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“Disorder-induced volatility” (DIV) describes the enhanced fluctuations of collective behaviors
exhibited by bistable systems in the presence of a rapidly fluctuating external signal. At the DIV
resonance, a defining characteristics is that the response of the system becomes uncorrelated with
the external driving noise, making DIV resonance different from stochastic resonance. Numerical
simulations and an analytical theory of a stochastic dynamical version of the Ising model on regular
and random networks demonstrate the ubiquity and robustness of DIV, which is proposed as a
possible cause of excess volatility in financial markets, of enhanced effective temperatures in a
variety of out-of-equilibrium systems and of strong selective responses of immune systems of complex
biological organisms.

PACS numbers: 05.40.-a,89.65.-s

Noise may have surprising effects on the organization of
complex systems made of interacting elements, as shown
by stochastic resonance (SR) [1], coherence resonance [2],
noise-induced phase transitions [3], noise-induced trans-
port [4] and its game theoretical version, the Parrondo’s

Paradox [5]. SR occurs in a system when a small applied
(sub-threshold) periodic signal is amplified by noise of in-
termediate amplitudes. For instance in bistable systems,
the optimal level of noise is such that the Kramers time
equals half of the period of the external forcing. More
generally, SR refers to the situation where noise and non-
linearity combine to increase the order and strength in
the system response. Among others, SR is thought to be
relevant to optical and magnetic systems, to the Earth
climate and the dynamics of ice ages, to neurobiology,
and to medical instrumentations.

Research on SR has focused on slow periodic signals
(of the order of the Kramers time), or on excitable sys-
tems [6], where the external (periodic or aperiodic) forc-
ing has a time-scale comparable to that of the refractory
time. Also, SR occurs in extended systems composed
of many constituents, a paradigmatic example being the
Ising model [7, 8]. The concept of SR was later extended,
and it was shown that the exact source of disorder is ir-
relevant, as either noise, quenched disorder [9] or network
heterogeneity [10] can cause a response enhancement.

Here, we report the existence of a new regime of strong
amplification of the response of extended systems, which
is characterized by two distinctly new features: (i) the
system is driven by a rapidly varying noise (ii) the re-
sponse of the system becomes uncorrelated from the forc-
ing noise at the resonance. We document this “disorder-
induced volatility” (DIV) by numerical and theoretical
calculations on a stochastic dynamical version of the Ising
model on regular and random networks in the presence
of rapidly varying driving noise. DIV may help to under-
stand the often surprising organization and paradoxes ob-

served in complex systems in the presence of noise. A first
example refers to the empirical observations of strong am-
plifications of thermal noise into effective renormalized
temperatures by quenched heterogeneities in materials
[11] in organized flows in liquids [12] and in granular me-
dia near jamming [13]. We suggest that DIV resonance
also provides a conceptual framework to model the im-
mune systems of complex biological organisms, viewed
as multistable complexes, which switch their mode of
operation under the influence of noisy perturbations by
pathogens and other stress factors [14–16]. Another im-
portant application is the phenomenon of “excess volatil-
ity” [17], which constitutes the most blatant violation
of the efficient market hypothesis of financial economics
[18]. In a nutshell, excess volatility refers to the ubiq-
uitous observations that financial prices fluctuate with
much larger amplitudes than they should if they obeyed
the fundamental valuation formula linking them to the
firm dividends and discount factors [19]. The model de-
scribed below can be applied to represent a market of
interacting investors, which are subjected to a flow of
news. In the sequel, we present the model and its result,
in the language of three applications: effective enhanced
temperature in material systems going to rupture, the
immune system of complex biological organisms and fi-
nancial markets.

Model. Consider a system made of N interacting
units that can be in one of two states: s = ±1. The
units are updated sequentially, randomly chosen at each
unit micro-time δ = 1/N , i.e. N updates are equivalent
to one macro-unit time. The update from t to t + δ of
the state si of a given unit i is given by

si(t+ δ) = sign



F (t) + ξi(t) +K(t)

N
∑

j=1

ωij sj(t)



 (1)
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If F (t) = 0 and ξi(t) is distributed according to a Logistic
distribution, this dynamical rule (1) is equivalent to the
Ising model with Glauber dynamics.
Three contributions compete in deciding the value

si(t+δ): (i) a common external forcing term F (t) (force,
pathogens, news); (ii) a unit-specific term ξi(t), which
can be annealed or quenched (thermal fluctuations or
threshold, intrinsic susceptibility of a unit immune sys-
tem compartment, investor idiosyncratic opinion or in-
formation); (iii) an interaction term between units con-
trolled by the amplitude K(t) (elastic coupling, feedback
loops between immune system elements, social impact).
The external force F (t) is assumed to change over a

correlation time 1/ν. For simplicity, we take F (t) equal
to constants in plateaux of durations ∼ 1/ν. The plateau
values fn are i.i.d. and drawn from a probability distri-
bution function (pdf) fn ∼ D(0, A), with zero mean and
variance A2. The standard deviation A quantifies the
strength of the external forcing. The change of plateaux
can be periodic (with period 1/ν), Poisson (with inten-
sity ν) or intermediate between these two limiting cases.
The results presented here remain unchanged. We thus
show the simplest case of a periodic update of F (t) at
every ⌊1/ν⌋ micro-time steps (where ⌊1/ν⌋ denotes the
integer part of 1/ν):

F (t) =

∞
∑

n=0

δ⌊t ν⌋,n fn . (2)

The covariance of this process (2) is given by

〈〈F (t+ θ)F (t)〉〉t =

{

1− ν|θ| for |θ| < 1/ν

0 otherwise
, (3)

where 〈〉t and 〈〉 denote respectively the temporal and
ensemble averages.
In the annealed version, each idiosyncratic term ξi(t)

to each unit i in (1) follows an independent stochastic
process, whose values are drawn from the cumulative dis-
tribution function G(0, Q), with zero mean (〈ξi(t)〉 = 0)
and variance Q2, that we will call disorder. Thus,
〈ξi(t) ξj(t

′)〉 = Q2δ(t− t′)δij .
In the interaction term in Eq. (1), the matrix of weights

ωij defines the network between units, both in topology
and relative strength. We assume that the feedbacks
between units are governed by connections that evolve
much slower than the dynamics of the whole system. This
amounts to considering a static network with fixed nor-
malized weights

∑

j ωij = 1. The coupling strength of all
other units on a given one is quantified by K(t), which
may depend on time to reflect global softening-hardening
in rupture processes, evolving physiological states of im-
mune systems and changes of social cohesiveness and/or
propensity to imitate in financial markets.
The macroscopic dynamics of the system is cap-

tured by the instantaneous “magnetization” r(t) =

0 1000 2000
t
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FIG. 1: (color online) Time evolution of the “magnetization”
r(t) for different disorderQ obtained with the same realization
of the driving force F (t) and ξi(t). N = 104, A = 0.04,
k = 1.0, Q = 2.0, 1.0, 0.8 (smaller to larger amplitude of r(t)’s
fluctuations) and Q = 0.7 (bottom curve fluctuating around
r(t) = −0.6).

N−1
∑

i si(t). We study the normalized standard devi-

ation σr/A = 〈(r(t)− 〈r(t)〉t)
2
〉
1/2
t /A of the fluctuations

of r(t) in the time domain, referred to as the “volatil-
ity” of the response of the system in units of the external
driving force of amplitude A. The cross-correlation be-
tween the input signal and the magnetization, defined by
ρ = 〈(r(t)− 〈r(t)〉t) f(t)〉t/Aσr, provides an additional
insight on the level of synchronization between the ex-
ternal influence and the overall system dynamics.

We first consider complete homogeneous networks
(ωij = 1/(N−1)) and constant coupling strength K(t) =
k. The results reported below are not significantly differ-
ent for random graphs with large average connectivity or
if the connections allow for an unbiased statistical sam-
pling within the population. Fig. 1 illustrates the typical
dynamic behaviors of r(t) for different values of Q for a
single realization of the driving force F (t). A phase tran-
sition separates two regimes as a function of Q/k: for
Q > Qc ≃ 0.80 (for k = 1, and for a Gaussian distri-
bution G), r(t) fluctuates around 0 while, for Q < Qc,
it fluctuates around one of the two stable fixed points
±r0(Q). The dependence of the time average level r0(Q)
of r(t) as a function of Q is shown in Fig. 2 and corre-
sponds to the standard supercritical pitchfork bifurcation
expected for an Ising-like system. Surprisingly, for an in-
termediate value of disorder (Q = 0.8), the fluctuations
around the mean are much larger than for small or large
disorder intensities.

Figure 2 reports, for three system sizes and three driv-
ing force amplitudes, the dependence of the two variables
σr/A and ρ as a function disorder level Q obtained by
numerical simulations of expression (1), which are com-
pared with the analytical theory presented below. For
large Q, the volatility is controled by the units with
ξi < F , yielding σr ∼ Q−1, and leading to a large cross-
correlation ρ. For Q ≈ Qc, the volatility amplifies several



3

0

5

10
σ r 

/
A

0.6 0.8 1
Q

0

0.2

0.4

ρ

0

0.2

0.4

0.6

0.8

1
r

0
(Q)

η(Q)

φ(Q)

FIG. 2: Upper panel: (left scale) Scaled volatility σr/A as a
function of Q; (right scale) the thick continuous (resp. dash-
dotted and dashed) line is r0(Q) (resp. signal pre-factor φ(Q)
and η(Q) defined in (5)). Lower panel: cross-correlation ρ
between r(t) and F (t) as a function of Q. Continuous lines:
theoretical predictions (see text); symbols: numerical simu-
lations of the model with k = 1. Open symbols: moderate
driving force amplitude A = 0.04 with different system sizes
N = 900 (squares), 104 (triangles) and 106 (circles). Filled
circles: A = 5 × 10−3 (gray) and A = 0.16 (stripped) with
N = 106.

times that of the driving signal F (t). Concomitantly, ρ
tends to vanish as the volatility of the system is gen-
erated by an internal collective behavior. For small A
and Q significantly smaller than Qc, the volatility σr/A
becomes smaller than A, reflecting weak fluctuations of
r(t) associated with an almost saturated “ferromagnetic”
state under weak forcing. We observe that larger external
forcing values A recover an amplification of the volatility
(σr/A > 1), which is associated with the jumps between
+r0 and −r0 driven by the external force. Increasing A
even further, such that the signal drives the system dy-
namics, leads to a slight monotonic decrease in volatility
and an increase of cross-correlation. This large regime is
similar SR, where supra-threshold signals are not ampli-
fied by the addition of noise.

The numerical results shown in Fig. 2 can be ratio-
nalized by the following mean-field theory. Averaging
Eq. (1) over the population of units and taking the con-
tinuous limit, the dynamics reads

d

dt
r(t) = −r(t) + 1− 2G (−k r(t)− F (t)) . (4)

For F = 0 (no external driving), the stationary solution
of (4) gives the dependence of the time averaged magneti-
zation r0(Q) given by the solution of the implicit equation
r0(Q) = 1− 2G(−k r0(Q)). This solution, corresponding
to a supercritical pitchfork bifurcation, is shown in Fig. 2.
The critical parameter is found equal to Qc = k

√

2/π,
for ξi(t) drawn from a Gaussian distribution.

For weak external forcing A ≪ 1, a perturbation ex-

pansion r(t) = r0 + r1(t) to linear order yields

ṙ1(t) = φ(Q)F (t)− η(Q) r1(t) , (5)

where φ(Q) ≡ 2g(−kr0) and η(Q) ≡ 1 − 2kg(−kr0)
are represented in Fig. 2 and g = dG/dξ. If F (t) was
constant, r1(t) would tend at long times to Fφ(Q)/η(Q).
Since φ(Q) remains finite when Q passes through Qc, it is
the vanishing of η(Q) at Q = Qc and its smallness in the
vicinity of Qc that is the origin of the amplified volatility
shown in Fig. 2. For the time-dependent F (t) described
by expression (2), the exact solution of (5) reads r1(t) =
φ
η

[

(eη/ν − 1) e−ηt
∑

+f⌊t ν⌋+1

(

1− e−η(t−⌊t ν⌋/ν)
)]

,

where
∑

=
∑⌊t ν⌋−1

i=0 fi e
iη/ν . The time-dependent

perturbation r1(t) is thus the sum of terms linear in the
stochastic variables fi’s. Using the fact that the plateau
values fi are i.i.d. and fi ∼ D(0, A), the variance of r1
obtained by time averaging and ensemble averaging over
the random variables fi is given by

σ2
r = 〈〈r1(t)

2〉〉t = A2 φ2

η2
e−η/ν + η/ν − 1

η/ν
. (6)

Using (3), the cross-correlation is also easily obtained as

ρ ≡
〈r(t)F (t)〉

σr A
=

√

e−η/ν + η/ν − 1

η/ν
. (7)

Expressions (6) and (7), valid for small values of A, are in
excellent agreement with the numerical results. As shown
in Fig. 2, we observe only quantitative deviations between
theory and numerical results for large values of A: the
peak in volatility and the vanishing of the (r(t), F (t))
cross-correlation are still present but with a shift towards
smaller values of Q as A increases.
To show that the volatility amplification and de-

correlation of response and driving force are robust with
respect to the structure of the network, Fig. 3 shows
σr/A and ρ as a function of Q for different networks.
We consider a two-dimensional regular grid with Moore
neighborhood and random small-world connections with
varying concentration pw. Changing pw from 0 to 1 inter-
polates between the regular 2D lattice and the completely
random network. For each pw, the peak in volatility is
still concomitant with the vanishing of ρ at some critical
value Qc(pw). This function Qc(pw) is increasing in pw,
as larger global interconnection enhances the cooperative
organization, and larger disorder is needed to destroy the
ferromagnetic state.
Excess volatility in financial markets. In our model,

the units are now the investors and the two states s = ±1
correspond to a positive or negative view on the future
price move of the stock market. We assume for simplic-
ity that traders invest in a single asset. A given investor
forms a view on the asset according to expression (1),
which combines the effect of external news, the trader’s
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FIG. 3: (color online) As in Fig. 2, volatility σr/A and
cross-correlation ρ as a function of the disorder Q for dif-
ferent small-world random connection concentrations pw of a
two-dimensional regular grid with Moore neighborhood. The
other system parameters are N = 104, k = 1.0 and A = 0.04.

own judgment and the influence of his colleagues. At
each micro-time step, a given trader i places an order to
buy or sell a fixed asset quantity according to the sign
si(t) of his opinion. This order is fulfilled by a mar-
ket maker, who acts as the counter party. Aggregat-
ing all the orders occurring at the micro-scale, the price
dynamics at the macro-time level is assumed to follow
log[p(t+ 1)] = log[p(t)] + r(t+ 1)/λ, where λ represents
the liquidity depth of the market and is assumed con-
stant. This equation expresses a linear market impact of
the orders. The results below do not change qualitatively
for more general non-linear impact functions [20].

To apply our model to the financial markets, we use
k instead of Q as the control parameter. Rather than
assuming a fixed coupling strength for investors, we pro-
pose that the impact of colleagues’ opinions on a given
trader may be both heterogeneous in the population and
slowly varying with time. The later effect reflects vary-
ing perception of uncertainty, which is known to impact
the propensity of humans to herd [21]. There are many
varying sources of uncertainty that impact financial mar-
kets, including the economic and geopolitical climate and
past stock market performance. In the spirit of Ref. [22],
all these factors are embodied into the notion that K(t)
undergoes a slow random walk with i.i.d. increments
K(t + δt) − K(t) ∼ N(0, σk), which is confined in the
interval [k − ∆k; k + ∆k]. This later constraint ensures
that social imitation remains bounded. We could have
used an Ornstein-Uhlenbeck process or any other such
confining dynamics, without changing the crucial results
presented below.

By the mechanism of sweeping of the coupling strength
K(t) close to the critical point kc (for fixed Q) [23], we
expect and find transient burst of volatility amplifying
a featureless random driving force F (t). Fig. 4 shows a
typical simulation, where the normalized return r(t) ex-
hibits transient bursts associated with excursion of K(t)

FIG. 4: (color online) Upper panel: Sample dynamics r(t)
(black bursty line) when K(t) undergoes a confined random
walk (green) in [k−∆k; k+∆k] with ∆k = 0.5 and step size
σk = ∆k/

√
5000. Red curve: featureless driving force F (t).

Lower-right panel: quickly vanishing (resp. long memory of)
auto-correlation of r(t) (thin lines) (resp. |r(t)| (thick line)).
Lower-left panel: DIV resonance in the presence of the time
varying K(t), with ∆k = 0.1 (circles), 0.2 (squares), 0.5 (di-
amonds). The remaining parameters are N = 104, A = 0.04,
Q = 1.

in the neighborhood of kc. The lower-left panel of Fig 4
shows the robustness of the DIV phenomenon as a func-
tion of the average coupling k: even with a fluctuating
K(t), a large volatility peak appears for intermediate k.
The lower-right panel shows very short-range correlations
of r(t) but very long-range correlations of the financial
volatility |r(t)| (another equivalent proxy for σr), very
similar to empirical observations [24]. Such long per-
sistence of the volatility can be traced back to the per-
sistence of the confined random walk of K(t): when the
social interactions are strong (weak), they tend to remain
strong (weak).
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