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Abstract

Based on the empirical analysis of the dependency network in 18 Java projects, we develop a novel
model of network growth which considers both: an attachment mechanism and the addition of new
nodes with a heterogeneous distribution of their initial degree, k0. Empirically we find that the cumulative
degree distributions of initial degrees and of the final network, follow power-law behaviors: P (k0) ∝ k1−α

0 ,
and P (k) ∝ k1−γ , respectively. For the total number of links as a function of the network size, we find
empirically K(N) ∝ Nβ , where β is (at the beginning of the network evolution) between 1.25 and 2,
while converging to ∼ 1 for large N . This indicates a transition from a growth regime with increasing
network density towards a sustainable regime, which revents a collapse because of ever increasing
dependencies. Our theoretical framework is able to predict relations between the exponents α, β, γ,
which also link issues of software engineering and developer activity. These relations are verified by
means of computer simulations and empirical investigations. They indicate that the growth of real Open
Source Software networks occurs on the edge between two regimes, which are either dominated by
the initial degree distribution of added nodes, or by the preferential attachment mechanism. Hence, the
heterogeneous degree distribution of newly added nodes, found empirically, is essential to describe the
laws of sustainable growth in networks.
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Based on the empirical analysis of the dependency network in 18 Java projects, we develop a
novel model of network growth which considers both: an attachment mechanism and the addition
of new nodes with a heterogeneous distribution of their initial degree, k0. Empirically we find
that the cumulative degree distributions of initial degrees and of the final network, follow power-
law behaviors: P (k0) ∝ k1−α

0
, and P (k) ∝ k1−γ , respectively. For the total number of links as

a function of the network size, we find empirically K(N) ∝ Nβ , where β is (at the beginning of
the network evolution) between 1.25 and 2, while converging to ∼ 1 for large N . This indicates
a transition from a growth regime with increasing network density towards a sustainable regime,
which prevents a collapse because of ever increasing dependencies. Our theoretical framework is able
to predict relations between the exponents α, β, γ, which also link issues of software engineering
and developer activity. These relations are verified by means of computer simulations and empirical
investigations. They indicate that the growth of real Open Source Software networks occurs on the
edge between two regimes, which are either dominated by the initial degree distribution of added
nodes, or by the preferential attachment mechanism. Hence, the heterogeneous degree distribution
of newly added nodes, found empirically, is essential to describe the laws of sustainable growth in
networks.

PACS numbers: 89.75.Hc, 05.40.-a, 89.20.Ff

How do real networks grow? Nodes and links are not
always added at a constant rate. Instead, their num-
bers could be drawn from a broad distribution, spanning
almost the size of the network. This inhomogeneity con-
siderably impacts the network growth, but it was not
covered in existing analytical approaches. Hence, this
problem is addressed in this Letter. We provide a novel
model of network growth which is solved analytically and
verified empirically by studying the evolution of several
Open Source Software projects.

During its evolution, a network can have a non-linear
growth of its set of nodes, or edges. However, many mod-
eling approaches, most notably the preferential attach-
ment, simply assume that (i) at any time step a constant
number of nodes is added to the network, that (ii) each
new node is linked to the network with a constant number
of links, and that (iii) neither nodes or links are deleted
[1–3]. If such assumptions hold, this would result in a
growth N(τ) ∝ τη of the total number of nodes in the
network, and K(τ) ∝ τλ of the total number of links,
where both η ≃ 1 and λ ≃ 1. Such a network growth
could be called sustainable, in contrast to the two limit-
ing cases of (a) accelerated growth [4–6], if λ/η > 1, or of
(b) saturated growth, if λ/η < 1. Both of these growth
processes are not sustainable in the long run as they ei-
ther lead to collapse or to stagnation [7]. But there is,
at least for the intermediate observable time scales, also
empirical evidence of networks growing with increasing
link density, K/N for example the World Wide Web [8].

However, results obtained for N(τ) or K(τ) refer to
macroscopic properties, which are compatible with a
large variety of ‘microscopic’ assumptions about node
and link additions (or deletions). More importantly, the

kinetic exponents may change over time and may reach 1
only asymptotically, which would point to changes in the
growth mechanism on intermediate time scales. Eventu-
ally, in addition to the total number of nodes and links,
there are other characteristics of the network structure
and dynamics which need to be predicted and to be ver-
ified empirically. In this Letter, we address these prob-
lems both theoretically and empirically by (i) developing
a detailed model of network growth which includes the
heterogeneous degree distribution of newly added nodes
(instead of adding nodes with the same degree), and (ii)
by verifying the predictions of our general model against
a novel data set of growing networks.

We start by describing the empirical findings, to moti-
vate the new assumptions of our network growth model,
later. We have used a dataset of 18 Open Source Software
(OSS) projects (see Table 1), which are programmed in
Java. The complex network consists of nodes, which
are Java classes (each file corresponds to one class), and
directed links representing dependencies between these
classes. For example, one class can call a function de-
fined in another class, or extend a functionality of another
class. During software evolution, new classes are added
to the project and are linked to existing classes based on
principles defined in software engineering. So, if we are
able to reveal universal dynamics underlying such growth
processes, this is a remarkable result on its own. For the
time dependent evolution of the OSS projects, we can
rely on version control systems which record all changes
made. For our analysis, we have used snapshots of inter-
vals of 30 days, for a project life span between 2.7 and 8.2
years – which goes much beyond the few snapshots avail-
able for previous investigations of OSS growth [9, 10].
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FIG. 1. (Color on-line). (left) Final complementary accumulated degree distribution P (k) ∝ k1−γ , (right) initial complementary
cumulated degree distribution P (k0) ∝ k1−α, (center) total number of links K(N) ∝ Nβ as a function of network size N . Colors
indicate four different OSS projects: Architecturware (black circles), Eclipse (blue squares), JEdit (violet stars), Sapia (magenta
triangles). See Table I for more details. The small symbols, represent the complete empirical datasets, while the large ones the
binned data. The inset in the central panel shows the evolution of β for the 18 projects, during the growth process. In this
inset, the different symbols represent the evolution of β for the different projects, while the dashed line represents the median
of β for the complete set.

Nevertheless, we may use these studies as a point of ref-
erence, as they also study some topological properties,
such as the cumulative degree distribution P (k).

In order to derive analytical results about the latter,
let us define n(k, τ) as the degree distribution, i.e. the
number of nodes with total degree k at time τ . Obvi-

ously K(τ) =
∑N(τ)

k=1 k n(k, τ). The complementary cu-
mulative degree distribution at time τ is then given by
P (k, τ) = 1 −

∑

l<k n(l, τ)/N(τ). We can remove the

real time τ by using the scaling τ ∝ N1/η, which means
K(N) ∝ Nβ , where β = λ/η. This procedure implies
that the number of nodes increasing, i.e. the deletion of
nodes is not considered in the empirical analysis. Figure
1 illustrates the empirical results for these quantities by
showing four OSS projects of very different size.

Looking at the final complementary cumulative degree
distribution P (k), obtained for the maximum N of the
project, we clearly identify a power-law P (k) ∝ k1−γ

(left panel of Fig. 1), which is equivalent to a degree
distribution n(k) ∝ k−γ The exponents γ which charac-
terize the structure of the final product are given in Table
I. Dependent on the size of the project, we find values
between 2 and 3, with a clear tendency towards values
closer to 3. For the growth of the OSS projects (center
panel of Fig. 1), we obtain slightly bend curves for the
six projects, which indicate that the exponents β changed
over time (shown in the inset of the center panel). For ev-
ery project, the total degree as a function of system size
was split into different windows (of size 500) and an esti-
mation of the exponent β was performed for each window.
Starting at values between 1.25 and 2, they converge to
smaller values of about 1, i.e. we observe a transition
from accelerated to sustainable growth. The final values
of β are given in Table I. Note that β is a measure of the
activities of the developers, i.e. it characterizes a social

process. The right panel of Fig. 1 eventually presents the
most interesting empirical finding that, different from the
above mentioned assumptions about preferential attach-
ment and most modeling approaches, newly added nodes
have a very heterogeneous initial degree k0. In fact we
observe a power-law for the complementary cumulative
initial degree distribution P (k0) ∝ k1−α

0 , where α is re-
lated to the initial conditions of the software growth, i.e.
to software design. The values found are presented in
Tab. I. It remains to reveal the inherent relations be-
tween the three exponents α, β, γ which is done by the
following analytical approach.
We assume that nodes are added to the project at a

constant rate, i.e. time t is given by the total number of
nodes, t = N , or conversely, η = 1. For the dynamics
of the degree distribution we postulate the following rate
equation:

ṅ(k, t) = δk,k0(t) + n(k − 1, t)ω[k − 1 → k]

+n(k + 1, t)ω[k + 1 → k] (1)

−n(k, t)
{

ω[k → k − 1] + ω[k → k + 1]
}

This is a first order approximation of the dynamics
based on the addition/deletion of one node at a time.
The term δk,k0(t) in Eq. (2) describes the addition of
a new node with an initial degree exactly equal to k.
In accordance with our empirical findings, this degree
is randomly drawn from a truncated power-law distri-
bution g(k0) with exponent α; i.e. Prob[k0(t) = k] =
min ((α− 1)/kα, t− 1). For the transition rate of growth
processes, k → k + 1, we assume

ω[k → k + 1] =

{

k0(t)

K(t)
+

(

σ +
r

2

)

}

k. (2)

This rate is proportional to k, i.e. it is based on preferen-
tial attachment. Without that assumption, the process
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Project N α β γ

eclipse 28898 2.7(1) 1.06(4) 2.6(1)
springframework 7707 3.5(1) 1.02(4) 2.9(1)
fudaa 7610 2.7(1) 1.1(1) 2.7(1)
jpox 7259 2.49(8) 1.08(2) 2.44(8)
architecturware 7110 2.7(1) 1.00(3) 2.8(1)
jena 6619 3.5(1) 0.99(3) 2.9(1)
hibernate 5938 2.5(2) 1.03(3) 2.5(1)
sapia 4129 3.44(8) 1.00(2) 3.0(1)
rodin-b-sharp 4077 2.8(1) 1.03(2) 2.6(1)
azureus 4051 2.9(2) 1.14(5) 2.6(2)
jedit 3997 2.9(1) 1.01(1) 2.93(8)
jaffa 3854 3.0(3) 1.1(1) 2.7(3)
jmlspecs 3590 2.4(2) 0.97(6) 2.6(2)
openxava 3000 3.2(2) 1.04(4) 2.9(2)
phpeclipse 2881 2.8(1) 1.02(2) 2.73(8)
personalaccess 2687 3.1(1) 0.95(6) 2.9(1)
xmsf 2576 2.2(1) 1.08(3) 2.3(1)
aspectj 1856 2.5(1) 1.03(4) 2.5(1)

TABLE I. Empirical results obtained for 18 Open Source Java
projects. N gives the maximum number of nodes (classes) at
the date of the last snapshot taken; α, γ are the exponents
for the initial and final degree distribution. β is the value of
the exponent describing the asymptotic growth of the total
number of links as a function of network size.

would result in a single-scale network which is not in
accordance with the empirical studies above. The pref-
erential attachment can occur by means of two different
processes: The first one occurs if a newly added node
with k0(t) new links to existing nodes, which are selected
with a probability proportional to their relative degree
k/K. The second process describes the addition of links
between existing nodes, where σ and r are constants de-
scribed below. The transition rate corresponding to the
deletion of links, k → k − 1, is also assumed to be pro-
portional to the degree of the node,

ω[k → k − 1] =
{

σ −
r

2

}

k. (3)

Let us now elucidate the emerging dynamics by split-
ting it into two different limiting cases. The first one
occurs when the growth of the network based on the addi-
tion of nodes with heterogeneous degree k0, does not play
any role. I.e. k0 can be set to zero, for every time step.
In this case the dynamics is only governed by the addi-
tion/deletion of links distributed between existing nodes,
which follows the preferential attachment/deletion rule.
Then, the rate equation (2), in the continuous limit and
for large N , can be easily translated into the following
Fokker-Planck equation:

∂tn(k, t) = r k n(k, t) + ∂2
kk

(

σ2 k2
)

n(k, t) (4)

which is equivalent to the following Langevin dynamics
for the degree ki of a single node i:

k̇i(t) = −r ki(t) + σ ki(t) ξi(t), (5)

1 2 3 4 5
α

1

2

3

4

γ

1 2 3 4 5
α

1

1.5

2

β

FIG. 2. (upper panel) Exponents γ of the power-law degree
distribution of the final network, (lower panel) exponents β

for the growth of the total number of links as a function of
the exponent α of the initial degree distribution. The different
thin lines correspond to simulations of the model described,
for various network sizes (N = 2× 103 –dotted line– to N =
105 –dashed line–). The thick lines indicate the analytical
results of Eqs. (9) and (12). Marks with error bars correspond
to the empirical results for the 18 projects, given in Table I.

This describes the known law of proportional growth
[11, 12], where r is the mean growth (drift) and σ is
the variance of the normalized random force ξi(t). It is
well known [13] that such processes in the long run lead
to a power-law distribution n(k) ∝ k−γ , i.e. to Zipf’s
law for the cumulative degree distribution P (k) ∝ k1−γ ,
with γ equal to 2. In fact, Zipf’s law was empirically con-
firmed for the in-degree distribution of Linux packages [9]
as well as for Java projects [10]. However, the out-degree
distribution, at least for the latter dataset, clearly fol-
lows a log-normal distribution. After all, because this
limit case only considers the growth of the number of
links, but not of the number of nodes, it only provides
a limited understanding of real software dynamics (and
random addition/deletion processes are only one of many
different ways to obtain Zipf’s law).

Therefore, in this Letter, we are more interested in the
second limiting case which ignores the addition/deletion
of links among existing nodes –i.e. σ, r are negligible–,
while emphasizing the network growth based on the ad-
dition of nodes with a broad initial degree distribution,
g(k0). This assumption is fully justified in the case of
broad distributions of initial degrees, as found empiri-
cally. This dynamics is fully described by the following
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set of equations:

ṅ(1, t) = δ1,k0(t) −
k0(t)

K(t)
n(1, t) (6)

ṅ(k, t) = δk,k0(t) +
k0(t)

K(t)

{

(k − 1)n(k − 1, t)− k n(k, t)
}

and the initial condition n(k, 0) = n0 δk,n0−1. I.e. ini-
tially a small number of nodes (e.g. n0 = 2) with a de-
gree of n0 − 1 is assumed, which describes a small, fully
connected network to start with. From this set of equa-
tions, we first derive the dynamics for the total number
of links, K(t). By definition, for a single network real-
ization K̇(t) = k0(t) holds. The ensemble average 〈K(t)〉
over many realizations of the network growth process is
then given by:

〈

K̇(t)
〉

= 〈k0|k0 < t〉+ t · Prob[k0(t) > t]. (7)

The first term represents the expected value of k0(t) re-
stricted to k0(t) < t, which applies if the number drawn
from the distribution g(k0) is lower than the current net-
work size (t = N) and, thus, the newly added node is
able to establish as many links as drawn from the distri-
bution. If this is not the case, i.e. k0(t) > t the node can
only create at most t− 1 links, which is described by the
second term. By recasting the power-law distribution for
g(k0), we get after some calculation:

〈

K̇(t)
〉

=

t
∫

1

dk g(k) k + t

∞
∫

t

dk g(k) =
α− 1

2− α
+

t2−α

2− α
.

(8)
Asymptotically, we find that the total number of links
grows in time or with network size t = N , respectively,
as a power-law, K(t) ∝ tβ , with the exponent

β =

{

3− α if α < 2

1 if α ≥ 2
. (9)

By applying the ensemble average to Eqs. (6), we
are further able to find a mean-field approximation for
the dynamics of the degree distribution n(k, t). Using
〈δk,k0(t)〉 = Prob[k = k0(t)] = (α − 1)/kα and similar
arguments as in Eqs. (8-9), we find that

〈k0(t)〉 = t2−α 1

2− α
+

α− 1

α− 2
. (10)

By analyzing the solution of Eqs. (8)-(10) we find
two different regimes for the ratio 〈k0(t)〉/〈K(t)〉: (i) if
α > 2, then 〈k0(t)〉 ∝ (α − 1)/(α − 2) and 〈K(t)〉 ∝
(α − 1)/(α − 2), (ii) if α < 2, 〈k0(t)〉 ∝ t2−α/(α − 2)
and 〈K(t)〉 ∝ t3−α. Both regimes, however, yield iden-
tical result, i.e. 〈k0(t)〉/〈K(t)〉 = ζ(α)t, with ζ(α) being
a normalization constant. Thus, we can rewrite Eqs. (6)

as,

〈ṅ(1, t)〉 = (α− 1)−
〈n(1, t)〉

ζ(α) t
(11)

〈ṅ(k, t)〉 =
(α− 1)

kα
+

(k − 1)〈n(k − 1, t)〉 − k〈n(k, t)〉

ζ(α) t

These equations reveal a competition between two dif-
ferent processes: the growth of the network caused by
the addition of links with a broad initial degree distri-
bution (first term) and the growth of a node’s degree
caused by a mechanism akin to preferential attachment
(second term). If α is small, the first case dominates
and the expected degree distribution is simply given by
〈ṅ(k, t)〉 = t(α− 1)/kα. On the other hand, if α is large
and the addition of new nodes with a heterogeneous ini-
tial degree distribution can be neglected, we recover the
usual Barabási-Albert model with n(k, t) ∝ k−3. Thus,
we have found two different regimes for the final degree
distribution, which depend of the exponent of the initial
degrees distribution α:

γ =

{

α if α < 3

3 if α ≥ 3
. (12)

To conclude, our analytical approach has provided a firm
relation between the three different exponents α, β, γ,
which can be tested in two different ways: (a) by com-
puter simulations of the full dynamics for various network
sizesN and initial conditions (α), (b) by comparison with
the empirical findings from the 18 OSS projects. The
results are shown in Figure 2. They confirm that the
analytical approximations are indeed valid and in good
agreement both with the computer simulations and the
empirical results. Most interestingly, they reveal that
the growth dynamics of real OSS networks is on the edge
between two regimes: for α < 3, the initial degree distri-
bution and hence the addition of new nodes would dom-
inate the whole growth process, whereas for α > 3 the
preferential attachment of links between existing nodes
would dominate. As the empirical findings verify, none
of these regimes fully cover real software growth. In par-
ticular, the heterogeneous degree distribution of newly
added nodes cannot be neglected.
Eventually, we wish to point to the self-organizing dy-

namics observed in OSS, which turns an initially accel-
erated network growth (β > 1) into a sustainable one
(β → 1) found for mature projects. This prevents a col-
lapse of the software growth due to non-linearly increas-
ing dependencies between classes. Interestingly, β, which
describes the effort (social activity) of developers adding
new classes to the software, is found to be closely related
to the other two exponents α, γ, describing a very dif-
ferent ‘dimension’ of the software evolution, namely soft-
ware engineering. This may shed new light on the under-
lying principles of software design and software project
management.
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