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We disclose that only considering the largest cluster suffices to obtain a first-order percolation
transition. As opposed to previous realizations of explosive percolation our novel models obtain
Gaussian cluster distributions and compact clusters as one would expect at first-order transitions.
We also discover that, surprisingly, the cluster perimeters are fractal at the transition point yielding
a fractal dimension of 1.23± 0.03 intriguingly close to that of watersheds.
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Percolation, the paradigm for random connectivity, has
since Hammersley [1] been one of the most often applied
statistical models [2, 3]. Its phase transition being re-
lated to magnetic models [4] is in all dimensions one of
the most robust second-order transitions known. This ex-
plains the enormous excitement generated by the recent
work by Achlioptas, D’Souza, and Spencer [5] describing
a stochastic rule yielding a first-order percolation transi-
tion on a fully connected graph. Subsequent work applied
the process on other networks [6–11]. Since then various
rules have been devised [12–14] and even a Hamiltonian
formalism was proposed [15], all resulting in a discontinu-
ous transition towards an infinite cluster. In all proposed
models one tries to keep the clusters of similar size and
some authors additionally suppress the internal bonds
of clusters [5, 15]. Evidently, these conditions are suffi-
cient to produce the first-order transition but are they
necessary? Could one obtain the same effect with less
stringent rules? It is the objective of the present Letter
to shed more light on this issue. Another open question
about the Achlioptas process has been the cluster size
distribution at the percolation threshold. Radicchi and
Fortunato [9] as well as Ziff [7] found a power-law distri-
bution with an exponent close to two. Although, different
from the exponent of classical percolation the sole fact of
finding a power law is untypical for first-order transitions.
Also unusual for a first-order transition is that the clus-
ters are fractal, as we found happens for the Achlioptas
rule. It is a purpose of the present Letter to present a
model in which a Gaussian cluster size distribution and
compact clusters can be achieved in a systematic way,
characterized by a fractal perimeter yielding a fractal di-
mension similar to the one of watersheds and random
polymers in strongly disordered media.

Usual bond percolation can be implemented on a
square lattice by randomly occupying bonds between
neighboring sites, reaching its threshold at a certain frac-
tion when opposite borders are first connected through
one large cluster [2, 16, 17]. This percolation threshold,
is characterized by the continuous vanishing of the order
parameter, i.e., a second-order transition. On a fully con-
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FIG. 1: (Color online) Snapshots of the system, obtained on
a square lattice with 10242 sites, at pc, for four different bond
percolation models, namely, classical [2], Achlioptas product
rule [6], largest cluster model (α = 1), and Gaussian model
(α = 1). The largest cluster and Gaussian models are intro-
duced in this Letter.

nected graph, Achlioptas et al. [5], used the best-of-two
product rule where, at each iteration, two new bonds are
selected but only the one which connects the two clus-
ters with the lowest product of their masses is occupied.
This simple strategy is sufficient to change the behav-
ior of the order parameter, being then characterized by a
jump at the transition point, as studied in detail by Fried-
man and Landsberg [12]. Ziff reported that the product
rule also induces a first-order transition on the regular
square lattice [6, 7]. Independently, Radicchi and For-
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tunato [8, 9] and Cho et al. [10], have found the same
transition when the Achlioptas process is considered on
scale-free networks.

More recently, other approaches have been introduced
to obtain explosive percolation. Instead of a best-of-two
rule as explained before, Manna et al. [13], Cho et al.
[11], and Moreira et al. [15] proposed a weighted rule
where bonds are occupied according to a certain probabil-
ity. However, despite being rejection-free schemes, they
are limited to small-system sizes and/or reduced num-
ber of samples. Here, we suggest an acceptance method
where new bonds are selected randomly and occupied
according to a certain weight. The considered scheme al-
lows to consider system sizes 64 times larger than before
[13], specifically, we consider systems of 40962 sites and
averages over 104 samples.

In our simplest rule (“largest cluster model”), as for
classical bond percolation, a link is randomly selected
among the empty ones. If its occupation would not lead
to the formation or growth of the largest cluster, it is al-
ways occupied, otherwise, it is occupied with probability

min

{
1, exp

[
−α

(
s− s̄
s̄

)2
]}

, (1)

where s is the size of the cluster that would be formed by
occupying this bond and s̄ the average cluster size after
occupying the bond. The parameter α controls the al-
lowed size dispersion. Note that, for α ≤ 0, since the size
of the largest cluster is always greater (or equal) than the
average cluster size, all new bonds are occupied reducing
to classical bond percolation, characterized by a continu-
ous transition at the percolation threshold [2]. For α > 0,
the probability of Eq. (1) suppresses the formation of a
cluster significantly larger than the average, inducing a
homogenization of cluster sizes.

For nonequilibrium problems, where a free energy can-
not be defined, transitions can still be classified based on
the behavior of the order parameter [18]. A first-order
transition, is characterized by a jump in the order param-
eter, otherwise, a transition is denoted as continuous. For
percolation, we define as order parameter the fraction of
sites in the largest cluster (P∞) [2]. Here we also consider
two other quantities: the second moment of the cluster
size distribution (χ), defined as

χ =
∑

i

s2i , (2)

where the sum runs over all clusters i, and the standard
deviation (χ∞) of the largest cluster size (smax) over dif-
ferent samples,

χ∞ =
√
〈s2max〉 − 〈smax〉2 . (3)

10
2

10
4

10
6

10
8

10
1

10
2

10
3

10
4

L

χ
2.0

10
-2

10
-1

10
1

10
2

10
3

10
4

L

χ∞/N

 0.98

 0.99

 1

 0  2500  5000

L

P∞

FIG. 2: (Color online) Size dependence, for the largest cluster
model, of the susceptibility (χ), fraction of sites in the largest
cluster (P∞), and its standard deviation per site (χ∞/N) at
the percolation threshold, on a square lattice of linear size
(L) ranging from 32 to 4096. All bonds are occupied with
the same probability except the ones that lead to the for-
mation/growth of the largest cluster, to which an occupation
probability q is assigned, Eq. (1), with α = 1. Results have
been averaged over 104 samples.

To estimate the percolation threshold we consider the av-
erage value of p (fraction of occupied bonds) at which a
connected path linking opposite boundaries of the sys-
tem is obtained. Considering different system sizes, for
α = 1, we obtain for the percolation threshold pc =
0.632 ± 0.002. To identify the order of the transition,
in the largest cluster model, Fig. 2 presents a finite-size
study for P∞, χ, and χ∞/N , averaged over 104 samples
of square lattices with linear sizes ranging from 32 to
4096. As we can see in the top inset of Fig. 2, above a
certain system size, the order parameter, at the percola-
tion threshold, does not show any finite-size dependence,
staying at a constant value in the thermodynamic limit
(L → ∞). The second moment of the cluster size dis-
tribution (χ) scales with Ld(d = 2) which is a sign of a
first-order transition [19, 20]. The standard deviation of
the largest cluster (smax) per lattice site, which was also
considered in Refs. [6] and [7], converges, for larger sys-
tem sizes, to a constant value, corroborating the presence
of a discontinuous transition.

Despite leading to a first-order transition, the Achliop-
tas process generates a power-law distribution of the clus-
ter size [7, 9] (see Fig. 1). To explicitly control the clus-
ter size distribution we also implemented the following
model. A new bond is chosen from the list of empty ones
and occupied with probability

min

{
1, exp

[
−α

(
s− s̄
s̄

)2
]}

, (4)

where s is the size of the cluster obtained when the se-
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FIG. 3: (Color online) Size dependence, for the Gaussian
model, with α = 1, of the susceptibility (χ), fraction of sites
in the largest cluster (P∞), and its standard deviation per site
(χ∞/N) at the percolation threshold, on a square lattice of
linear size (L) ranging from 32 to 4096. All bonds are occu-
pied with a probability given by Eq. (4). Results have been
averaged over 104 samples.

lected bond is occupied. For internal connections we con-
sider s as twice the cluster size. Since equation (4) is a
Gaussian with average size s̄ and size dispersion s̄/

√
2α,

we denote this model as Gaussian model. Note that here
the occupation probability is assigned to all new bonds
even when they are not related to the largest cluster.
This not only guarantees the control over clusters greater
than the average, as in the previous model, but also over
the smaller ones. For α = 0, all bonds have the same
probability and, therefore, the model reduces to classical
bond percolation. For negative α, the growth of larger
clusters is favored in two different ways: they differ more
from the average value and have more empty bonds than
the smaller ones. Yet, for all negative α, the model recov-
ers the classical universality class of percolation [2, 18].

As example, for positive α, we present, in Fig. 3, a
size dependence study of the order parameter, second
moment of the cluster size distribution, and standard de-
viation per site of the largest cluster, for the Gaussian
model, with α = 1, at the percolation threshold, on a
regular square lattice with linear size (L) ranging from
32 to 4096. Results were averaged over 104 samples. We
extrapolate, for the infinite system, a percolation thresh-
old pc = 0.56244 ± 0.00006. As for the largest cluster
model, the density of the infinite cluster does not change
significantly with the system size, the second moment of
the cluster size distribution scales with Ld(d = 2), and
the standard deviation per site of the largest cluster con-
verges to a non-zero constant. As before these results
imply a first-order transition.

Figure 1 shows snapshots for four different models of
bond percolation: classical, product rule (Achlioptas pro-
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FIG. 4: (Color online) Number of sticks necessary to follow
the perimeter of the infinite cluster as a function of the stick
length, to obtain the fractal dimension of the perimeter with
the yardstick method. For both the largest cluster and Gaus-
sian models, with α = 1. For the Gaussian model data were
vertically shifted by a factor of 0.1. Results have been aver-
aged over 104 samples of lattices with linear size 2048.

cess), largest cluster model, and Gaussian model. All
figures have been obtained at their respective percola-
tion thresholds (pc). For classical percolation and for
the Achlioptas process, clusters of very different sizes are
obtained. In fact, the cluster size distribution is charac-
terized by a power law [7, 9]. However, for the largest
cluster and the Gaussian model, a characteristic cluster
size is observed. Both models lead to a localized cluster
size distribution. The smaller size dispersion and num-
ber of clusters are observed for the largest cluster model.
According to Eq. (1), increasing the value of α decreases
the size dispersion.

Clusters obtained with classical bond percolation and
Achlioptas rule are fractal with holes inside. As clearly
seen in the snapshots of Fig. 1, clusters obtained with our
models are compact but astonishingly we find that the
surface is fractal. For the Gaussian model, we calculate
for the cluster perimeter a fractal dimension of 1.23±0.03,
obtained with the yardstick method [21] (Fig. 4). For the
largest cluster model, it is also characterized by a fractal
perimeter with a fractal dimension of 1.26±0.04 (Fig. 4).
Compact clusters with fractal surface were also reported
for irreversible aggregation growth in the limit of high
concentration by Kolb et al. [22].

In Fig. 5 we see the cluster size distribution, P (s, α),
for different system sizes, obtained with the Gaussian
model. Measurements have been performed at the per-
colation threshold on a square lattice with 10242, 20482,
and 40962 sites, and averaged over 104 samples. Three
characteristic peaks are observed. In fact, the third peak
(around 0.7) is only due to the largest cluster and only
appears due to the small number of clusters at the per-
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FIG. 5: (Color online) Cluster size distribution for the Gaus-
sian model for different system sizes (α = 1), at the percola-
tion threshold, on a square lattice, averaged over 104 samples.
Black-dashed lines are two Gaussian distributions fitting the
results from simulation. The black-solid line is the sum of
both curves.

colation threshold, being finite-size effect. This peak is
not observed when we compute the same distribution ne-
glecting the contribution of the largest cluster. The pres-
ence of two main peaks is characteristic for a first-order
transition showing, for a finite system, at the percola-
tion threshold, coexistence of the percolative and non-
percolative states [23].

In conclusion, the present work reveals that, to obtain
explosive percolation on a regular lattice it is sufficient
to control the formation and growth of the largest clus-
ter, instead of applying a rule to the overall set of empty
bonds. We propose the largest cluster model which sys-
tematically suppresses the formation of a largest clus-
ter. We introduce as well, the Gaussian model, where
a weight is assigned to each selected bond, such that
a Gaussian distribution of cluster sizes is obtained, re-
vealing the coexistence of two states at the percolation
threshold. Our clusters are compact instead of fractal as
observed for the classical and product rules. However,
curiously, for both models the perimeter of the largest
cluster is fractal. Our models, yielding clear first-order
transitions, show that explosive percolation can be ob-
tained under much less stringent conditions that previ-
ously thought shedding light on the minimum ingredients
to trigger explosive percolation. In fact, we believe that
our restrictions on the formation of the largest cluster is
the required necessary condition and hope that this state-
ment can one day be formally proven. The novel fractal
dimension that we discovered in the cluster perimeters
is intriguingly close to the one found for watersheds [24]

and random polymers in strongly disordered media [25],
and we conjecture that it is identical.
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