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Abstract

We examine the emergent field of economic networks and explore its ability to shed
light on the global and volatile economy where credit, ownership, innovation, investment,
and virtually every other economic activity is carried at a scale and scope that respects no
geographical, organizational, or political boundaries. In this context, the study of economic
networks and their dynamics must reflect the vast complexity of the interaction patterns and
integrate it with a realistic account of the incentives and information that govern agents’
behavior. The interplay of both has been shown to produce metastabilities, system crashes,
and emergent structures in ways that are yet only poorly understood. Meeting this exciting
scientific challenge requires a combination of time series analysis, complexity theory, and
simulation with the analytical tools that have been developed by game theory, as well as
graph and matrix theories. We argue that this will help achieving a better integration of
theory and data models and provide a better understanding of the potentials and risks of
modern economic systems.

1 Motivation

The current economic crisis illustrates a critical need for new and fundamental understandings
of the structure and dynamics of economic networks. Economic systems are increasingly built on
interdependencies of both behavior and information, leading to a global economy where credit and
investment, trade and input-output flows, research and innovation all occur at a truly world scale
that gives rise to a hugely complex system that is difficult to predict and control. Moreover, some
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inter-dependencies become obvious only during and after the crisis, developing as self-fulfilling
phenomena, without precursory signatures.

Specifically, for the current financial crisis, the problems that have initially emerged from thor-
ough analyses include the (lack of) separation of banking and investment, low financial trans-
parency in leveraging, or the breakdown of the necessary trust. In effect, these inherently include
factors involving the structure and dynamics of economic networks of all sorts: financial (e.g.
reflecting credit or ownership) and otherwise (i.e. "real" ones pertaining to production, trade,
and innovation).Their interplay has been argued to lead to an accumulation of excesses in the
form of bubbles, whose interaction and mutual reinforcement has led to enormous imbalances
explaining the severity of the crisis [62].

The complexity of the modern global economy is exacerbated by the speed and scope at which
information flows electronically across national and globally networked markets, with variable
intensity of ties and of scale. This makes attempts to understand or control its emergent and
volatile networks very difficult indeed. In particular, the danger of cascading failures or the spread
of opportunistic behavior through the economic networks is greater today than ever. Self-feeding
effects, reinforcing each other through a co-evolving network, can lead to large-scale and abrupt
consequences that may be hard too anticipate and tackle.

In sum, the current crisis illustrates the importance and large potential benefits of applying
a network approach to the study of the economic system. The frontiers of research examining
economic networks have been advancing along two strands: one emanating from economics and
sociology, the other from research on complex systems in physics and computer science [55]. In
both, nodes represent the different individual actors, or agents, such as firms, banks, or even
countries, and links between the nodes describe their mutual interactions, be it trade, ownership,
or credit/debt relationships. The addition or deletion of either agents or the links between them,
and changes in the direction of links, are the fundamentals of network formation.

In a nutshell, our proposed research program is to blend the former two strands of research,
adopting from each its strongest points. This entails extending and integrating the traditional
paradigm in economic theory (with its emphasis on agents’ information and incentives notwith-
standing its abstraction from complexity) with the insights and tools developed by the booming
field of complex systems (which stresses complexity but ignores those key considerations that
underlie agents’ behavior). Building on the latter one, statistical physics already made strong
attempts to ’scale the ivory towers of finance’ [19]. However, the emergent field of econophysics
[20, 40] was met by economists with quite mixed feelings [15, 23]. Thus, it needs a more sub-
stantial approach to merge economic theory with complex systems research. Given the goals of
the present discussion we briefly review some the research in economic networks that is being
undertaken along these lines, but also briefly note past impediments to needed inquiry.
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2 The complex systems perspective

In the complex systems approach, stochastic rules for link formation are tested to find the
simplest assumptions that can reproduce statistical regularities in the observed empirical network
structure. These rules take into account the characteristic features of the agents [1, 45], such as
their connectivity degree (number of links attached to that agent/node) or centrality (measuring
the importance of a node either through the number of shortest or random paths that pass
through it or the recursive weighting of the importance of its neighbors), and do not focus on
understanding the endogenous behavior of individual agents as strictly economically motivated
agents. These models, therefore, supplement classical economic models to identify the systemic
implications of certain network-formation rules on the emerging link structure and of that link
structure as a constraint on the options for agents.

At this point in the complex network literature, predictions are often at the aggregate level.
Structural properties of networks generated with different stochastic algorithms (e.g., random,
scale-free or small world networks) have been compared with real complex networks, including
those in biology (e.g., metabolic and genetic networks), to infrastructure (road networks and
power grids), communication (internet and mobile phone) and social interaction (e.g., collabo-
rations) [5, 8]. The comparison of network structures from these different disciplines suggests
that various universality classes can be identified, based e.g. on the distribution of node degrees.
For example, in financial contexts, the degree distribution is seen to scale as a power law for
the connections of banks in an interbank network [9, 29], where the fat tail indicates that there
exist few banks interacting with many others. In this example, banks with similar investment
behavior form clusters in the network. Similar regularities also can be traced for the international
trade network (ITN) [17, 18, 24, 49, 56, 57], albeit with some important differences. For instance,
the total value of country trade is not power-law distributed, but scales as a log-normal density
[18]. This hints to an underlying null model of uncorrelated trade flows, which in turn poses
interesting questions about the purported complexity of the ITN.

Other examples are provided by the regional investment or ownership networks [7, 26], where
European firm-to-firm foreign direct investment (FDI) stock is found to be power-law distributed
with the number of employees in the investing firm and in the firm invested in, and with the
number of incoming and outgoing investments of both firms. This allows single time-point “pre-
dictions” about the investments that regions will receive or make, based on the activity and
connectivity of their firms. Thus, firm activity and attractiveness are consonant. Temporal dy-
namics would need to be studied to see how these variables alter the probability of future activity
and attraction in the short and the long run. Data models for networks and the attributes of
their nodes and links need to be specified as to key elements and relations extrapolated from
appropriate raw data to create a correspondence with theoretical variables so that theories can
be tested.
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Regularities observed on the aggregate level, however, like a degree distribution that follows
a power law, do not imply a specific underlying dynamics of the agents such as preferential
attachment [1] to better-connected banks or countries, for example. In other words, this is another
example of the unconditional-object problem in empirical validation [10]. Preferential attachment
(or proportionate growth) is just one of many generative processes for a power-law distribution
[60]. Furthermore, strictly speaking, proportional growth is not sufficient to lead to power laws.
Birth of novel network groups and their possible subsequent demise (death) are two essential
ingredients that provide a wealth of regimes and in particular of different power laws [53]. The
universality scaling properties of certain networks, such as power laws, thus provide only a first-
order classification that emphasizes the role of fluctuations and randomness. We predict that the
next generation of research will be challenged to measure causality in time series and deviations
from universality and allow us to identify the idiosyncratic mechanisms associated with individual
agent dynamics and their decision-making processes. This combination should eventually allow us
to predict and propose economic policies that favor desired network structures such as those that
show themselves more robust to economic shocks. Oversimplification, however, is the casualty
of much prior work on universality classes in the topology of networks. Simply put: there has
been too much spurious inference from forms of distributions to their generating functions, and
without testing through time-series analysis whether these are the actual time-lagged generative
processes.

3 The socio-economic perspective

In contrast, the socio-economic perspective emphasizes understanding how the strategic behavior
of the interacting agents is influenced by – and reciprocally shapes – relatively simple changes
in network architectures. Economic networks are often viewed through the lens of a network
formation game among competing and cooperating agents. In this regard, agents include firms
that collaborate in joint R&D projects [28] or workers who share information on job opportunities
[27], and links are added or deleted as the result of purposeful decisions by individual agents that
seek to maximize their payoffs. Furthermore, agents must rely on some (generally imperfect and
asymmetric) anticipation of what others will do with their (perhaps limited) information about
their environment, they frame the problem within some (necessarily bounded) time horizon, and
learn from past (and possibly biased) experience of similar situations [22]. These considerations
result in a dramatically large number of options (strategies, interactions, etc.) to choose from and
therefore agents must be modelled as deciding among them on the basis of boundedly-rational
rules [11, 50, 64]. Given the lack of empirical evidence for the standard rational agent model,
several alternative approaches are currently explored, some of them claiming that agents are
even “predictably irrational” with hard-wired biases and quirks [3]. So, there may be a significant
component of “noise” or irreproducibility captured by the concept of random utilities [43].
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Analyzing economic networks of these sorts involves the use of game theory, which aims at
determining the equilibrium (i.e. strategically stable) outcomes, and compares them with what
efficiency would require. These problems have been typically addressed within a mathematical
framework that is built on stylized simplifications of the situation. In the end, this leads to
focusing on the simplest topologies (such as a star or a complete network, where everyone interacts
with all others). The task becomes increasingly difficult to solve if the size of the network increases
and the topology is allowed to become more complicated.

Nevertheless, the game-theoretic approach is important to highlight the crucial role of incentives
in the endogenous and induced behavior of socio-economic networks such as those of collabo-
ration, innovation and R&D [4, 31, 34, 35]. In particular, the competition of interests between
individual incentives and aggregate welfare need to be captured, along with their impact on the
overall efficiency in the network performance. This tension is well illustrated in the evidence gath-
ered on R&D collaboration in the innovative human biotech industry [47]. In this disassortative
network – the pairing of highly connected and less connected nodes – firms in a single multi-
connected (cohesive) core also connect with new innovative organizations that are peripheral in
the network. Newcomer tie formation in successive years moves them up the cohesive hierarchy
composed of successively smaller groups of firms with escalating levels of multiconnectivity. In
its first two decades, the network has a metastable 2.5-3.5 year alternation between (a) higher
levels of cohesion as newcomers are integrated by core firms that extend their cohesive ties in
new areas of research and (b) lower levels of cohesion in periods of high recruitment for novelty.
As this study continues while the industry matures, it will be of interest to see if expansion
of the cohesive core outstrips recruitment for novelty with the consequence of undermining the
disassortivity that has metastabilized the industry.

4 Instability and systemic risk

The problem of network formation changes substantially if the underlying environment is sub-
ject to persistent volatility, such as rapid innovation, sociopolitical instability, or environmental
change [41] and agents cannot be posited to be at equilibrium [21]. In this context, it is natural
to assume that agents follow simple satisficing rules (decision-making strategies that attempt to
meet criteria for adequacy, rather than to identify an optimal solution), which they may change
in light of their experiences. In such cases, agents cannot hope to attain optimal configurations
and, moreover, one finds that the performance of the system can be sharply sensitive to small
changes in environmental volatility.

Actually, investigations of complex systems by means of statistical physics [40] have led to the
important insight that big disruptions on the system’s level do not need large perturbations to
occur. Most networks of interest exhibit qualitative changes of regimes in their characteristics and
dynamics upon the smooth variations of some “control” parameters or as a function of the network
topology and/or metric. These qualitative changes are known under a variety of names, such as
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ruptures, phase transitions, bifurcations, catastrophes, tipping points. The ubiquitous tendency
to extrapolate new behavior from past ones is fundamentally mistaken at such phase transitions,
since the new collective organization is in general completely different from the previous one.
Novel models of networks that recognize the role of phase transitions allow us to unify different
regimes under a synthetic framework, sometimes with encouraging potential for prediction of
crises [59]. Recognizing and using this “phase transition-bifurcation-catastrophe-tipping point”
phenomenon is crucial to learn how to diagnose in advance the symptoms of the next great crisis,
as most crises occur under only smooth changes of some control variables, without the need for
an external shock of large magnitude.

It has been explored in different fields – such as ecosystems or markets – how networks that
are bipartite or disassortative are thought [42] or shown [29] to lend robustness, within certain
limits, against disturbance to the system. For example, the alternation of buyers and suppliers
in production chains (avoiding triples and forming hierarchies) also provides structural stability
[44]. These types of structures in economic networks, however, have been shown to be vulnerable
to cascades of failure: as when production chains lack redundancies, certain ranges of flow pa-
rameters lead to insolvencies [6], or problems of pricing created by noncompetitive buyers lead
to instabilities [44]. Bankruptcy cascades may occur when suppliers are not paid by those who
are their suppliers, or by unexpected shocks to revenues. Studies of local interactions and global
network properties go beyond the coupling of global averages [39], as when more firms fail, raising
the interest rate for all, causing still more to fail [6, 38].

A further level of complexity of disassortative instabilities is shown in the study of an overnight
money market [29]. Here, a disassortative network tendency is induced by big lenders having
many small borrowers, or the reverse. The dominant tendency is metastable (recurrent alternation
without a system crash) where reversals depend on whether interbank rates toward end-of-month
short-term clearing days are decreasing (favoring big lenders) or increasing (favoring buyers). In
the loan network this is reflected by changes in the indegree versus outdegree distributions,
where the dominant distribution tends to converge at month’s end to a power law. Thus a macro
feature of the network (lending rates) affects disassortativity and a degree connectivity power law
emerges from the short-term behaviors of the nodes. Metastable dynamical oscillations between
these two disassortative states become unstable, however, when overall density of the network of
loans passes a critical threshold. As shown by simulation [30] this is because disassortativity is
no longer possible and uncertainty becomes greater for both buyers and sellers.

Questions of how standing debts and claims between connected financial institutions affects the
probability of a systemic failure has generated interesting insights [2, 37]. The Lehman Brothers
failure offers a real world example but to provide a predictive theory here requires that we
understand longer run dynamics. Most theoretical and empirical methods are not suited to
predict cascading network effects. The assumption that a denser network of interbank loans or
securitization would allow for a better diversification of the failure risk of individual nodes is
suspect because risk is only transferred to another level. Simulation studies [6, 38] suggest that
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greater aggregate risk may depend on the coupling strength between nodes. Thus, for financial
systems, new measures of systemic risks associated with liquidity and credit exposures will be
needed to increase the robustness of the global financial system to idiosyncratic shocks.

Simulations that account for the addition/removal of only single agents to/from the network at
each instance of time can produce stable dynamic network models of aggregate risk, but the
addition or removal of whole groups of agents to/from the network (e.g., as part of a systemic
failure) may result in larger, less predictable effects and drastically change the stability of the
system. In this context, it is important to note that networks often fragment and sub-networks
coalesce at time scales comparable with those at which epidemics or information spread. We
therefore need a unifying conceptual framework [52] to take into account the interplay between
these different timescales of grouping, fragmentation and transmission processes. This allows to
reproduce different domain-specific empirical infection profiles, featuring multiple resurgences
and abnormal decay times, by simply varying the timescales for group formation and individual
transmission [65]. These results emphasize the need to account for the dynamic evolution of
multi-connected networks.

In addition, there exist global network effects that are not a priori apparent from the measurable
networks of inter-loans, transfer of goods and other exchanges, but result from interdependencies
in decisions of economic agents. Coming back to the example of Lehman Brothers failure, it was
the announcement by the Federal Reserve that the bank will be allowed to go bankrupt, which led
to a global flight-to-safety and a freeze of inter-bank lending as all other banks realized in a state
of shock the potential cascade of defaults that was likely to result. Of course, the bankruptcy
of Lehman Brothers played on the underlying real network of bank inter-dependencies, but it
also suddenly activated an unrealized channel of attack targeted to the whole system. A similar
mechanism explains the surprising cascade of defaults of a small core of Asian countries in
1997. Other countries in the region such as South Korea or Hong-Kong had strong economies
that were only weakly coupled to the epicenter of the crisis, Thailand. Yet, they were severely
affected by the perception of Asian crises. It turned out that this cascade was strongly amplified
by a mechanism that is often overlooked, as analysts tend to focus on quantitative data that are
blind to it. Specifically, it was the misperception (in behavioral economics, this would be called
“framing”) by foreign investors that the economies of geographically related countries were linked
such that a weakness in one of them was tantamount to a collective illness. The economic basis
for this belief was unfounded for South Korea and Hong Kong, yet the geographical framing
in the mind of foreign investors made the supposed links between these countries become real:
pulling out foreign investments from all these countries simultaneously resulted in a collective
and global fight-to-safety; a remarkable example of a self-fulfilling prophecy. This mechanism
is very similar to bank runs, where just a rumor is in principle sufficient to destroy even the
most sound bank if everyone pulls one’s money out at the same time. In sum, it is essential
to stress and study the existence of networks of inter-dependencies that are not realized yet
in the quantitative fluxes or exchanges between nodes. After all, the beliefs of human decision
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makers are likely to be transmuted into acts, which may aggregate into global impacts, this way
suddenly bursting into existence. In consequence, the relevant information on the fragility of a
given network requires considering other associated explicit and implicit networks, which need
to be understood to avoid future systemic crises.

We note that the dynamics on and of networks can also develop into transient, accelerating,
self-reinforcing social bubbles. Examples are collective overenthusiasm as well as unreasonable
investments and efforts spreading in coupled networks, which may derive through excessive public
and/or political expectations of positive outcomes associated with a general reduction of risk
aversion. For example, an analysis of the Apollo program shows [25] that the economic, political
and social factors wove a network of reinforcing feedbacks that led to widespread overenthusiasm
and extraordinary commitment by those involved in the project as well as by politicians and by
the public at large. The development of such social bubbles seems to be a recurrent dynamical
mode appearing when several networks, such as technological, economics, and political, become
intertwined into a self-reinforcing spiral.

5 Beyond simplicity

The various examples given above show potential micro-macro network linkages where local
network behavior interacts with more global network structure, i.e., in the exchange of knowledge,
in trade, or investments. With some simplification, the behavioral or micro-perspective focuses on
the system elements, and the global or macro-perspective focuses on the statistical regularities
observed at the system level. A key challenge is to identify the paths through which the two
largely separate strands of empirical research may converge, given that both graph theory and
complexity theory [63] contain ample evidence on the strong theoretical ties between micro
configurations and macro properties and structures in networks.

In addition to empirical analysis of network structure and dynamical analysis of structural change
in networks or the node and link attributes of networks, the field of experimental economics
[12, 36] provides a source of cross-validation of results to the economic network sciences, and while
this cross-fertilization has already begun [47], we predict that these intersections will provide a
rich source of stimulation for the next generation of researchers.

The unification of empirical studies on the grounds of basic theoretical commonalities may create
a more unified field of economic networks that coalesces in a manner that advances our under-
standing and leads to further insight and predictions. The theorems of micro-macro network
linkages [35, 63] also support closer unification of simulation results and empirical studies, as ex-
emplified here. This advancements should also shed a new light on the problem of heterogeneity.

All economic networks are heterogeneous with respect to both their agents and interaction
strength, which can vary in time. Agents may have different preferences, access to resources,
failure thresholds, and will not respond to the same influence in the same (predictable) way.
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Although such variation might be thought to destabilize a system, heterogeneity can also be
a source of stability [22], as illustrated e.g. in decision-making diversity by prediction markets.
Moreover, agent features are not constant in time, as they are co-evolving in concert with the
network structure and are able to adapt to their environment [32].

Further, network interactions may be multilevel, elements of a given type may be multiscale, and
the types of elements may be multiple, i.e., multi-mode, as with 2-mode memberships of agents
in organizations. Most models, both in the field of strategic interaction and complex network
approaches, ignore these variations.

Moreover, in general, ’links’ are not just binary (they either exist or not), but are weighted
according to the economic interaction under consideration and represent traded volumes, invested
capital, etc. and their weight can change over time. Distinguishing networks at different levels of
abstraction, e.g., considering directed or undirected, weighted or unweighted links, may illuminate
the evolution of their topological properties.

Indeed, findings from study of the ITN [18] emphasize how the topological properties of the
network viewed as a binary graph, where only the presence/absence of a trade relation is ac-
counted for, are very different from their weighted counterparts. For example, in the binary ITN,
countries with many trade partners typically trade with partners that hold few trade relations,
leading to a strongly disassortative network. Conversely, when links are weighted by the value
of trade actually flowing through them in a given time interval, say one year, one finds that
countries holding very strong trade relationships typically trade with many countries, but very
intensively with only a few very-connected of them.

Weighting of ties also gives a better sense of how strength of integration in the network dif-
ferentiates and reflects the patterns of economic growth in different regions. Comparison of
high-performing Asian economies (HPAE) with Latin American (LATAM) economies shows very
similar trade patterns over the eight 5-year periods from 1970 to 2005 when measured by amount
of trade or trade relative to GDP, that is, by the aggregate trade attributes of the countries. A
country’s global centrality in the ITN could be measured by accounting for the likelihood that a
given dollar passing from country X to Y through links in the network with a probability propor-
tional to their weight (i.e. the value of bilateral trade flowing through the link in a year) passes
through country Z, increasing its betweenness score [46]. As described in Reyes et al. [49], Schiavo
et al. [54], the Asian Tigers have been climbing the ranking of betweenness centrality, whereas
Latin-American ones remained persistently out of the club of the most central world countries.
These results hold when link weights for trade are scaled by importer and/or exporter GDP, i.e.
when one washes away country-size supply or demand effects. This removes the correlation of
link weights with GDP, but the differentiation between Asian and Latin-American countries still
holds. Thus, network-based approaches provide a means by which to monitor complex economics
systems, and may provide better control in managing and governing these systems.
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6 Novel ways of data analysis

Knowledge of how systems of connections work will rely on our ability to obtain more and
better data, fostering the transition of the field of economics networks from a qualitative to a
quantitative and evidence-based science. As computational power increases, it allows large scale
network data on different levels of the economy (e.g., firms, industries, countries) to be gathered
as well as testing of models reflecting the generation of large synthetic data sets. In fact, new
means by which business data and internet communication are processed allow for analysis of
data soon to be or already available. This includes detailed panel data (longitudinal or cross-
sectional time series data) on specific firm interactions (employee flows, R&D collaborations,
etc.) or firm-bank credit market interactions.

The ability to process large data streams will require new tools to squeeze out every last drop
of available information reflecting agent interactions and network properties (instead of deriving
them from theoretical approaches). Such databases, therefore, may complement both economic
network experiments and empirical economic network studies [33, 44, 47] by allowing large-scale
observations in real-time [14, 61]. Studying the relaxation dynamics of a social or economic sys-
tem after endogenous and exogenous bursts of activity may reveal internal structures of network
organization. It also poses the challenge of generalizing in such out-of-equilibrium contexts the
fluctuation-susceptibility theorem, which has been so powerful for accessing the inner properties
of complex physical systems at or close to equilibrium [51]. Encouraging results offer a classifi-
cation of the viral nature of information spreading on social networks [13].

Another very promising line of empirical research and data analysis involves comparing insights
obtained by studying the topological properties of different, albeit strongly related, economic
networks. A comparison of the topological properties of the ITN and IFN, using the betweenness
measure [46] shows that goods markets are more densely connected than financial ones, but both
networks display a disassortative, star-shaped structure dominated by a handful of hubs, i.e. very
connected countries that in turn interact with weakly disconnected ones. These hubs form a rich
club in each network, which are characterized by strong links and can be thought of as the core of
each network. This hierarchical structure is more marked in IFN than in the ITN, a feature that
can be explained in terms of the existence of economies of scale and scope in the processing of
information inherent to financial intermediation. Economies at such scale lead to the emergence
of large financial centers that offer a more efficient intermediation and therefore attract many
partners. Moreover, their high-income countries tend to be more integrated and more clustered
[54]. Hence, they act as hubs for poorer economies, so that a hierarchy exists also in terms of
economic development.

Economic networks, as other real-world systems, also evolve in physical space as well as time. The
transmission of information or the adoption of a new states and physical distances for interaction,
such as trade, occurs over natural time scales. This challenges both theoretical concepts and use
of raw data for empirical validation purposes. Borrowing from theoretical and applied work in
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social sciences, one might map real-world constraints of time and space in manners that may be
advantageous to scientific advances.

Time-dependent resolution of the properties of economic networks moves beyond a single-
snapshot approach, and allows the researcher to identify conditions for dynamical or path de-
pendent evolution of networks by combining findings with complementary information, i.e. the
correlations between economic network evolution and other macroeconomic dynamics. Most pre-
vious studies of networks are based on the assumption that networks are more permanent than
they really are. For example, the longitudinal analysis of human biotechnology [47] suggests that
there is a life cycle of research and development networks related to the timing of the exchange
of knowledge. As pointed out above, explaining the existence of many coexisting time scales
associated with the evolution of networks and their relevance in the dynamics occurring on them
is crucial.

Extracting network structure from reported data, in particular for aggregated economic data,
is very difficult. For example, the banking sector does not make all debt/credit relationships
publicly available although theoretical decompositions of aggregated data have been studied
[9]. Even then, analyses may resemble reading tea leaves: only what was previously known or
predicted is revealed. Statistical regularities in economic networks have been identified through
sheer data processing, but challenges the importance of the various measures that are input
in large scale network characterization. Thus, the utility of each measure needs to be critically
examined.

Specifically, information about the role of agents and their function or their influence in an evolv-
ing economic network needs to be extracted [48, 58]. Given that measures such as multiconnective
cohesion are useful indicators [47] related to causal processes, one might handle their computa-
tional complexity through cloud computing and use of supercomputers, or look to matrix-based
methods that focus on cycle density in networks such as subgroup centrality [16].

New methods are needed to identify patterns and new concepts to quantify control (direct and
indirect) need to be developed. Promising steps have already been taken, as demonstrated by
the identification of the backbone of control in ownership networks [26] and roles defined by
structural position [48] or centrality rankings [49] in the ITN.

7 Conclusions

The network approach brings a whole new perspective on the role of coevolving interdependency
in large and complex economic systems. We anticipate that a new wave of research should begin
to merge the description of individual agent’s strategies with their co-evolving networks of in-
teractions, in ways that are enriched by insights discovered from simulation [35]. There is much
more to discover from approaches combining the economic emphasis of individual strategic deci-
sions with a network approach of interactions and adaptive feedbacks. Sometimes, such methods
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may lead to single equilibria, but more often they result in multiple coexisting equilibria, regime
shifts and out-of-equilibrium transients, as well as sudden bifurcations to new regimes which
more accurately characterize real-world systems.

In this way we should obtain new perspectives on the principles that make economic networks
robust and efficient in the face of network complexity. Causal analysis of time series will be needed
if better policies, e.g., both to reduce conflicts between individual interests and the risk of global
failure, can be designed. Network simulations of the dynamics of innovation involving transfer
and growth of knowledge shows that network formation is inefficient if the time to evaluate new
links is too short [34, 35], which matches findings about time-lags for assimilating new knowledge
and innovation in knowledge industries [47].

A rich research agenda in economic networks is being built upon the foundation of self-
organization resulting from the interplay between agents’ decision making and the dynamic
interactions among them. However, we argue that to maximize the information from such studies
three complementary lines of research must be pursued: (a) empirical studies providing insights
into economic networks from massive data analysis, (b) theory encompassing the appropriate
description of economic agents (heterogeneity, strategic interaction) and their interactions (net-
work dynamics, time boundedness, coevolution of agents and interactions), and (c) a systemic
perspective bestowing a new understanding of systemic effects as coming from varying network
interactions.
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