree nodes is given

by hl(x) = βk−η−1/1 − η. By inverting this function, we get x = [β/(1 − η)]hu(x)1/(−η+1); and

the distribution in the tail yields Pu(k) = [β/(1− η)]1/(η+1)(1 + η)−1/kηu , where ηu = η/(η − 1).

In the limit η → ∞, (there is an exponential distribution for the head), it implies ηu → 1, i.e.

we recover the previous result of Eq. (5). The power-law distribution in the head and in the tail

have the same exponent when η = 2.

So far we have assumed that all nodes are selected at the same rate, regardless of their position

in the network. Depending on the context, this assumption may not apply. In order to overcome

this limitation, we assume that nodes are selected at a rate which depends on their position in

the network. Note that the rate at which nodes are selected affects only the frequency but not the

way in which they create or remove links. Therefore, the nestedness of the network is preserved.

Moreover, in these nested structures, the nodes with the same degree are indistinguishable, as

only their degree rank in the network is important. We therefore assume that the node selection

rate F is a function of the degree of the node. As a simple example, we set F (k) = kη + A,

where A > 0 denotes the idiosyncratic activity of every node, and η > 0 a parameter governing

nonlinearly the preferential selection of nodes with higher degree. Using similar arguments as in

the derivation of Eq. (2), we can write the evolution of the degree distribution as follows,

∂tP (k; t) =
(1 − 2α)η

N
kη−1P (k; t)

+
(1 − 2α)

2N
[kη + A] ∂kP (k; t)δk + O(δk2).

In the continuous limit, the stationary solution is given by P (k) = D/(A + kη), where D is a

normalization constant such that
∫ 1
0 P (k) dk = 1. The solution reduces to the exponential one

when η → ∞ and A ≪ N . In the general case, the degree distribution exhibits two different

power-law behaviors and an inflection point. These two power-laws have the functional form

P (k) ∼ k−η for the head of the distribution, and consequently P (k) ∼ k−η/(η−1) for the tail.

To summarize, we have introduced a network formation process in which link creation and

removal is based on the position of the nodes in the network measured by their centrality.

Interestingly, the network evolution is independent of the exact measure of centrality, and does

not require global information of the complete network structure. Also, extending the model

to allow for heterogeneous activity levels of nodes keeps this property unaltered, although the
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Figure 3: (Right) Degree distribution for different exponents in the head of the distribution

η = 1.2 (∇), 1.5 (△), 2 (♦), 2.5 (�), 3 (◦). If a nested network exhibits a power-law in the head

(tail) of the degree distribution then the distribution will also exhibit a power-law behavior in

the tail (head), with an exponent that can be completely determined by the head (tail). (Left)

Power-law exponents for the tail of the degree distribution, i.e. k → ∞ (�), and the head of the

distribution, i.e. k → 0 (◦), as a function of the power-law exponent of the head. The symbols

correspond to networks of N = 105 nodes, and the lines represent the numerical simulations.

degree distribution is modified, and a restricted set of double power-law degree distributions is

found.
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