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1. Introduction

Social networks are important in several facets of our lives. For exam-
ple, the decision of an agent of whether or not to buy a new product, attend
a meeting, commit a crime, find a job is often influenced by the choices
of his or her friends and acquaintances. The emerging empirical evidence
on these issues motivates the theoretical study of network effects. For ex-
ample, job offers can be obtained from direct and indirect, acquaintances
through word-of-mouth communication. Also, risk-sharing devices and co-
operation usually rely on family and friendship ties. Spread of diseases, such
as AIDS infection, also strongly depends on the geometry of social contacts.
If the web of connections is dense, we can expect higher infection rates. In
terms of structure, real-life networks are characterized by low diameter (the
so-called “small world” property), high clustering, and “scale-free” degree
distributions.

To fathom these different aspects and to match the observed structure
of real-life networks, one needs to analyze how and why networks form,
the impact of network structure on agents’ outcomes, and the evolution of
networks over time. The aim of the present paper is to propose a theoretical
model that has all these features.

The literature on network formation is basically divided in two strands
that are not communicating very much with each other. In the random
network approach (mainly developed by mathematicians and physicists),1

which is mainly dynamic, the reason why a link formed is pure chance.
Indeed, this literature builds networks either through a purely stochastic
process where links appear at random according to some distribution, or else
through some algorithm for building links. In the other approach (developed
by economists), which is mainly static, the reason for the formation of a link
is strategic interactions. Individuals carefully decide with whom to interact
and this decision entails some consent by both parts in a given relationship.2

As Jackson [2007, 2008] pointed out, the random approach gives us a great
deal of insight into how networks form (i.e. matches the characteristics of
real-life networks) while the deterministic approach performs better on why
networks form.

There is also another strand of the literature (called “games on net-

1See Albert and Barabási [2002].
2Most of models of strategic network formation are static. Two prominent exceptions

include Jackson and Watts [2002b] and Dutta et al. [2005]. Jackson and Watts [2002b]
model network formation as an intertemporal process with myopic individuals breaking
and forming links as the network evolves dynamically. Individuals are myopic in the sense
that their decisions are guided completely by current payoffs, although the process of
network formation takes place over real time. Dutta et al. [2005] relax this assumption and
assume that agents behave in a farsighted manner by taking into account the intertemporal
repercussions of their own decisions.
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works”) that takes the network as given and studies how the network struc-
ture impacts on outcomes and individual decisions. A prominent paper of
this literature is Ballester et al. [2006].3 They mainly show that if agents’
payoffs are linear-quadratic, then the unique interior Nash equilibrium of an
n−player game in which agents are embedded in a network is such that each
individual effort is proportional to her Bonacich centrality measure. The lat-
ter is a well-known centrality measure introduced by Bonacich [1987].4 In
other words, it is mainly the centrality of an agent in a network that explains
her outcome.5

To the best of our knowledge, there are very few papers that combine
the literature on network formation and games on networks.6 The aim of
this paper is to introduce strategic interactions in a non-random dynamic
network formation game where agents also choose how much effort they put
in their activities. By combining these approaches, we will also be able to
match the characteristics of most real-life networks.

To be more precise, we develop a two-stage game where, in the first
stage, as in Ballester et al. [2006], agents play their equilibrium contribu-
tions proportional to their Bonacich centrality while, in the second stage, a
randomly chosen agent can update her linking strategy by creating a new
link as a local best response to the current network. Furthermore, agents
are embedded in a volatile environment which requires them to continually
adapt to changing conditions. We assume that a link of a randomly selected
agent decays, i.e. can be severed.

As a result, the formation of social networks can be regarded as a tension
between the search for new linking opportunities and volatility that leads
to the decay of existing links. Let us be more precise about each of the two

3 Bramoulle and Kranton [2007] and Galeotti et al. [2009] are also important papers in
this literature. The former focuses on local substitutabilities between agents connected in
a network while the latter provides a model where agents do not have perfect information
about the network. As in the present paper, Ballester et al. [2006] analyze a network game
of local complementarities under perfect information

4Centrality is a fundamental measure of the importance of actors in social networks,
dating back to early works such as Bavelas [1948]. See Wasserman and Faust [1994] for
an introduction and survey.

5In the empirical literature, it has been shown that centrality is important in ex-
plaining exchange networks [Cook et al., 1983], peer effects [Calvó-Armengol et al., 2009;
Haynie, 2001], creativity of workers [Perry-Smith and Shalley, 2003], workers’ performance
[Mehra et al., 2001], power in organizations [Brass, 1984], the flow of information [Borgatti,
2005; Stephenson and Zelen, 1989], the formation and performance of R&D collaborat-
ing firms and inter-organizational networks [Boje and Whetten, 1981; Powell et al., 1996;
Uzzi, 1997] as well as the success of open-source projects [Grewal et al., 2006].

6Notable exceptions are Bramoulle et al. [2004], Cabrales et al. [2009],
Calvó-Armengol and Zenou [2004], Galeotti and Goyal [2009], Goyal and Vega-Redondo
[2005], Jackson and Watts [2002a]. Contrary to our approach, all these models are static,
and are unable to reproduce the main characteristics of real-world networks. Also, the
network formation process is very different.
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mechanisms: (i) link creation and (ii) link decay.

(i) We assume that a randomly selected agent in the network creates a
link with the agent with the highest centrality among the neighbors of
her neighbors (the second order neighbors). This means that the value
of each link is not an exogenous parameter but rather depends on the
structure of the social network given by the centrality of an agent.7

(ii) The volatility of the environment is an essential feature of our model.
It may affect the value of a connection and, in turn, make it unprof-
itable. Moreover, volatility expresses the fact that there exist con-
straints on the number of links an agent can maintain. Similar to
other authors (e.g. Ehrhardt et al. [2006b, 2008], Marsili et al. [2004],
Vega-Redondo [2006]), we therefore assume that a link of a randomly
selected agent decays. However, differently to these works, we do not
assume that links decay at an exogenously given rate that is constant
for all links connecting agents. Instead, we assume that agents view
the links to the most central agents in their neighborhood as more
valuable than the links to agents with low centrality. Under these con-
ditions, agents use more valuable links more frequently. On the other
hand, less frequently used links are exposed to stochastic link decay.
As a result, less frequently used links decay before more frequently
used links are disrupted.

We first show that, at each period of time, the network generated by this
dynamic formation process is a nested split graph. These graphs, which
are relatively well-known in the applied mathematics literature, have a very
nice and simple structure that make them very tractable to work with.
To the best of our knowledge, this is a first time that a complex dynamic
network formation model can be characterized by such a simple structure
in terms of networks it generates. By doing so, we are able to bridge the
economics literature and the applied mathematics/physics literatures in a
simple way. Because of their simple features, we then show that degree,
closeness, and Bonacich centrality induce the same ordering of nodes in a
nested split graph (this is also true for betweenness centrality if the ordering
is not strict). This implies, in particular, that if we had a game where
agents formed links according to other measures of centrality (such as degree,
closeness, or betweenness) than the Bonacich centrality, then all our results
would be unchanged. We then show that there exists a unique stationary

7 We further show that among all the possible links to second order neighbors the link
to the one with the highest centrality increases the centrality (and thus the utility) of both
agents (the initiator and the target of the link) the most. Thus agents do not only connect
to agents with high centrality but they also strive to maximize their own centrality (and
thus their own utility). In this broader sense we can view the link formation process as a
competition for high centrality.
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network, which is a nested split graph. We then demonstrate under which
conditions these networks emerge and that there exists a sharp transition
between hierarchical and flat network structures. Instead of relying on a
mean-field approximation of the degree distribution and related measures
as most dynamic network formation models do, because of the nature of
nested split graphs, we are able to derive explicit solutions for all network
statistics of the stationary network (by computing the adjacency matrix).
We also observe that the network architecture adapts to changes in the
volatility of the environment. We also find that, by altering the rate at
which linking opportunities arrive and links decay, a sharp transition takes
place in the network density. In line with previous works [Arenas et al.,
2008; Guimerà et al., 2002; Visser, 2000], this transition entails a crossover
from highly centralized networks when the linking opportunities are rare and
the link decay is high to highly decentralized networks when many linking
opportunities arrive and only few links are removed. From the efficiency
perspective such sharp transition can also be observed in aggregate payoffs
in stationary networks. It is important to observe that all our results are
robust to any utility function as long as it increases in the number of links
of each agent’s direct neighbors.

Finally, as in Jackson and Rogers [2007], we then proceed by showing
that our model reproduces the main empirical observations of social net-
works. Indeed, we show that the stationary networks emerging in our link
formation process are characterized by short path length with high clustering
(so called “small worlds”, see Watts and Strogatz [1998]), exponential degree
distributions with power law tails and negative degree-clustering correlation.
These networks also show a clear core-periphery structure. Moreover, we
show that, if agents have no “budget constraints”and can form any number
of links then stationary networks are dissortative. However, if one takes
into account capacity constraints in the number of links an agent can main-
tain, and allows for random global attachment between agents, we keep all
the above mentioned network statistics while, at the same time, yielding
assortative stationary networks.

The paper is organized as follows. In Section 2, we introduce the model
and discuss the basic properties of the network formation process. In par-
ticular, Section 2.1 discusses the first stage of the game. In Section 2.2,
we introduce the second stage of the game, where the network formation is
explained. Next, Section 3 shows that stationary networks exist and can be
computed analytically. After deriving the stationary networks, in Section 4,
we analyze their properties in terms of topology and centralization. In Sec-
tion 5, we study efficiency from the point of view of maximizing total efforts
and aggregate payoff in the stationary network. We investigate the efficiency
of different stationary networks as a function of the volatility of the environ-
ment. Section 6 discusses our results and their robustness, especially when
we consider very general utility functions. Appendix A gives all the neces-

5



sary definitions and characterizations of general networks. In Appendix B,
we focus on a class of networks (nested split graphs) that are important in
our analysis and provide a general in terms of their topology properties and
centralization measures. We extend our analysis in Appendix C by includ-
ing capacity constraints in the number of links an agent can maintain and
a global search mechanism for new linking partners. Finally, all proofs can
be found in Appendix D.

2. The model

In this section, we develop a two-stage game. In the first stage, fol-
lowing Ballester et al. [2006], all agents simultaneously choose their effort
level in a fixed network structure. It is a game with local complementarities
where players have linear-quadratic payoff functions. In the second stage, a
randomly chosen agent decides with whom she wants to form a link while
a volatile environment forces the least frequently used link of a randomly
selected agent to decay. This introduces two different time scales, one in
which agents are choosing their efforts in a simultaneous move game and
the second in which an agent forms a link as a best response to the current
network. in which each agent chooses an effort level. We assume that the
time in which agents are forming new links evolves much slower than the
rate at which the stage game is repeated (see Vega-Redondo [2006], for a
similar approach).

2.1. Nash Equilibrium and Bonacich Centrality

Consider a static network G in which the nodes represent a set of agents/players
N = {1, 2, ..., n}. Following Ballester et al. [2006], each agent i ∈ N in the
network G selects an effort level xi ≥ 0, x ∈ R

n
+, and receives a payoff

πi(x1, ..., xn) of the following form

πi(x1, ..., xn) = xi −
1

2
x2

i + λ
n
∑

j=1

aijxixj . (1)

This utility function is additively separable in the idiosyncratic effort compo-
nent (xi− 1

2x2
i ) and the peer effect contribution (λ

∑n
j=1 aijxixj). Payoffs dis-

play strategic complementarities in effort levels, i.e., ∂2πi(x1, ..., xn)/∂xi∂xj =
λaij ≥ 0. In order to find the Nash equilibrium solution associated with the
above payoff function, we define a network centrality measure introduced
by Bonacich [1987]. Let A be the symmetric n× n adjacency matrix of the
network G and λPF(G) its largest real eigenvalue. If I denotes the n × n
identity matrix and u = (1, ..., 1)T the n-dimensional vector of ones then we
can define Bonacich centrality as follows:
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Definition 1. The matrix B(G, λ) = (I − λA)−1 exists and is non-negative
if and only if λ < 1/λPF(G).8 Then

B(G, λ) =
∞
∑

k=0

λkAk.

The Bonacich centrality vector is given by

b(G, λ) = B(G, λ) · u. (2)

We can write the Bonacich centrality vector as

b(G, λ) =
∞
∑

k=0

λkAk · u = (I − λA)−1 · u.

For the components bi(G, λ), i = 1, ..., n, we get

bi(G, λ) =
∞
∑

k=0

λk(Ak · u)i =
∞
∑

k=0

λk
n
∑

j=1

(

Ak
)

ij
, (3)

where
(

Ak
)

ij
is the ij-th entry of Ak. Because

∑n
j=1

(

Ak
)

ij
is the number

of all walks of length k in G starting from i, bi(G, λ) is the number of all
walks in G starting from i, where the walks of length k are weighted by their
geometrically decaying factor λk.

Now we can turn to the equilibrium analysis of the game.

Theorem 1 (Ballester et al. [2006]). Let b(G, λ) be the Bonacich net-
work centrality of parameter λ. For λ < λPF(G), the unique interior Nash
equilibrium solution of the simultaneous n–player move game with payoffs
given by (1) and strategy space R

n
+ is given by

x∗
i = bi(G, λ), (4)

for all i = 1, ..., n.

Moreover, the payoff of agent i in the equilibrium is given by

πi(x
∗, G) =

1

2
(x∗

i )
2 =

1

2
b2
i (G, λ). (5)

The parameter λ measures the effect on agent i of agent j’s contribution,
if they are connected. If we assume that we have strong network externalities
so that λ approaches its highest possible value 1/λPF(G) then the Bonacich

8The proof can be found e.g. in Debreu and Herstein [1953].
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centrality becomes proportional to the standard eigenvector measure of cen-
trality [Wasserman and Faust, 1994]. The latter result has been shown by
Bonacich [1987] and Bonacich and Lloyd [2001].

Furthermore, Ballester et al. [2006] have shown that the equilibrium out-
come and the payoff for each player increases with the number of links in G
(because the number of network walks increases in this way).9 This implies
that, if an agent is given the opportunity to change her links, she will add as
many links as possible. On the other hand, if she is only allowed to form one
link at a time, she will form the link to the agent that increases her payoff
the most. In both cases, eventually, the network will then become complete,
i.e. each agent is connected to every other agent. However, to avoid this
latter unrealistic situation, we assume that the agents are living in a volatile
environment that causes links to decay such that the complete network can
never be reached. Instead the architecture of the network adapts to the
volatile environment. We will treat these issues more formally in the next
section.

2.2. The Network Formation Game

We now introduce a network formation process that incorporates the idea
that agents with high Bonacich centrality (their equilibrium effort levels)
are more likely to connect to each other and that the presence of common
neighbors enhances the likelihood of agents to form a new link between them.

Let time be measured at countable dates t = 0, 1, 2, ... and consider
the network formation process (G(t))∞t=0 with G(t) = (N, L(t)) comprising
the set of agents N = {1, ..., n} together with the set of links L(t) at time
t.10 The timing is as follows: At t = 0, we start with the empty network
G(0) = K̄n. Then every agent i ∈ N optimally chooses her effort xi ∈ R+,
which is x∗

i = 1, since bi(K̄n, λ) = 1 for all i = 1, ..., n.11 Then, an agent i is
chosen at random and with probability pi ∈ (0, 1) forms a link with agent
j that gives her the highest utility (or equivalently her highest Bonacich
centrality). We obtain the network G(1). Then, again, a player i is chosen
at random and with probability pi decides with whom she wants to form a
link. For that, she has to calculate all the possible network configurations
and chooses the one that gives her the highest utility. An so forth.

Let us now explain the game in more detail and, in particular, the for-
mation of links between agents. Let Ni = {k ∈ N : ik ∈ L(t)} be the set

of neighbors of agent i ∈ N and N (2)
i =

⋃

j∈Ni
Nj\ (Ni ∪ {i}) denote the

second-order neighbors of agent i in the current network G(t). We assume
that agents form links only with the neighbors of their neighbors. Quite

9See Theorem 2 in Ballester et al. [2006].
10We give a formal characterization of this stochastic process in Section 3.
11The adjacency matrix A of the empty network K̄n contains only zero entries and

therefore b(K̄n, λ) = (I − λA)−1
u = u.
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naturally, if an agent has no links, then she will search among all agents for
the best links. We make this assumption because agents know mainly their
friends and the friends of their friends. In the friendship example, individu-
als connect to friends of friends because they trust their own friends who can
recommend them to their acquaintances. Also, each individual is likely to
meet a friend of friend and thus decides to create a link or not. More gener-
ally, it seems reasonable that the formation of links is limited to agents that
someone is aware of. This should be even more true in large networks where
players’ information may be limited to their immediate “neighborhood”.12

The key question is how individuals choose among their second-order
neighbors (i.e. friends of friends). Let us explain the way someone is selected
to form a link. At every t, an agent i, selected uniformly at random from
the set N , enjoys an updating opportunity of her current links at a rate
pi. If an agent receives such an opportunity, then she initiates a link to
agent j which increases her equilibrium payoff the most in her second-order

neighborhood N (2)
i . Agent j is said to be the local best response of agent i

given the network G(t). Agent j accepts the link if i has also the highest

centrality in her second-order neighborhood N (2)
j . That is, agent i is also

a local best response of agent j. The underlying assumption for this is
that individuals carefully decide with whom to interact and this decision
entails some consent by both parts in a given relationship. Note, that the
connectivity relation is symmetric such that j is a second-order neighbor of

i if i is a second order neighbor of j, i.e. i ∈ N (2)
j if and only if j ∈ N (2)

i for
all i, j ∈ N . Moreover, as we will see below, agent i is always a local best
response of agent j if agent j is a local best response of agent i.

Observe that when agents decide to create a link, they do it in a myopic
way, that is they only look at the second-order neighbor that gives them
the current highest utility. There is literature on farsighted networks where
agents calculate their lifetime-expected utility when they want to create a
link (see, e.g. Konishi and Ray [2003]). We adopt here a myopic approach
because of its tractability and because our model also incorporates effort
decision.13

Let us give a formal definition of the local best responses of an agent
given the prevailing network G(t).14

12In Appendix C, we allow agents to create links with agents further away in the network,
i.e. at length greater than two.

13Jackson and Watts [2002b] argue that this form of myopic behavior makes sense if
players discount heavily the future.

14In order to guarantee an interior solution of the Nash equilibrium efforts corresponding
to the payoff functions in equation (1), we assume that the parameter λ is smaller than the
inverse of the largest real eigenvalue of G(t) for any t. Testing the impact of the Bonacich
centrality measure on educational outcomes in the United States, Calvó-Armengol et al.
[2009] found that only 18 out of 199 networks (i.e. 9 percent) do not satisfy this eigenvalue
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Definition 2. Consider the current network G(t) = (N, L(t)) with agents
N = {1, ..., n} and links L(t). Let G(t) + ij be the graph obtained from G(t)
by the addition of the edge ij /∈ L(t) between agents i, j ∈ N . Further, let
π∗(G(t)) = (π∗

1(G(t)), ..., π∗
n(G(t))) denote the profile of Nash equilibrium

payoffs of the agents in G(t) following from the payoff function (1) with
parameter λ < 1/λPF(G(t)). Then agent j is a local best response of agent

i if π∗
i (G(t) + ij) ≥ π∗

i (G(t) + ik) for all j, k ∈ N (2)
i . Agent j may not be

unique. The set of agent i’s local best responses is denoted by BRi(G(t)).

If agent i does not have any second-order neighbors, N (2)
i = ∅, then agent

j is a local best response of agent i if π∗
i (G(t) + ij) ≥ π∗

i (G(t) + ik) for all
j, k ∈ N\ (Ni ∪ {i}).

Note that the best response strategies for the network games introduced in
Bala and Goyal [2000]; Haller et al. [2007]; Haller and Sarangi [2005] allow
an agent to remove or create an arbitrary number of links while we restrict
the link formation (strategy space) of an agent to one additional link only.
We omit the removal of links since agents payoffs are monotonic increasing
in the number of links in the network. Since the removal of a link would
always decrease an agent’s payoffs, link removal is strictly dominated by link
creation.

We assume that during the time interval from t to t + 1 an agent i
is selected and either has the possibility to create a link (with probability
pi ∈ (0, 1)) or to severe a link (with probability qi ∈ (0, 1)). Note that taking
into account the possibility of an agent remaining quiescent only modifies
the time-scale of the process discussed, thus yielding identical results to
the model proposed. This implies that, without any loss of generality, it
is possible to assume pi + qi = 1. For simplicity, we also assume that
these probabilities are the same across agents. Accordingly, we will use one
parameter α and 1−α to denote the probabilities at which links are formed
and removed respectively, that is, pi = α and qi = 1−α, with α ∈ (0, 1), for
all i ∈ N .

Definition 3. We define the network formation process (G(t))∞t=0, G(t) =
(N, L(t)), as a sequence of networks G(0), G(1), G(2), ... in which at every
step t = 0, 1, 2, ..., an agent i ∈ N is uniformly selected at random. Then
one of the following two events occurs:

(i) With probability α ∈ (0, 1) agent i initiates a link to a local best
response agent j ∈ BRi(G(t)). Then the link ij is created if i ∈
BRj(G(t)) is a local best response of j, given the current network G(t).
If BRi(G(t)) = ∅ or BRj(G(t)) = ∅ nothing happens. If BRi(G(t)) is
not unique, then i selects randomly one agent in BRi(G(t)).

condition.
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(ii) With probability 1−α the link ij ∈ L(t) is removed such that π∗
i (G(t)−

ij) ≥ π∗
i (G(t) − ik) for all j, k ∈ Ni. If agent i does not have any link

then nothing happens.

In words, with probability α, the selected agent will create a link with her
second-order neighbor who increases the most her utility, while with proba-
bility 1−α, the selected agent will delete a link with her direct neighbor who
reduces the least her utility. This link is for the selected agent the least im-
portant and thus the least frequently used. Note that the newly established
link also affects the overall network structure and therewith the centralities
and payoffs of all other agents (in the same connected component). The
formation of links thus can introduce large, unintended and uncompensated
externalities.

2.3. Network Formation and Nested Split Graphs

An essential property of the link formation process (G(t))∞t=0 introduced
in Definition 3 is that it produces networks in a well defined class of graphs
denoted by “nested split graphs” [Aouchiche et al., 2006].15 We will give
a formal definition of these graphs and discuss an example in this section.
Nested split graphs include many common networks such as the star or the
complete network. Moreover, as their name already indicates, they have
a nested neighborhood structure. This means that the set of neighbors of
each agent is contained in the set of neighbors of each higher degree agent.
Nested split graphs have particular topological properties and an associated
adjacency matrix with a well defined structure.

In order to characterize nested split graphs, it will be necessary to con-
sider the degree partition of a graph, which is defined as follows:

Definition 4 (Mahadev and Peled [1995]). Let G = (N, L) be a graph
whose distinct positive degrees are d(1) < d(2) < ... < d(k), and let d0 = 0
(even if no agent with degree 0 exists in G). Further, define Di = {v ∈ N :
dv = d(i)} for i = 0, ..., k. Then the vector D = (D0, D1, ..., Dk) is called the
degree partition of G.

With the definition of a degree partition, we can now give a more formal
definition of a nested split graph.16,17

15Nested split graphs are also called “threshold networks” [Hagberg et al., 2006;
Mahadev and Peled, 1995].

16 Let x be a real valued number x ∈ R. Then, ⌈x⌉ denotes the smallest integer larger
or equal than x (the ceiling of x). Similarly, ⌊x⌋ denotes the largest integer smaller or
equal than x (the floor of x).

17In general, split graphs are graphs whose nodes can be partitioned in a set of nodes
which are all connected among each other and sets of nodes which are disconnected. A
nested split graph is a special case of a split graph.
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Definition 5 (Mahadev and Peled [1995]). Consider a nested split graph
G = (N, L) and let D = (D0, D1, ..., Dk) be its degree partition. Then the
nodes N can be partitioned in independent sets Di, i = 1, ...,

⌊

k
2

⌋

and domi-

nating sets Di, i =
⌊

k
2

⌋

+ 1, ..., k. Moreover, the neighborhoods of the nodes
are nested. In particular, for each node v ∈ Di, i = 1, ..., k,

Nv =

{

⋃i
j=1 Dk+1−j if i = 1, ...,

⌊

k
2

⌋

,
⋃i

j=1 Dk+1−j \ {v} if i =
⌊

k
2

⌋

+ 1, ..., k.
(6)

Figure 1 (left) illustrates the degree partition D = (D0, D1, ..., D6) and the
nested neighborhood structure of a nested split graph. A line between Di

and Dj indicates that every node in Di is linked to every node in Dj for any
i, j = 1, ..., 6. The nodes in the dominating sets included in the solid frame
induce a clique while the nodes in the independent sets that are included in
the dashed frame induce an empty subgraph.

A nested split graph has an associated adjacency matrix which is called
stepwise matrix and it is defined as follows:

Definition 6 (Brualdi and Hoffman [1985]). A stepwise matrix A is a
matrix with elements aij satisfying the condition: if i < j and aij = 1 then
ahk = 1 whenever h < k ≤ j and h ≤ i.

Figure 1 (right) shows the stepwise adjacency matrix A corresponding to
the nested split graph shown on the left hand side. If we let the nodes
by indexed by the order of the rows in the adjacency matrix A then it is
easily seen that for example D6 = {1, 2 ∈ N : d1 = d2 = d(6) = 9} and
D1 = {9, 10 ∈ N : d9 = d10 = d(1) = 2}.

If a nested split graph is connected we call it a connected nested split
graph. The representation and the adjacency matrix depicted in Figure 1
actually shows a connected nested split graph. From the stepwise property
of the adjacency matrix it follows that a connected nested split graph con-
tains at least one spanning star, that is, there is at least one agent that is
connected to all other agents. In Appendix B, we also derive the clustering
coefficient, the neighbor connectivity and the characteristic path length of
a nested split graph. In particular, we show that connected nested split
graphs have small characteristic path length, which is at most two. We also
analyze different measures of centrality (see Wasserman and Faust [1994])
in a nested split graph. One important result is that degree, closeness,
and Bonacich centrality induce the same ordering of nodes in a nested split
graph. If the ordering is not strict, then this holds also for betweenness
centrality (see Section B.2.5 in the Appendix).

In the next proposition, we identify the relationship between the Bonacich
centrality of an agent and her degree in a nested split graph.
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D2
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D6 D1 d(1) = 2

D2 d(2) = 3

D3 d(3) = 4D4d(4) = 5

D5d(5) = 7

D6d(6) = 9

Figure 1: Representation of a connected nested split graph (left) and the associated adja-
cency matrix (right) with n = 10 agents and k = 6 distinct positive degrees. A line between
Di and Dj indicates that every node in Di is linked to every node in Dj . The solid frame
indicates the dominating sets and the nodes in the independent sets are included in the
dashed frame. Next to the set Di the degree of the nodes in the set is indicated. The
neighborhoods are nested such that the degrees are given by d(i+1) = d(i) + |Dk−i+1| for
i 6=

¨

k
2

˝

and d(i+1) = d(i) + |Dk−i+1| − 1 for i =
¨

k
2

˝

. In the corresponding adjacency
matrix A to the right the zero-entries are separated from the one-entries by a stepfunction.

Proposition 1. Consider a pair of agents i, j ∈ N of a nested split graph
G = (N, L).

(i) If and only if agent i has a higher degree than agent j then i has a
higher Bonacich centrality than j, i.e.

di > dj ⇔ bi(G, λ) > bj(G, λ).

(ii) Assume that neither the links ik nor ij are in G, ij /∈ L and ik /∈ L.
Further assume that agent k has a higher degree than agent j, dk > dj.
Then adding the link ik to G increases the Bonacich centrality of agent
i more than adding the link ij to G, i.e.

dk > dj ⇔ bi(G + ik, λ) > bi(G + ij, λ).

From part (ii) of Proposition 1 we find that when agent i has to decide to
create a link either to agents k or j, with dk > dj , in the link formation
process (G(t))∞t=0 then i will always connect to agent k because this link
gives i a higher Bonacich centrality than the other link to agent j. We can
make use of this property in order to show that the networks emerging from
the link formation process defined in the previous section actually are nested
split graphs. This result is stated in the next proposition.
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Proposition 2. Consider the network formation process (G(t))∞t=0 intro-
duced in Definition 3. Then, at any time t ≥ 0, a network G(t) is a nested
split graph.

This result is due to the fact that agents, when they have the possibility
of creating a new link, always connect to the agent who has the highest
Bonacich centrality (and by Proposition 1 the highest degree) among her
second-order neighbors. This creates a nested neighborhood structure which
can always be represented by a stepwise adjacency matrix after a possible
relabeling of the agents.18 The same applies for link removal.

From the fact that G(t) is a nested split graph with an associated step-
wise adjacency matrix it further follows that at any time t in the network
evolution, G(t) consists of a single connected component and possibly iso-
lated nodes.

Corollary 1. Consider the network formation process (G(t))∞t=0 introduced
in Definition 3. Then, at any time t ≥ 0, a network G(t) consists of a
connected component and possibly isolated nodes.

Nested split graphs are not only prominent in the literature on spectral graph
theory [Cvetkovic et al., 1997] but they have also appeared in the recent lit-
erature on economic networks. Nested split graphs are so called “inter-linked
stars” found in Goyal and Joshi [2003].19 Subsequently, Goyal et al. [2006]
identified inter-linked stars in the network of scientific collaborations among
economists. It is important to note that nested split graphs are charac-
terized by a distinctive core-periphery structure. Core-periphery structures
have been found in several empirical studies of interfirm collaborations net-
works [Baker et al., 2008]. The wider applicability of nested split graphs
suggests that a network formation process that generates these graphs as it
is defined in Definition 3 are of general relevance for understanding economic
and social networks.

3. Stationary Networks: Characterization

In this section we analyze in more detail the network formation process
(G(t))∞t=0 defined in the previous section, where G(t) is the random variable

18Two graphs G = (N, L) and G′ = (N ′, L′) are the same unlabeled graph when they
are isomorphic, i.e., when there exists a permutation π : N → N ′ such that ij ∈ L if
and only if π(i)π(j) ∈ L′. Further, we will show in Proposition 3 that (G(t))∞

t=0 induces a
finite state Markov chain with state space Ω consisting of all unlabeled nested split graphs.
Consequently, two states x, y ∈ Ω of the Markov chain (G(t))∞

t=0 are identical, x = y, if
they correspond to the same unlabeled graph.

19Nested split graphs are inter-linked stars but an inter-linked star is not necessarily
a nested split graph. Nested split graphs have a nested neighborhood structure for all
degrees while in an inter-linked star this holds only for the nodes with the lowest and
highest degrees.
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realized at time t ≥ 0. Let F define the σ-algebra σ (G(t) : t ∈ N0) generated
by G(0), G(1), ... and let Ω denote the state space of (G(t))∞t=0. Then the
probability space is given by the triple (Ω,F , P), where P: F → [0, 1] is the
probability measure satisfying

∑

G∈Ω P(G) = 1. In the following, we show
that the network formation process (G(t))∞t=0 induces an ergodic Markov
chain and we analyze the asymptotic states of this process as the number n
of agents becomes large.

Proposition 3. The network formation process (G(t))∞t=0 introduced in Def-
inition 3 induces an ergodic Markov chain on the state space Ω with a unique
stationary distribution µ. In particular, the state space Ω is finite and con-
sists of all possible unlabeled nested split graphs on n nodes, where the num-
ber of possible states is given by |Ω| = 2n−1.

The symmetry of the network formation process (G(t))∞t=0 with respect to
the link formation probability α and the link removal probability 1−α allows
us to state the following proposition.

Proposition 4. Consider the network formation process (G(t))∞t=0 with link
creation probability α and the network formation process (G′(t))∞t=0 with link
creation probability 1 − α. Let µ be the stationary distribution of (G(t))∞t=0

and µ′ the stationary distribution of (G′(t))∞t=0. Then for each network G in
the stationary distribution µ with probability µG the complement of G, Ḡ,
has the same probability µG in µ′, i.e. µ′

Ḡ
= µG.

Proposition 4 allows us to derive the stationary distribution µ for any value
of 1/2 < α < 1 if we know the corresponding distribution for 1 − α. This
follows from the fact that the complement Ḡ of a nested split graph G is
a nested split graph as well [Mahadev and Peled, 1995]. In particular, the
networks Ḡ are nested split graphs in which the number of nodes in the
dominating sets corresponds to the number of nodes in the independent sets
in G and, conversely, the number of nodes in the independent sets in Ḡ
corresponds to the number of nodes in the dominating sets in G.

With this symmetry in mind we restrict our analysis in the following to
the case of 0 < α ≤ 1/2. Let {N(t)}∞t=0 be the degree distribution with
the d-th element Nd(t), giving the number of nodes with degree d in G(t),
in the t-th sequence N(t) = {Nd(t)}n−1

d=0 . Further, let nd(t) = Nd(t)/n de-
note the proportion of nodes with degree d and let nd = limt→∞ E(nd(t))
be its asymptotic expected value (as given by µ). In the following propo-
sition we determine the asymptotic degree distribution of the nodes in the
independent sets for n large enough.
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Proposition 5. Let 0 < α ≤ 1/2. Then the asymptotic expected proportion
nd of nodes in the independent sets with degrees, d = 0, 1, ..., d∗, for large n
is given by

nd =
1 − 2α

1 − α

(

α

1 − α

)d

, (7)

where20

d∗(n, α) =
ln
(

(1−2α)n
2(1−α)

)

ln
(

1−α
α

) . (8)

The structure of nested split graphs implies that if there exist nodes for all
degrees between 0 and d∗ (in the independent sets), then the dominating
sets with degrees larger than d∗ contain only a single node. Further, using
Proposition 4, we know that for α > 1/2 the expected number of nodes in the
dominating sets is given by the expected number of nodes in the independent
sets in Equation (7) for 1 − α, while each of the independent sets contains
a single node. This determines the asymptotic degree distribution for the
independent or dominating sets, respectively, for all values of α in the limit
of large n.

Moreover, we can show that the empirical degree distribution converges
in probability to the expected distribution in the limit of large network sizes
n.

Proposition 6. For any ǫ > 0 we have that

P (|nd(t) − E (nd(t))| ≥ ǫ) ≤ 2e−
ǫ2n2

8t . (9)

Furthermore, from Equation (8) we can directly derive the following
corollary.

Corollary 2. There exists a phase transition in the asymptotic average
number of independent sets, d∗(n, α), as n becomes large such that

lim
n→∞

d∗(n, α)

n
=











0, if α < 1
2 ,

1
2 , if α = 1

2 ,

1, if α > 1
2 .

(10)

Corollary 2 implies that as n grows without bound the networks in the
stationary distribution µ are either sparse or dense, depending on the value

20Note that d∗(n, α) from Equation (8) might in general not be an integer. In this case we
take the closest integer value to Equation (8), that is, we take [d∗(n, α)] = ⌊d∗(n, α) + 1

2
⌋.

The error we make in this approximation is negligible for large n.
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of the link creation probability α. Moreover, from the functional form of
d(n, α) in Equation (8) we find that there exists a sharp transition from
sparse to dense networks as α crosses 1/2 and the transition becomes sharper
the larger is n.

Observe that, because a nested split graph is uniquely defined by its
degree distribution21, Proposition 5 delivers us a complete description of a
typical network generated by our model in the limit of large t and n. We call
this network the “stationary network”. We can compute the degree distribu-
tion and the corresponding adjacency matrix of the stationary network for
different values of α.22 The latter is shown in Figure 2. From the structure
of these matrices we observe the transition from sparse networks containing
a hub and many agents with small degree to a quite homogeneous network
with many agents having similar high degrees. Moreover, this transition is
sharp around α = 1/2. In Figure 3, we show particular networks arising
from the network formation process for the same values of α. Again, we can
identify the sharp transition from hub-like networks (inter-linked stars) to
homogeneous, almost complete networks.

Figure 4 displays the number of links m and the number of distinct
degrees k as a function of α. We see that there exists a sharp transition
from sparse to dense networks around α = 1/2 while k reaches a maximum
at α = 1/2. This follows from the fact that k = 2d∗ with d∗ given in Equation
(8) is monotonic increasing in α for α < 1/2 and monotonic decreasing in α
for α > 1/2.

4. Stationary Networks: Statistics

There exists a growing number of empirical studies trying to identify the
key characteristics of social and economic networks. However, only few theo-
retical models (a notable exception is Jackson and Rogers [2007]) have tried
to reproduce these findings to the full extent. We pursue the same approach.
We show that our network formation model leads to properties which are
shared with empirical networks. These properties can be summarized as
follows:23

(i) The average shortest path length between pairs of agents is small
[Albert and Barabási, 2002].

(ii) Empirical networks exhibit high clustering [Watts and Strogatz, 1998].
This means that the neighbors of an agent are likely to be connected.

21The degree distribution uniquely determines the corresponding nested split graph up
to a permutation of the indices of nodes.

22Non-integer values for the partition sizes can be approximated with the closest integer
while preserving the nested structure of the degree partitions.

23This list of empirical regularities is far from being extensive and summarizes only the
most pervasive patterns found in the literature.
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Figure 2: Representation of the adjacency matrices of stationary networks with n = 1000
agents for different values of parameter α: α = 0.2 (top-left plot), α = 0.4 (top-center
plot), α = 0.48 (top-right plot), α = 0.495 (bottom-left plot), α = 0.5 (bottom-center
plot), and α = 0.52 (bottom-right plot). The matrix top-left for α = 0.4 is corresponding
to an inter-linked star while the matrix bottom-right for α = 0.52 corresponds to an almost
complete network. Thus, there exists a sharp transition from sparse to densely connected
stationary networks around α = 0.5. Networks of smaller size for the same values of α
can be seen in Figure 3.
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Figure 3: Sample networks with n = 50 agents for different values of parameter α: α = 0.2
(top-left plot), α = 0.4 (top-center plot), α = 0.48 (top-right plot), α = 0.495 (bottom-
left plot), α = 0.5 (bottom-center plot), and α = 0.52 (bottom-right plot). Nodes with
brighter shapes correspond to agents with a higher eigenvector centrality. The networks
for small values of α are characterized by the presence of a hub and a growing cluster
attached to the hub. With increasing values of α the density of the network increases
until the network becomes almost complete. The network plots have been generated using
a Fruchterman-Reingold algorithm [Fruchterman and Reingold, 1991].
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Figure 4: In the left panel we show the number of links m of the stationary network. The
number of distinct degrees k = 2d∗,with d∗ from Equation (8), found in the stationary
network for different values of α are shown in the right panel. The figures display both, the
results obtained by recourse of numerical simulations (symbols) and respecting theoretical
predictions (lines) of the model.
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(iii) The distribution of degrees is highly skewed. While some authors
Barabasi and Albert [1999] find power law degree distributions, others
find deviations from power-laws in empirical networks, e.g. in Newman
[2004].

(iv) Several authors have found that there exists an inverse relationship be-
tween the clustering coefficient of an agent and her degree [Goyal et al.,
2006; Pastor-Satorras et al., 2001]. The neighbors of a high degree
agent are less likely to be connected among each other than the neigh-
bors of an agent with low degree. This means that empirical networks
are characterized by a negative clustering-degree correlation.

(v) Networks in economic and social contexts exhibit degree-degree corre-
lations. Newman [2002, 2003] has shown that many social networks
tend to be positively correlated. In this case the network is said
to be assortative. On the other hand, technological networks such
as the internet [Pastor-Satorras et al., 2001] display negative correla-
tions. In this case the network is said to be dissortative. Others, how-
ever, find also negative correlations in social networks such as in the
Ham radio network of interactions between amateur radio operators
[Killworth and Bernard, 1976] or the affiliation network in a Karate
club [Zachary, 1977]. Networks in economic contexts may have fea-
tures of both technological and social relationships [Jackson, 2008] and
so there exist examples with positive degree correlations such as in
the network between venture capitalists [Mas et al., 2007] as well as
negative degree correlations as it can be found in the world trade web
[Serrano and Boguñá, 2003], online social communities [Hu and Wang,
2009] and in networks of banks [De Masi and Gallegati, 2007; May et al.,
2008].

In the following sections, we analyze some of the topological properties of
the stationary networks in our model. With the asymptotic expected degree
distribution derived in Proposition 5, we can calculate the expected cluster-
ing coefficient, the clustering-degree correlation, the neighbor connectivity,
the assortativity, and the characteristic path length by using the expressions
derived for these quantities in Appendix B, where we show that these statis-
tics are all functions of the degree distribution.24 These network measures
are interesting because they can be compared to key empirical findings of
social and economic networks. In fact, we show that the stationary networks
exhibit all the well-known stylized facts of real-world networks. Moreover,

24By virtue of Proposition 6, we know that the probability limit of the degree distri-
bution is its expected value. Therefore we can compute the probability limit of these
statistics in good approximation, by evaluating them at the expected degree distribu-
tion. In particular, we compute the integer valued sizes of the degree partition from the
real-valued asymptotic degree distribution by taking closest integers.
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we show in Appendix C that, by introducing capacity constraints in the
number of links an agent can maintain and the possibility that links can
be formed outside the neighbors’ neighbors, we are able to produce both,
assortative as well as dissortative networks.

Note that since the stationary distribution µ is unique, we can recover
the expected value of any statistic by averaging over a large enough sample
of empirical networks generated by numerical simulations. We then super-
impose the analytical predictions of the statistic derived from Proposition 5
with the sample averages in order to compare the validity of our theoretical
results, also for small network sizes n. As we will show, there is a good
agreement of the theory with the empirical results for all network sizes.

4.1. Degree Distribution

From Proposition 5, we find that the degree distribution follows an expo-
nential decay with a power-law tail.25 The power-law tail has an exponent of
minus one. Degree distributions with exponential and power-law parts have
been found in empirical networks, e.g. in scientific collaboration networks
Newman [2004]. For α = 1/2 the degree distribution is uniform while for
larger values of α most of the agents have a degree close to the maximum
degree.

4.2. Clustering

The clustering coefficient is shown in Figure 6 (left). We find that for
practically all values of α, the clustering in the stationary networks is high.
This finding is in agreement with the vast literature on social networks that
have reported high clustering being a distinctive feature of social networks.
Moreover, Goyal et al. [2006] have shown that there exists a negative corre-
lation between the clustering coefficient of an agent and her degree. We find

25For 0 < α ≤ 1/2 and n large enough the asymptotic expected degree distribution for
the degrees d smaller or equal than d∗ is given by an exponential function

n(d) =
1 − 2α

1 − α
e− ln( 1−α

α )d.

On the other hand, if we assume (i) that the degree of a dominating node is symmetrically
distributed around its expected value, (ii) we compute the integral over the probability
density function by a rectangle approximation and (iii) further assume that the degree
distribution obtained in this way has the same functional form for all degrees d larger than
d∗ then one can show that for 0 < α ≤ 1/2 and n large enough the asymptotic expected
degree distribution n(d) is given by

n(d) =
α

(1 − 2α)n
d−1.

The power-law tail of the degree distribution can be obtained from the empirical distri-
bution by a logarithmic binning, as can be seen in Figure 5.
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Figure 5: Degree distribution nd for different values of parameter α and a network size
n = 10 000: α = 0.2 (top-left plot), α = 0.4 (top-center plot), α = 0.48 (top-right plot),
α = 0.49 (bottom-left plot), α = 0.5 (bottom-center plot), and α = 0.52 (bottom-right
plot). The solid line corresponds to the average of simulations while the dashed line
indicates the theoretical degree distribution from Proposition 5. The degrees have been
binned to smoothen the degree distribution.
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Figure 6: The left panel shows the clustering coefficient C and the right panel the clustering
degree correlation of stationary networks. The symbols correspond to the results obtained
by recourse of numerical simulations. The solid lines correspond to the analytical results.
We show that the clustering-degree correlation is negative for different values of α and a
network size of n = 1000. The different plots show different values of α: α = 0.2 (top-left
plot), α = 0.4 (top-center plot), α = 0.48 (top-right plot), α = 0.49 (bottom-left plot),
α = 0.5 (bottom-center plot), and α = 0.52 (bottom-right plot).

this property in the stationary networks as well, as it is shown in Figure 6
(right).

4.3. Assortativity and Nearest Neighbor Connectivity

We now turn to the study of correlations between the degrees of the
agents and their neighbors. This property is usually measured by the net-
work assortativity γ [Newman, 2002, 2003] and nearest neighbor connectivity
dnn(d) [Pastor-Satorras et al., 2001]. Dissortative networks are character-
ized by negative degree correlations between a node and its neighbors and
assortative networks show positive degree correlations. In dissortative net-
works γ is negative and dnn(d) monotonic decreasing while in assortative
networks γ is positive and dnn(d) monotonic increasing. We find that in our
basic model without capacity constraints (see Appendix C for an extension
including capacity constraints in the number of links an agent can maintain)
we observe dissortative networks.

Assortativity and neighbor connectivity for different values of the link
creation probability α are shown in Figure 7. Clearly, stationary networks
are dissortative while the degree of dissortativity decreases with increasing
α. However, if we recall the structure of the nested split graphs in Definition
5, to the class the stationary networks belong to, we can see that high degree
agents are connected among each other while it is only the low degree agents
that are not connected among each other. In this sense agents with high
degrees tend to be connected to other agents with high degree. Considering
only these agents with high degrees, we can call the network assortative.
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Figure 7: In the left panel we show the assortativity γ of stationary networks. In the right
panel we show the average nearest neighbor connectivity dnn for α = 0.2 (top-left plot),
α = 0.4 (top-center plot), α = 0.48 (top-right plot), α = 0.49 (bottom-left plot), α = 0.5
(bottom-center plot), and α = 0.52 (bottom-right plot). The symbols correspond to the
results obtained by recourse of numerical simulations. The solid lines correspond to the
analytical results.

However, the agents with low degrees, that are only connected to agents
with high degrees but are disconnected to agents with low degree, are so
numerous in the stationary network (for low values of α) that we obtain an
overall negative value for the assortativity of the network.

The dissortativity of stationary networks simply reflects the fact that
stationary networks are strongly centralized for values of α below 1/2. As
an example consider a star K1,n−1. K1,n−1 is completely dissortative with
γ = −1. Peripheral agents all have minimum degree one and are only
connected to the central agent with maximum degree while the central agent
is only connected to the agents with minimum degree. In this sense the
dissortativity is simply a measure of centralization in the network.

4.4. Characteristic Path Length

Figure 8 shows the characteristic path length L and the network effi-
ciency E (defined in Section B.1.4 in Appendix B). From these figures one
can see that the characteristic path length L never exceeds a distance of
two. This means that for all parameter values of α stationary networks
are characterized by short distances between agents. Together with the
high clustering shown in this section the stationary networks can be seen as
“small worlds”[Watts and Strogatz, 1998]. Stationary networks are efficient
for values of α larger than 1/2, in terms of short average distance between
agents, while for values of α smaller than 1/2 they are not. However, this
short average distance is attained at the expense of a large number of links.
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Figure 8: The left panel shows the characteristic path length L of stationary networks
and the right panel shows the results for the network efficiency E , obtained by recourse
of numerical simulations (symbols) and respecting theoretical predictions (lines) of the
model.

4.5. Centrality and Centralization in Stationary Networks

In the following section, we analyze the degree of centralization in sta-
tionary networks. As we will show, there exists a sharp transition in the
centralization as a function of the link creation probability α. This means
that stationary networks are either strongly centralized and hierarchical or
decentralized and homogeneous, depending on α. In Section 5, we will also
find such a transition in the aggregate payoffs and effort levels of the agents.

We use the centralization index introduced by Freeman [1978]. The
centralization of a network G = (N, L) is given by

C =

∑

u∈N (C(u∗) − C(u))

maxG′

∑

v∈N ′ (C(v∗) − C(v))
, (11)

where u∗ and v∗ are the agents with the highest values of centrality in the
current network and and the maximum in the denominator is computed over
all networks G′ = (N, L′) with the same number of agents. For the degree,
closeness, betweenness and eigenvector centrality measures one obtains the
following indices26

Cd =
P

u∈V (Cd(u∗)−Cd(u))

n2−3n+2
,

Cc =
P

u∈V (Cc(u∗)−Cc(u))

(n2−3n+2)/(2n−3)
,

Cb =
P

u∈V (Cb(u
∗)−Cb(u))

n3−4n2+5n−2
,

Cv =
P

u∈V (Cv(u∗)−Cv(u))√
(n−1)/2(

√
n−1−1)

.

(12)

26For the normalization of all the centralization indices we have used the star K1,n−1.
For degree, closeness and betweenness centralization it can be shown that the star is
the network that maximizes the sum of differences in centrality [Freeman, 1978]. For
consistency we also take the star as reference network when computing the eigenvector
centralization.
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Figure 9: Degree, closeness, betweenness and eigenvector centralization in the stationary
networks for different values of α. For all centralization measures we obtain a sharp transi-
tion between strongly centralized networks for lower values of α and decentralized networks
for higher values of α. Note that we have only considered the connected component for
the computation of the different centralization measures.

From Figure 9, showing degree, closeness, betweenness and eigenvector
centralization, we clearly see that there exists a phase transition at α = 1/2
from highly centralized to highly decentralized networks. This means that
for low arrival rates of linking opportunities α (and a strong link decay) the
stationary network is strongly polarized, composed mainly of a star (or an
inter-linked star as in Goyal and Joshi [2003]), while for high arrival rates
of linking opportunities (and a weak link decay) stationary networks are
largely homogeneous. We can also see that the transition between these
states is sharp.

Our findings are in line with previous works studying the optimal inter-
nal communication structure of organizations [Guimerà et al., 2002]. Other
works [Calvó-Armengol and Mart́ı, 2009; Dodds et al., 2003; Dupouet and Yildizoglu,
2006; Huberman and Hogg, 1995] have discussed the conditions under which
informal organizational networks outperform centralized structures in com-
plex, changing environments and under which conditions hierarchies are
more efficient. Similar to Arenas et al. [2008] and Ehrhardt et al. [2006a],
we find sharp transitions between largely homogeneous and centralized net-
works. Moreover, the stationary networks in our model are polarized and

26



strongly centralized for a low volatility in the environment associated with
many linking opportunities whereas they are homogeneous and largely de-
centralized for a highly volatile environment with few linking opportunities
and a strong link decay. The hierarchical structure of stationary networks
and its dependency on the volatility is similar to the findings for optimal
networks in Arenas et al. [2008].

5. Stationary Networks: Efficiency

We now turn to the investigation of the optimality and efficiency of
stationary networks. Following Jackson and Wolinsky [1996] and Jackson
[2008], we define the social welfare as the sum of the agents’ individual
payoffs

Π(x∗, G) =
n
∑

i=1

πi(x
∗, G). (13)

We are interested in the solution of the following social planner’s problem.
Let G(n) denote the set of connected graphs having n agents in total. The
social planner’s solution is given by

G∗ = argmax
G∈G(n)

Π(x∗, G). (14)

A graph G∗ solving the maximization problem in equation (14) will be de-
noted as “efficient”. The efficient network has been derived in Ballester et al.
[2006] and we state their result in the following proposition.

Proposition 7 (Ballester et al. [2006]). Let G(n) denote the set of con-
nected graphs having n agents and consider G ∈ G(n). Then the efficient
network G∗ maximizing aggregate equilibrium contribution and payoff is the
complete graph Kn.

This proposition is a direct consequence of Theorem 2 in Ballester et al.
[2006] where more links is always better. Moreover, Corbo et al. [2006] have
shown that, in the case of strong complementarities, when λ approaches
1/λPF(G), maximizing aggregate equilibrium payoffs is equivalent to maxi-
mizing the largest real eigenvalue λPF(G) of the network G.27

Proposition 8 (Corbo et al. [2006]). Let G(n, m) denote the set of con-
nected graphs having n agents and m links and consider G ∈ G(n, m). As

27Following Proposition 7, adding a link always improves aggregate payoff of a network.
Through the addition of links we can always make a network connected and therewith
increase its aggregate equilibrium payoff. Thus, we restrict our analysis to connected
networks.
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Figure 10: We show the largest eigenvalue of the adjacency matrix of the stationary
network relative to the eigenvalue to the complete graph, which is the efficient network,
obtained by recourse of numerical simulations (symbols) and respecting theoretical pre-
dictions (lines) of the model for different values of α and n = 200 agents. For higher
values of α the stationary network comes close to the efficient graph which has a largest
real eigenvalue of n − 1.

λ ↑ 1/λPF(G), maximizing aggregate equilibrium contribution and payoff
reduces to

max{λPF(G) : G ∈ G(n, m)}.

Proposition 8 tells us that, if we want to compare aggregate payoffs of any
two networks G1 and G2, we can compare their largest real eigenvalues,
λPF(G1) and λPF(G2), in the case of strong complementarities λ. Moreover,
from Proposition 7 we know that aggregate payoff is highest in the complete
network Kn. Kn also has the highest possible largest real eigenvalue, namely
λPF(Kn) = n−1 [Cvetkovic et al., 1997]. Thus, the closer is the largest real
eigenvalue λPF(G(t)) of a network G(t) to the one of the complete network,
the closer it comes to being efficient. Following these observations we show
the ratio of the largest real eigenvalue of stationary networks to n − 1 for
different values of α. We find that for values of α below 1/2, stationary
networks are highly inefficient and a sharp transition occurs for increasing
values of α above 1/2. It is also seen that the transition becomes sharper
the larger the network is. This implies that a highly volatile environment
and the strong competition of the agents for becoming a hub induces highly
inefficient network structures.28

In Appendix C, we introduce capacity constraints and allow for non-local
search for new contacts in the link formation process we have discussed so far.
We analyze the efficiency of the networks that arise under this extension. We
show that, with respect to efficiency, stationary networks in the extended

28It can be shown that the largest real eigenvalue can be increased by concentrating all
the links in a densely connected core (clique) for fixed values of the number of links m
and nodes n [Cvetkovic et al., 1997].
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link formation process show qualitatively the same properties. However,
they can differ in their topological properties.

6. Summary and Robustness Analysis

6.1. Summary

In this paper, we develop a two-stage game. In the first stage, agents
face a linear-quadratic payoff function that allows for positive utility inter-
dependence between agents. The Nash equilibrium strategies of this game
are proportional to the Bonacich centrality of the agents in the network.
In the second stage of the game, links are formed as a best response to
the current network. More precisely, we introduce a network formation
process in which link creation and removal are based on the position of the
agents in the network as measured by their Bonacich centrality. Agents only
have local information when forming their links and their connections are
exposed to a volatile environment. We show that the emerging stationary
networks fall into a well defined class of graphs called nested-split graphs.
Moreover, these networks exhibit empirically observed properties of social
and economic networks. We also find that there exists a sharp transition in
the network density from highly centralized to decentralized networks. A
similar transition can be observed in the efficiency of stationary networks.

6.2. Robustness Analysis

We discuss different generalizations of our model. First, our analysis
is restricted to linear-quadratic utility function (see Equation (1)), captur-
ing linear externalities in players’ efforts. This leads to a Nash-equilibrium
payoff which is a function of the Bonacich centrality of each player (see
Equation (5)). For this equilibrium to be characterized, we also impose that
λ, the size of the interactions, has to be strictly lower than the inverse of
the largest eigenvalue of the adjacency matrix of the network (see Theorem
1). We can generalize our analysis as follows. Consider now a game where
players can only form or severe links but do not choose effort levels. In that
case, if we use as payoffs Equation (5) or any increasing transformation of
this payoff, then, by considering the network formation process defined in
Definition 3, all our results will be the same without, however, relying on
any specific form of the utility function. The only requirement is that the
utility of each player is increasing in her Bonacich centrality. We can go
even further. Consider again the game where players do not choose efforts,
then all our results will be valid if the utility function of each player is an
increasing function of her closeness centrality29 or given by the utility func-
tion of the connections model of Jackson and Wolinsky [1996] when costs

29Observe that for degree centrality, a player is indifferent between creating a link with
anybody in the network, because any link will increase her degree by one. In that case,
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are zero.30 Furthermore, if the utility function of a player is increasing in
the number of links of her direct neighbors or any centrality measure31 of
her direct neighbors (see Corollary 11), then all result are also valid. Ob-
serve that in all the cases when we do not use the Bonacich centrality in
the utility function, then not only we do not rely on any specific form of
the utility function but we do not even need the eigenvalue value condition
mentioned above.

Second, in our network-formation game defined in Definitions 2 and 3,
we impose that, when forming a link (a) a player i needs to choose only
among her second-order neighbors, (b) player i has to be the best-response
for the chosen second-order neighbor j. Because the networks that emerge
are always nested-split graphs, these two assumptions turn out not to be
necessary. Indeed, because of the specificity of nested-split graphs, where
the maximum distance between players is 2, all the possible players are
already contained in the second-order neighbors. So assumption (a) is not
necessary. Also, when player i has the possibility to create a link with j, the
latter will always accept because it increases her payoff. In other words, i
does not need to be the best response for j to increase her payoff and, as a
result, (b) is not needed. It turns out, however, that in nested-split graphs,
i is always the best response for j. This is a result of the network formation
game and not an assumption.

Third, we have considered in this paper a network formation game with
perfect information. Some researchers have criticized the fact that, in such
models, we are demanding too much from the agents since they need to
know all the network structure to make a decision. Because the networks
that emerge are always nested-split graphs, which implies in particular that
the distance between two agents is at most 2, this assumption is not very
strong in our framework. Indeed, we are only imposing that individuals
know the decision of the friends of their friends.

Fourth, in Section 4.1, for the nodes in the dominating sets, we obtain
a power-law degree distribution with exponent minus one. We can extend
our model to obtain a degree distribution with an arbitrary power law tail
by making the probability of creating a link for player i depending on, |Di|,
the size of the degree partition she belongs to.

Finally, with our network formation game, we always obtain negative
degree-degree correlations (i.e. our networks are dissortative). In Appendix
C, we extend our game by including capacity constraints in the number of

we could impose some condition to guarantee that she will connect to the player with the
highest degree, and then our results will hold.

30Observe that, in our model, there are indirect costs because when a player is chosen
with probability 1 − α, she is obliged to severe a link, which is costly.

31For betweenness centrality, we would need to impose some condition stating that,
when indifferent, a player will always connect to the player with the highest degree.
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links an agent can maintain and a global search mechanism for new linking
partners. We find that by introducing capacity constraints and global search,
stationary networks can become assortative. Thus, we are able to repro-
duce all topological properties of empirically observed social and economic
networks. Moreover, the emergence of assortativity and positive degree-
correlations, respectively, can be explained by considering limitations in the
number of links an agent can maintain. This may be of particular relevance
for social networks and give an explanation for the distinction between as-
sortative social networks and dissortative technological networks suggested
in Newman [2002].
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Guimerà, R., Dı́az-Guilera, A., Vega-Redondo, F., Cabrales, A., Arenas, A.,
Nov 2002. Optimal network topologies for local search with congestion.
Physical Review Letters 89, 248701.

Grimmett, G., Stirzaker, D., 2001. Probability and random processes. Ox-
ford University Press.

Hagberg, A., Swart, P., Schult, D., 2006. Designing threshold networks with
given structural and dynamical properties. Physical Review E 74, 56116.

Haller, H., Kamphorst, J., Sarangi, S., 2007. (Non-)existence and scope of
Nash networks. Economic Theory 31, 597–604.

Haller, H., Sarangi, S., 2005. Nash networks with heterogeneous links. Math-
ematical Social Sciences 50, 181–201.

Haynie, D., 2001. Delinquent peers revisited: Does network structure mat-
ter? American Journal of Sociology 106, 1013–1057.

Hong, Y., 1993. Bounds of eigenvalues of graphs. Discrete Mathematics 123,
65–74.

Hoeffding, W., 1963. Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 13–30.

Hu, H.-B., Wang, X.-F., 2009. Disassortative mixing in online social net-
works. European Physics Letters, 18003.

Huberman, Bernardo, A., Hogg, T., 1995. Communities of practice: Per-
formance and evolution. Computational and Mathematical Organization
Theory 1, 73–92.

Jackson, M.O., 2007. The economics of social networks, In: Advances in
Economics and Econometrics. Theory and Applications, Ninth World
Congress. Vol. I, Cambridge: Cambridge University Press, pp. 1–56.

Jackson, M.O., 2008. Social and Economic Networks. Princeton University
Press.

Jackson, M.O., Rogers, B.W., June 2007. Meeting strangers and friends of
friends: How random are social networks? American Economic Review
97, 890–915.

Jackson, M.O., Watts, A., 2002a. On the formation of interaction networks
in social coordination games. Game and Economic Behavior 41, 265–291.

Jackson, M.O., Watts, A., 2002b. The evolution of social and economic
networks. Journal of Economic Theory 106, 265–295.

Jackson, M. O., Wolinsky, A., 1996. A strategic model of social and economic
networks. Journal of Economic Theory 71, 44–74.

Kemeny, J., Snell, J., 1960. Finite Markov chains. Princeton: Van Nostrand
Reinhold.

33



Killworth, P., Bernard, H., 1976. Informant accuracy in social network data.
Human Organization 35, 269–286.

Konishi, H., Ray, D., 2003. Coalition formation as a dynamic process. Jour-
nal of Economic Theory 110, 1–41.

Latora, V., Marchiori, M., 2001. Efficient Behavior of Small-World Net-
works. Physical Review Letters 87, 198701

Mahadev, N., Peled, U., 1995. Threshold Graphs and Related Topics, Am-
sterdam: North Holland.

Marsili, M., Vega-Redondo, F., Slanina, F., 2004. The rise and fall of a
networked society: a formal model. Proceedings of the National Academy
of Sciences 101, 1439–1442.

Mas, D., Vignes, A., Weisbuch, G., 2007. Networks and syndication strate-
gies: Does a venture capitalist need to be in the center?, ERMES Working
Paper No. 07-14, Universite Pantheon Assas, France.

May, R., Levin, S., Sugihara, G., 2008. Ecology for bankers. Nature 451 (21),
893–895.

Mehra, A., Kilduff, M., Brass, D. J., 2001. The social networks of high and
low self-monitors: Implications for workplace performance. Administra-
tive Science Quarterly 46, 121–146.

Newman, M. E. J., 2002. Assortative mixing in networks. Physical Review
Letters 89, 208701.

Newman, M. E. J., 2003. Mixing patterns in networks. Physical Review E
67, 026126.

Newman, M. E. J., 2004. Coauthorship networks and patterns of scientific
collaboration. Proceedings of the National Academy of Sciences 101, 5200-
5205.

Pastor-Satorras, R., Vázquez, A., Vespignani, A., 2001. Dynamical and cor-
relation properties of the internet. Physical Review Letters 87, 258701.

Perry-Smith, J., Shalley, C., 2003. The social side of creativity: A static and
dynamic social network perspective. Academy of Management Review 28,
89–106.

Powell, W. W., Koput, K. W., Smith-Doerr, L., 1996. Interorganizational
collaboration and the locus of innovation: Networks of learning in biotech-
nology. Administrative Science Quarterly 41, 116–145.

Riccaboni, M., Pammolli, F., 2002. On firm growth in networks. Research
Policy 31, 1405–1416.

Sabidussi, G., 1966. The centrality index of a graph. Psychometrika 31,
581–603.

Seneta, E., 1973. Markov Chains. George Allen & Unwin Ltd.
Seneta, E., 2006. Non-Negative Matrices and Markov Chains. Springer Ver-

lag.
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Appendix

A. Network Definitions and Characterizations

A network (graph) G is the pair (N, L) consisting of a set of agents (vertices
or nodes) N = {1, ..., n} and a set of links L (edges) between them. A
link ij is incident with the vertex v ∈ N in the network G whenever i = v
or j = v. There exists a link between vertices i and j such that aij = 1
if ij ∈ L and aij = 0 if ij /∈ L. The neighborhood of an agent i ∈ N
is the set Ni = {j ∈ N : ij ∈ L}. The degree di of an agent i ∈ N
gives the number of links incident to agent i. Clearly, di = |Ni|. Let

N (2)
i =

⋃

j∈Ni
Nj\ (Ni ∪ {i}) denote the second-order neighbors of agent i.

Similarly, the k-th order neighborhood of agent i is defined recursively from

N (0)
i = i, N (1)

i = Ni and

N (k)
i =

⋃

j∈N (k−1)
i

Nj\
(

k−1
⋃

l=0

N (l)
i

)

.

A walk in G of length k from i to j is a sequence p = 〈i0, i1, ..., ik〉 of agents
such that i0 = i, ik = j, ip 6= ip+1, and ip and ip+1 are directly linked, for all
0 ≤ p ≤ k − 1. Agents i and j are said to be indirectly linked in G if there
exists a walk from i to j in G. An agent i ∈ N is isolated in G if aij = 0 for
all j. The network G is said to be empty when all its agents are isolated.

A subgraph, G′, of G is the graph of subsets of the agents, N(G′) ⊆ N(G),
and links, L(G′) ⊆ L(G). A graph G is connected, if there is a path con-
necting every pair of agents. Otherwise G is disconnected. The components
of a graph G are the maximally connected subgraphs. A component is said
to be minimally connected if the removal of any link makes the component
disconnected.

A dominating set for a graph G = (N, L) is a subset S of N such that
every node not in S is connected to at least one member of S by a link.
An independent set is a set of nodes in a graph in which no two nodes are
adjacent. For example the central node in a star K1,n−1 forms a dominating
set while the peripheral nodes form an independent set.

In a complete graph Kn, every agent is adjacent to every other agent.
The graph in which no pair of agents is adjacent is the empty graph Kn. A
clique Kn′ , n′ ≤ n, is a complete subgraph of the network G. A graph is
k-regular if every agent i has the same number of links di = k for all i ∈ N .
The complete graph Kn is (n − 1)-regular. The cycle Cn is 2-regular. In a
bipartite graph there exists a partition of the agents in two disjoint sets V1

and V2 such that each link connects an agent in V1 to an agent in V2. V1

and V2 are independent sets with cardinalities n1 and n2, respectively. In a
complete bipartite graph Kn1,n2 each agent in V1 is connected to each other
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agent in V2. The star K1,n−1 is a complete bipartite graph in which n1 = 1
and n2 = n − 1.

The complement of a graph G is a graph Ḡ with the same nodes as G
such that any two nodes of Ḡ are adjacent if and only if they are not adjacent
in G. For example the complement of the complete graph Kn is the empty
graph K̄n.

Let A be the symmetric n× n adjacency matrix of the network G. The
element aij ∈ {0, 1} indicates if there exists a link between agents i and j
such that aij = 1 if ij ∈ L and aij = 0 if ij /∈ L. The k-th power of the
adjacency matrix is related to walks of length k in the graph. In particular,
(

Ak
)

ij
gives the number of walks of length k from agent i to agent j. The

eigenvalues of the adjacency matrix A are the numbers λ1, λ2, ..., λn such
that Avi = λivi has a nonzero solution vector vi, which is an eigenvec-
tor associated with λi for i = 1, ..., n. Since the adjacency matrix A of an
undirected graph G is real and symmetric, the eigenvalues of A are real,
λi ∈ R for all i = 1, ..., n. Moreover, if vi and vj are eigenvectors for dif-
ferent eigenvalues, λi 6= λj , then vi and vj are orthogonal, i.e. vT

i vj = 0 if
i 6= j. In particular, R

n has an orthonormal basis consisting of eigenvectors
of A. Since A is a real symmetric matrix, there exists an orthogonal matrix
S such that STS = SST = I (that is ST = S−1) and STAS = D, where
D is the diagonal matrix of eigenvalues of A and the columns of S are the
corresponding eigenvectors. The Perron-Frobenius eigenvalue λPF(G) is the
largest real eigenvalue of A associated with G, i.e. all eigenvalues λi of A sat-
isfy |λi| ≤ λPF(G) for i = 1, ..., n and there exists an associated nonnegative
eigenvector vPF ≥ 0 such that AvPF = λPF(G)vPF. For a connected graph
G the adjacency matrix A has a unique largest real eigenvalue λPF(G) and a
positive associated eigenvector vPF > 0. There exists a relation between the
number of walks in a graph and its eigenvalues. The number of closed walks
of length k from a agent i in G to herself is given by

(

Ak
)

ii
and the total

number of closed walks of length k in G is tr
(

Ak
)

=
∑n

i=1

(

Ak
)

ii
=
∑n

i=1 λk
i .

We further have that tr (A) = 0, tr
(

A2
)

gives twice the number of links in
G and tr

(

A3
)

gives six times the number of triangles in G.

B. Topological Properties of Nested Split Graphs

In this Appendix we discuss in more detail the topological properties
of nested split graphs that arise from our network formation process. We
first derive several network statistics for nested split graphs. We compute
the degree distribution, the clustering coefficient, average nearest neighbor
neighbor connectivity and the characteristic path length in a nested split
graph. In particular, we show that connected nested split graphs have small
characteristic path length, which is at most two. We then analyze different
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measures of centrality in a nested split graph.32 From the expressions of
these centrality measures we then can show that degree, closeness, eigenvec-
tor and Bonacich centrality induce the same ordering of nodes in a nested
split graph. If the ordering is not strict, then this holds also for betweenness
centrality. As we elaborate in more detail in Section 6.2 this has important
implications for the generality of our model.
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Figure 11: Representation of nested split graphs and their degree partitions D (top) with
corresponding adjacency matrices A (bottom). A line between Di and Dj indicates that
every node in Di is adjacent to every node in Dj . The partitions included in the solid
frame (Di with

¨

k
2

˝

+1 ≤ i ≤ k) are the dominating sets while the partitions in the dashed

frame (Di with 1 ≤ i ≤
¨

k
2

˝

) are the independent sets. The figure at the top left considers
the case of k = 6 (even) and the figure at the top right the case of k = 7 (odd). The
illustration follows Mahadev and Peled [1995, p. 11].

32See Wasserman and Faust [1994] for an overview of different measures of centrality.
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B.1. Network Statistics

In the following sections we will compute the degree connectivity, the
clustering coefficient, assortativity and average nearest nearest neighbor con-
nectivity and the characteristic path length in a nested split graph G as a
function of the degree partition D (introduced in Definition 4).

B.1.1. Degree Connectivity

The nested neighborhood structure of a nested split graph allows us to
compute the degrees of the nodes according to a recursive equation that is
stated in the next corollary.

Corollary 3. Consider a nested split graph G = (N, L) and let D = (D0, D1, ..., Dk)
be the degree partition of G. Then du = 0 if u ∈ D0 and for each u ∈ Di,
v ∈ Di−1, i = 1, ..., k, we get

du =

{

dv + |Dk−i+1|, if i 6=
⌊

k
2

⌋

+ 1,

dv + |Dk−i+1| − 1, if i =
⌊

k
2

⌋

+ 1,
(15)

or equivalently

du =

{

∑i
j=1 |Dk+1−j |, if 1 ≤ i ≤

⌊

k
2

⌋

,
∑i

j=1 |Dk+1−j | − 1, if
⌊

k
2

⌋

+ 1 ≤ i ≤ k.
(16)

Equation (15) shows that the neighborhoods of the agents in a nested split
graph are nested (see also Definition 5). The degrees of the agents in as-
cending order of the graph in Figure 11, top left, are 2, 3, 4, 5, 7, 9 while in
the graph in Figure 11, top right, they are 1, 2, 3, 4, 7, 8, 9.

B.1.2. Clustering Coefficient

The clustering coefficient C(u) for an agent u is the proportion of links
between the agents within her neighborhood Nu divided by the number of
links that could possibly exist between them [Watts and Strogatz, 1998]. It
is given by

C(u) =
|{vw : v, w ∈ Nu ∧ vw ∈ L}|

du(du − 1)/2
. (17)

In a nested split graph the clustering coefficient can be derived from the
degree partition, as the following corollary shows.

Corollary 4. Consider a nested split graph G = (N, L) and let D = (D0, D1, ..., Dk)
be the degree partition of G. Denote by Si

D =
∑k

j=i |Dj |. Then for each
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u ∈ Di, i = 0, ..., k, and du ≥ 2, the clustering coefficient is given by

C(u) =















































































0, if i = 0,

1, if 1 ≤ i ≤
⌊

k
2

⌋

,

1
du(du−1)

(

S
⌊ k

2⌋+1

D − 1

)[(

S
⌊ k

2⌋+1

D − 2

)

+

2|D⌊ k
2⌋|
]

, if i =
⌊

k
2

⌋

+ 1, k even,

1
du(du−1)

(

S
⌊ k

2⌋+1

D − 1

)(

S
⌊ k

2⌋+1

D − 2

)

, if i =
⌊

k
2

⌋

+ 1, k odd,

1
du(du−1)

[(

S
⌊ k

2⌋+1

D − 1

)(

S
⌊ k

2⌋+1

D − 2

)

+

2
∑⌊ k

2⌋
j=k−i+1 |Dj |

(

Sk−j+1
D − 1

)

]

, if
⌊

k
2

⌋

+ 2 < i ≤ k,

(18)
where du is given by Equation (16).

Proof of Corollary 4. Note that for all agents in the independent sets,
u ∈ Di with 1 ≤ i ≤

⌊

k
2

⌋

, the clustering coefficient is one, since their
neighbors are all connected among each other. Next, we consider the agents
u ∈ Di with

⌊

k
2

⌋

+1 ≤ i ≤ k and degree du =
∑i

j=1 |Dk+1−j |−1. The neigh-
bors of agent u in the dominating sets are all connected among each other

with a total of 1
2

(

∑k
j=⌊ k

2⌋+1
|Dj | − 1

)(

∑k
j=⌊ k

2⌋+1
|Dj | − 2

)

links, exclud-

ing agent u from the dominating set. The neighbors of u in the independent
sets are not connected. Finally, we consider the links between neighbors for
which one neighbor is in a dominating set and one neighbor is in an inde-

pendent set. If k is even we get
∑⌊ k

2⌋
j=k−i+1 |Dj |

(

∑k
l=k−j+1 |Dl| − 1

)

links,

excluding agent u in the dominating set (see Figure 11 (left)). If k is odd
there is no such contribution for the agents in the set D⌊ k

2⌋+1 (see Figure

11 (right)). Putting these contributions together we obtain the clustering
coefficient of an agent u ∈ Di for all i = 1, ..., k, as given by Equation (18).

2

The total clustering coefficient is the average of the clustering coefficients
over all agents,

C =
1

n

∑

u∈N

C(u). (19)

The clustering coefficients of the agents in ascending order of the graph
in Figure 11, top left, are 5/12, 5/12, 13/21, 9/10, 1, 1, 1, 1, 1, 1, with a total
clustering coefficient of C = 0.84. In the graph in Figure 11, top right, it is
13/36, 13/28, 4/7, 1, 1, 1, 1, 1, 1, with a total clustering of C = 0.74.
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B.1.3. Assortativity and Nearest Neighbor Connectivity

There exists a measure of degree correlation called “average nearest
neighbor connectivity”[Pastor-Satorras et al., 2001]. More precisely, the
average nearest neighbor connectivity dnn(u) is the average degree of the
neighbors of an agent with degree du. It is defined by

dnn(u) =
1

du

∑

v∈Nu

dv. (20)

In a nested split graph the average nearest neighbor connectivity is deter-
mined by its degree partition.

Corollary 5. Consider a nested split graph G = (N, L) and let D = (D0, D1, ..., Dk)
be the degree partition of G. Denote by Si

D =
∑i

j=1 |Dk+1−j |. Then for each
u ∈ Di, i = 0, ..., k,

dnn(u) =


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
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











0, if i = 0,
1

Si
D

∑i
j=1 |Dk+1−j |

(

Sk+1−j
D − 1

)

, if i = 1, ...,
⌊

k
2

⌋

,

1

S
⌊ k

2⌋+1

D
−1

[

∑k
j=⌊ k

2⌋+2
|Dj |

(

Sj
D − 1

)

+
(

|D⌊ k
2⌋+1| − 1

)

(

S
⌊ k

2⌋+1

D − 1

)

+ |D⌊ k
2⌋|S

⌊ k
2⌋

D

]

, if i =
⌊

k
2

⌋

+ 1, k even,

1

S
⌊ k

2⌋+1

D
−1

[

∑k
j=⌊ k

2⌋+1
|Dj |

(

Sj
D − 1

)]

− 1, if i =
⌊

k
2

⌋

+ 1, k odd,

1
Si

D
−1

[

∑k
j=⌊ k

2⌋+1
|Dj |

(

Sj
D − 1

)

+
∑⌊ k

2⌋
j=k−i+1 |Dj |Sj

D

]

− 1, if i =
⌊

k
2

⌋

+ 2, ..., k

(21)

Proof of Corollary 5. First, consider an agent u ∈ Di with i = 1, ...,
⌊

k
2

⌋

corresponding to the independent sets. We know that the number of neigh-
bors (degree) of agent u is given by

∑i
j=1 |Dk+1−j |. The neighbors of agent

u are the agents in the dominating sets with degrees given in Equation (16).
Thus, the number of neighbors of the neighbors of u in the sets Dk+1−j is
∑k+1−j

l=1 |Dk+1−l| − 1. Putting the above results together, we obtain for the
average nearest neighbor connectivity of agent u ∈ Di, i = 1, ...,

⌊

k
2

⌋

, the
following expression.

dnn(u) =
1

∑i
j=1 |Dk+1−j |

i
∑

j=1

|Dk+1−j |
(

k+1−j
∑

l=1

|Dk+1−l| − 1

)

. (22)

Next, we consider an agent u in the set Di with
⌊

k
2

⌋

+2 ≤ i ≤ k corresponding
to the dominating sets. The number of neighbors of agent u is given by
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∑i
j=1 |Dk+1−j | − 1. The number of neighbors of an agent v ∈ Dj ,

⌊

k
2

⌋

+1 ≤
j ≤ k in the dominating sets is given by

∑j
l=1 |Dk+1−l| − 1. Since agent

u is connected to all other agents in the dominating sets, we can sum over

all their neighborhoods with a total of
∑k

j=⌊ k
2⌋+1

|Dj |
(

∑j
l=1 |Dk+1−l| − 1

)

neighbors. Note however, that we have to subtract agent u herself from this
sum. Morover, the number of neighbors of an agent w ∈ Dj , 1 ≤ j ≤

⌊

k
2

⌋

in

the independent sets is given by
∑j

l=1 |Dk+1−l|. Thus, the average nearest
neighbor connectivity of agent u ∈ Di,

⌊

k
2

⌋

+ 2 ≤ i ≤ k, is given by

dnn(u) = 1
Pi

j=1 |Dk+1−j |−1

[

∑k
j=⌊ k

2⌋+1
|Dj |

(

∑j
l=1 |Dk+1−l| − 1

)

+
∑⌊ k

2⌋
j=k−i+1 |Dj |

∑j
l=1 |Dk+1−l|

]

− 1.
(23)

In a similar way we can consider the cases i =
⌊

k
2

⌋

+ 1 for both k even and
k odd. 2

When the average nearest neighbor connectivity is a monotonic increas-
ing function of the degree d, then the network is assortative, while, if it is
monotonic decreasing with d, it is dissortative [Newman, 2002; Pastor-Satorras et al.,
2001]. Nested split graphs are dissortative, since for i < j and du ∈ Di <
dv ∈ Dj it follows that dnn(u) > dnn(v). This is because the higher is the
degree of an agent in a dominating set, the more neighbors she has from
the independent sets with low degrees, which decreases her average nearest
neighbor connectivity. For example, the average nearest neighbor connec-
tivities of the agents in the graph in Figure 11, top left, in ascending order
are 13/3, 13/3, 37/7, 33/5, 15/2, 15/2, 25/3, 25/3, 9, 9 while in the graph in
Figure 11, top right, they are 35/9, 35/8, 34/7, 7, 7, 8, 8, 8, 17/2, 9.

B.1.4. Characteristic Path Length

The characteristic path length is defined as the number of links in the
shortest path between two agents, averaged over all pairs of agents [Watts and Strogatz,
1998]. This can be written as

L =
1

n(n − 1)/2

∑

u 6=v

d(u, v), (24)

where d(u, v) is the geodesic (shortest path) between agent u and agent v
in N\D0.

33 Then the characteristic path length in a nested split graph is
given by the following corollary.

33Note that we do not consider the isolated agents in the set D0 because the character-
istic path length L is not defined for disconnected networks.

41



Corollary 6. Consider a nested split graph G = (N, L) and let D = (D0, D1, ..., Dk)
be the degree partition of G. Then the characteristic path length of G is given
by

L = 1
n(n−1)/2

[

1
2

∑k
j=⌊ k

2⌋+1
|Dj |

(

∑k
j=⌊ k

2⌋+1
|Dj | − 1

)

+

∑⌊ k
2⌋

j=1 |Dj |
(

∑⌊ k
2⌋

j=1 |Dj | − 1

)

+

∑⌊ k
2⌋

l=1 |Dl|
(

∑k
j=k−l+1 |Dj | + 2

∑k−l

j=⌊ k
2⌋+1

|Dj |
)]

.

(25)

Proof of Corollary 6. We first consider all pairs of agents in the domi-
nating sets. All theses agents are adjacent to each other and thus the shortest

path between them has length one. Moreover, there are 1
2

∑k
j=⌊ k

2⌋+1
|Dj |

(

∑k
j=⌊ k

2⌋+1
|Dj | − 1

)

pairs of agents in the dominating sets.
Next, we consider all pairs of agents in the independent sets. From Equa-

tion (31) we know that all of them are at a distance of two links separated

from each other. Moreover, there are 1
2

∑⌊ k
2⌋

j=1 |Dj |
(

∑⌊ k
2⌋

j=1 |Dj | − 1

)

pairs

of agents in which both agents stem from an independent set.
Finally, we consider the pairs of agents in which one agent is in the

independent set D1 and the other in a dominating set. Then there are
|D1||Dk| pairs of agents with shortest path 1 and |D1|

∑k−1

j=⌊ k
2⌋+1

|Dj | pairs of

agents with shortest path 2. Similarly, we can consider the pairs in which one
agent is in the set D2. Then we have |D2|(|Dk|+ |Dk−1|) pairs of agents with
shortest path 1 and |D2|

∑k−2

j=⌊ k
2⌋+1

|Dj | pairs of agents with shortest path 2.

Finally, if one agent is in the set D⌊ k
2⌋ then we have |D⌊ k

2⌋|
∑k

j=⌊ k
2⌋+1

|Dj |
pairs of agents with distance 1 and none with distance 2, if k is even (see
Figure 11, top left). If k is odd (see Figure 11, top right), and we have one
agent is in the set D⌊ k

2⌋ then we have |D⌊ k
2⌋|
∑k

j=⌊ k
2⌋+2

|Dj | pairs of agents

with distance 1 and |D⌊ k
2⌋||D⌊ k

2⌋+1| pairs with distance 2.

Therefore, the average path length L defined in Equation (24) is given
by the following equation

n(n−1)
2 L = 1

2

∑k
j=⌊ k

2⌋+1
|Dj |

(

∑k
j=⌊ k

2⌋+1
|Dj | − 1

)

+

21
2

∑⌊ k
2⌋

j=1 |Dj |
(

∑⌊ k
2⌋

j=1 |Dj | − 1

)

+

∑⌊ k
2⌋

l=1 |Dl|
[

∑k
j=k−l+1 |Dj | + 2

∑k−l

j=⌊ k
2⌋+1

|Dj |
]

.

(26)

2

Considering the graph in Figure 11, top left, the characteristic path
length is L = 22/15 while in the graph in Figure 11, top right, we get
L = 68/45.
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Taking the inverse of the shortest path length one can introduce a re-
lated measurement, the network efficiency34 E , that is also applicable to
disconnected networks [Latora and Marchiori, 2001]

E =
1

n(n − 1)

∑

u 6=v

1

d(u, v)
. (27)

Finally, we find that in a connected nested split graph agents are at most
two links separated from each other and thus these graphs are characterized
by a short characteristic path length.

B.2. Centrality

In the next sections we analyze different measures of centrality in a
nested split graph G. We derive the expressions for degree, closeness and
betweenness centrality as a function of the degree partition of G. Finally,
we show that these measures are similar in the sense that they induce the
same ordering of the nodes in G based on their centrality values.

B.2.1. Degree Centrality

The degree centrality of an agent u ∈ N is given by the proportion of
agents that are adjacent to u [Wasserman and Faust, 1994]. We obtain the
normalized degree centrality simply by dividing the degree of agent u with
the maximum degree n − 1. This yields the following corollary.

Corollary 7. Consider a nested split graph G = (N, L) and let D = (D0, D1, ..., Dk)
be the degree partition of G. Then for each u ∈ Di, i = 0, ..., k, the degree
centrality is given by

Cd(u) =

{

1
n−1

∑i
j=1 |Dk+1−j |, if 1 ≤ i ≤

⌊

k
2

⌋

,
1

n−1

(

∑i
j=1 |Dk+1−j | − 1

)

, if
⌊

k
2

⌋

+ 1 ≤ i ≤ k.
(28)

Proof of Corollary 7. The result follows directly from Corollary 3. 2

We observe that degree centrality as well as the degree are increasing with
increasing index i of the set Di to which agent u belongs. Degree centralities
for the graphs shown in Figure 11 can be derived from the degrees given in
Section B.1.1 by dividing the degrees with n − 1.

34The network efficiency must not be confused with the efficiency of a network. The
first is related to short paths in the network while the latter measures social welfare, that
is, the efficient network maximizes aggregate payoff.
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B.2.2. Closeness Centrality

Excluding the isolated nodes in G the closeness centrality of agent u ∈
N \ D0 is defined as [Beauchamp, 1965; Sabidussi, 1966]:

Cc(u) =
n − 1

∑

v 6=u d(u, v)
. (29)

where d(u, v) measures the shortest path between agent u and agent v in
N \ D0. For a nested split graph we obtain the following corollary.

Corollary 8. Consider a nested split graph G = (N, L) and let D = (D0, D1, ..., Dk)
be the degree partition of G. Then for each u ∈ Di, i = 0, ..., k, the closeness
centrality is given by

Cc(u) =







n−1
Pk

j=k−i+1 |Dj |+2
Pk−i

j=1 |Dj |−2
, if 1 ≤ i ≤

⌊

k
2

⌋

,

n−1
Pk

j=k−i+1 |Dj |+2
Pk−i

j=1 |Dj |−1
, if

⌊

k
2

⌋

+ 1 ≤ i ≤ k.
(30)

Proof of Corollary 8. For both agents in the independent sets, u ∈ Di

with 1 ≤ i ≤
⌊

k
2

⌋

, and in the dominating sets, u ∈ Di with
⌊

k
2

⌋

+ 1 ≤ i ≤ k,
we can compute the length of the shortest paths as follows:

d(u, v) =

{

1 for all v ∈ ⋃k
j=k−i+1 Dj ,

2 for all v ∈ ⋃k−i
j=1 Dj .

(31)

In order to compute the closeness centrality we have to consider all pairs of
agents in the graph and compute the length of the shortest path between
them, which is given in Equation (31). We obtain for any agent u ∈ Di,
i = 1, ..., k, the following expression

Cc(u) =







n−1
Pk

j=k−i+1 |Dj |+2
Pk−i

j=1 |Dj |−2
, if 1 ≤ i ≤

⌊

k
2

⌋

n−1
Pk

j=k−i+1 |Dj |+2
Pk−i

j=1 |Dj |−1
, if

⌊

k
2

⌋

+ 1 ≤ i ≤ k.
(32)

Note that we have subtracted 1 and 2 in the denominator, respectively, since
the sums would otherwise include the contribution of agent u herself. 2

We have that closeness centrality is identical for all agents in the same
set. Also note that Cc(u) = 1 for u ∈ Dk. Moreover, closeness cen-
trality is increasing with increasing degree. The closeness centralities of
the agents in descending order for the graph in Figure 11, top left, are
1, 1, 9/11, 9/13, 9/14, 9/14, 9/15, 9/15, 9/16, 9/16 while in the graph in Fig-
ure 11, top right, they are 1, 9/10, 9/11, 9/14, 9/14, 9/15, 9/15, 9/15, 9/16, 9/17.
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B.2.3. Betweenness Centrality

Betweenness centrality is defined as [Freeman, 1977]

Cb(u) =
∑

u 6=v 6=w

g(v, u, w)

g(v, w)
, (33)

where g(v, w) denotes the number of shortest paths from agent v to agent
w and g(v, u, w) counts the number of paths from agent v to agent w that
pass through agent u.

The betweenness centrality for a nested split graph can be derived from
its degree partition as follows.35

Corollary 9. Consider a nested split graph G = (N, L) and let D = (D0, D1, ..., Dk)
be the degree partition of G. Then Cb(u) = 0 if u ∈ Di, i = 0, ...,

⌊

k
2

⌋

and

for each u ∈ Di, v ∈ Di−1, i =
⌊

k
2

⌋

+ 1, ..., k, the betweenness centrality is
given by

Cb(u) =











































0 if , i =
⌊

k
2

⌋

+ 1, k odd

|D⌊ k
2⌋|

„

|D⌊ k
2⌋|−1

«

Pk

j=⌊ k
2⌋+1

|Dj |
, if , i =

⌊

k
2

⌋

+ 1, k even

Cb(v) +
|Dk−i+1|(|Dk−i+1|−1)

Pk
j=i |Dj |

+
2|Dk−i+1|

Pi−1
j=k−i+2 |Dj |

Pk
j=i |Dj |

, if
⌊

k
2

⌋

+ 2 ≤ i ≤ k.

(34)

Proof of Corollary 9. In this proof, we follow closely Hagberg et al.
[2006]. The agents in the independent sets Di, 0 ≤ i ≤

⌊

k
2

⌋

do not lie on
any shortest path between two other agents in the network and thus their
betweenness centrality vanishes. For the agents in the dominating sets we
have that the betweenness centrality of the agent u ∈ D⌊ k

2⌋+1 vanishes if

k is odd and is given by |D⌊ k
2⌋|
(

|D⌊ k
2⌋| − 1

)

/
∑k

j=⌊ k
2⌋+1

|Dj | if k is even.

The latter result is due the shortest path between agents that are both in
D⌊ k

2⌋. Next, consider an agent u ∈ Di and v ∈ Di−1, with
⌊

k
2

⌋

+ 2 ≤ i ≤ k.

Then the betweenness centrality of agent u is given by the following recursive
relationship

Cb(v) +
|Dk−i+1| (|Dk−i+1| − 1)

∑k
j=i |Dj |

+
2|Dk−i+1|

∑i−1
j=k−i+2 |Dj |

∑k
j=i |Dj |

. (35)

The first term in Equation (35) is due to the fact that all shortest paths
through lower dominating nodes v ∈ Di−1 have the same length as through

35A similar result can be found in Hagberg et al. [2006].
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u ∈ Di. The second term in Equation (35) represents the contribution of
paths between nodes in Dk−i+1, divided by the number of shortest path
passing through the agents in the dominating sets Dj , i ≤ j ≤ k. The third
term in Equation (35) represents all path between an agent in Dk−i+1 and
the other being in Dj , k−i+2 ≤ j ≤ i−1, divided by the number of shortest
path passing through the agents in the dominating sets Dj , i ≤ j ≤ k. 2

From Corollary 9, we find that the agents in the independent sets Di

with 1 ≤ i ≤
⌊

k
2

⌋

have vanishing betweenness centrality. From the above
equation we also observe that the betweenness centrality is increasing with
degree such that the agents in Dk have the highest betweenness centrality,
the agents in Dk−1 the second highest betweenness centrality and so on.
Thus, the ordering of betweenness centralities follows the degree ordering
for all agents in the dominating sets while the agents in the independent
sets have vanishing betweenness centrality. For the betweenness centralities
of the agents in the graph in Figure 11, top left, we obtain in descending
order 109/6, 109/6, 31/6, 1/2, 0, 0, 0, 0, 0, 0 while in the graph in Figure 11,
top right, they are 28, 12, 6, 0, 0, 0, 0, 0, 0, 0.

B.2.4. Eigenvector Centrality

There is a central property that holds for nested split graphs in relation
to Bonacich centrality, namely that the agents with higher degree also have
higher Bonacich centrality. Similar to part (i) of Proposition 1 we can give
the following corollary.36

Corollary 10. Let v be the eigenvector associated with the largest real eigen-
value λPF(G) of the adjacency matrix A of a nested split graph G = (N, L).
For each i = 1, ..., n, vi is the eigenvector centrality of agent i. Consider a
pair of agents i, j ∈ N . If and only if agent i has a higher degree than agent
j then i has a higher eigenvector centrality than j, i.e.

di > dj ⇔ vi > vj .

Proof of Corollary 10. The proof is identical to the proof of part (i)
of Proposition 1. 2

B.2.5. Centrality Rankings

Putting together the results for different centrality measures derived in
the previous sections, we can make the following observation of the rankings
of agents for different centrality measures in a nested split graph.

36A similar result can be found in [Grassi et al., 2007].
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Corollary 11. Consider a nested split graph G = (N, L). Let Cd, Cc, Cb,
Cv denote the degree, closeness, betweenness and eigenvector centrality in G.
Then for any l, m ∈ {d, c, v}, l 6= m and i, j ∈ N we have that

Cl(i) ≥ Cl(j) ⇔ Cm(i) ≥ Cm(j), (36)

and
Cl(i) ≥ Cl(j) ⇒ Cb(i) ≥ Cb(j). (37)

Proof of Corollary 11. The proof is a direct application of Corollaries
7, 8 9 and Proposition 1. 2

If and only if an agent i has the k-th highest degree centrality then i is the
agent with the k-th highest closeness and eigenvector centrality. This result
also holds for Bonacich centrality (see Proposition 1). Moreover, if an agent
i has the k-th highest degree centrality then it also has the k-th highest
betweenness centrality and this also holds for closeness, eigenvector and
Bonacich centrality, respectively. The ordering induced by degree, closeness
eigenvector and Bonacich centrality coincide and these orderings also apply
in a weak sense for betweenness centrality. We discuss in Section 6.2 that
this allows us to generalize our model to various other centrality measures
beyond Bonacich centrality.

C. Capacity Constraints and Global Search

A natural generalization of the model presented in the paper is to al-
low for the possibility that agents are not accepting to establish a link from
another agent that wants to connect to them. The underlying assump-
tion is that agents face capacity constraints in the number of links they
can maintain. Such constraints can arise from a possible information over-
load and congestion [Arenas et al., 2008; Dodds et al., 2003; Fagiolo, 2005;
Guimerà et al., 2002; Huberman and Hogg, 1995]. In addition, we assume
that agents are not only searching for new contacts among their neighbors’
neighbors but also among all agents in the network. However, agents prefer-
ably connect to their neighbors’ neighbors and only if this fails they search
for new contacts at random. This means that, if capacity constraints pre-
vent an agent from forming a link locally, we assume that she tries to link
to an agent out of the whole population of agents at random. This mech-
anism introduces a global search mechanism in the link formation process
(see Marsili et al. [2004]; Vega-Redondo [2006] for a similar approach). We
find that by introducing capacity constraints and global search, differently
to the model presented in the main text, stationary networks can become
assortative. Thus, we are able to reproduce all topological properties of
empirically observed social and economic networks. Moreover, the emer-
gence of assortativity and positive degree-correlations respectively can be
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explained by considering limitations in the number of links an agent can
maintain. This may be of particular relevance for social networks and give
an explanation for the distinction between assortative social networks and
dissortative technological networks suggested in Newman [2002].

We assume that capacity constraints arise from the fact that an agent can
only interact with another agent out of her neighborhood at a time. Each
neighbor of an agent requests information with probability β.37 Assuming
that information requests are independent, the probability that an agent j ∈
N with dj links does not receive any information requests from her neighbors
is given by (1−β)dj . If an agent does not receive such an information request,
she can accept an additional link, otherwise not.

Moreover, we allow for the formation of links between agents that are
not connected through a common neighbor. This means that agents search
globally for new contacts if they cannot connect to the agent with highest
centrality among their neighbors’ neighbors. When an agent i is selected, she
tries to connect to the agent j with the highest degree in her neighborhood
Ni. However, agent j ∈ Ni only accepts the link ij with probability (1−β)dj ,
otherwise agent i selects another agent k ∈ N\ (Ni ∪ {i, j}) out of the whole
population of agents (excluding agents i and j) uniformly at random, and
this link also has the same acceptance probability (1 − β)dk based on the
degree of agent k.

In the following, we make a rather technical assumptions. First, in the
model exposed in the text, the Bonacich centrality of an agent increases the
most if she forms a link to the agent with the highest degree. For the current
model we will assume that this property is still approximately true. In most
cases this approximation can be made albeit there exist exceptions in which
the degree and Bonacich centrality ranking do not coincide [Grassi et al.,
2007].

Taking into account the above mentioned capacity constraints in the
number of links an agent can form and the possibility to form links outside
the second order neighborhood, we generalize the link formation process
(G(t))∞t=0 introduced in Section 2.2 as follows:

Definition 7. We define the network formation process (G′(t))∞t=0, G′(t) =
(N, L′(t)), as a sequence of networks G′(0), G′(1), G′(2), ... in which at every
step t = 0, 1, 2, ..., an agent i ∈ N is uniformly selected at random. Then
one of the following two events occurs:

(i) With probability α ∈ (0, 1) agent i receives the opportunity to create an

additional link. Let j be the agent in N (2)
i with the highest degree, that

is dj ≥ dk for all j, k ∈ N (2)
i . Then with probability (1 − β)dj the link

ij is formed. Otherwise agent i connects to a randomly selected agent

37If an agent has to process such a request, she cannot accept an additional link.
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k ∈ N\ (Ni ∪ {i, j}) with probability
(

1 − (1 − β)dj
)

(1−β)dk . If agent
i is already connected to all other agents then nothing happens.

(ii) With probability 1− α , the link to the agent j in Ni with the smallest
degree dj ≤ dk for all j, k ∈ Ni, decays. If agent i does not have any
links then nothing happens.

link decay
qi = 1 − α

pi = α

local link
creation

(1 − β)dj

global link
creation

(

1 − (1 − β)dj
)
∑

k∈N\(Ni∪{i,j})(1 − β)dk

Figure 12: Probabilities with which a randomly selected agent i creates a link and a link of
agent i decays, respectively, when capacity constraints are taken into account (assuming
that the agent is neither isolated nor fully connected).

An illustration of the above link formation process (G′(t))∞t=0 is shown in
Figure 12. An agent i is selected at random either creates a link or the
link to the neighbor with lowest centrality decays with probability qi =
1 − α. However, with probability pi = α agent i is selected to create a
link. In this case, agent i forms the link to agent j with highest centrality
among her second order neighbors with probability (1−β)dj and to another
agent out of the whole population of agents at random with probability
(

1 − (1 − β)dj
)
∑

k∈N\(Ni∪{i,j})(1 − β)dk .

Having introduced the extended network formation process (G′(t))∞t=0 we
now investigate its properties by means of computer simulations for values
of α ∈ [0.2, 0.5] and β ∈ [0.01, 1].38 We consider a set of n = 200 agents
and use a sample of 30 to 40 simulation runs from which we compute the
average as an approximation to the stationary network.

Figure 13 shows the clustering and assortativity of stationary networks
for different values of α and β. We find that for values of β around 0.1
and in α ∈ [0.45, 0.5] stationary networks are assortative while displaying
a high clustering (albeit lower than in the basic model without capacity

38In the simulation results shown in this section, we assume that if an agent is not free
to accept an additional link, (or the agent that is the target of the link can not form an
additional link) another agent is selected, until a link is formed. In this way, the values of α
in the generalized model are comparable with the basic model without capacity constraints
in which α is a measure of the network density.
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Figure 13: In the left panel we show the clustering coefficient obtained by recourse of
numerical simulations of the extended model with capacity constrains for different values
of α and β in a network with n = 200 agents. In the right panel we show the corresponding
network assortativity. Each different curve corresponds to a different value of α. Only
agents that are not isolated are considered.
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Figure 14: The left panel shows the characteristic path length L of the stationary network
and the right panel shows the results for the network efficiency E by recourse of numerical
simulations of the model with capacity constrains for different values of α and β in a
system comprised of n = 200 agents.

constraints). In Figure 14 we show the characteristic path length L and the
efficiency E in terms of short connections in the network. The plots indicate
that stationary networks in the extended model exhibit short path lengths
between the agents. However, we find that the stationary network may not
just consist of one connected component and possibly isolated agents but it
may have multiple components. However, there exists a giant component
encompassing at least 90% of the agents in all the simulations we studied.
We can further analyze the degree distribution of stationary networks and
we find that it is highly skewed following an exponential function.

Moreover, we find that the results for different centralization measures
show a similar behavior as we have seen already in Section 4.5. There exists
a sharp, albeit less pronounced, transition from highly centralized networks
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to homogeneous networks by increasing α above 1/2.
In Figure 15 we show the fraction of the largest real eigenvalue (as a mea-

sure of efficiency) of the stationary network compared to the corresponding
value of the complete network. The figure resembles the findings in Section
5. For values of α < 1/2 stationary networks are highly inefficient with
respect to the complete network.
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Figure 15: We show the largest eigenvalue of the adjacency matrix normalized to the
largest one in a complete graph (which is the efficient network), obtained by recourse of
numerical simulations for the model with capacity constrains for different values of α and
β in a system comprised of n = 200 agents.

In this section we have studied different network statistics for differ-
ent values of α and β. We find that, by introducing capacity constraints
and global search, stationary networks become assortative while exhibit-
ing an exponential degree distribution, high clustering, short average path
length and negative clustering-degree correlation. These characteristics can
be found in social and economic networks as well. Thus, our model is able to
reproduce characteristics of real world networks to the whole extent, ranging
from assortative to dissortative networks.

Our findings have an implication for the distinction between assortative
and dissortative networks in the literature. As we have discussed in the main
text, our network formation process generates stationary networks that are
characterized by negative degree-degree correlation and dissortativity. On
the other hand, capacity constraints transform stationary networks to ex-
hibiting positive degree-degree correlations and assortativity. This effect
may shed some light on the origin of the distinction between technological
and social networks suggested in Newman [2002, 2003] where technological
networks are characterized by dissortativity and social networks by assor-
tativity. Following our findings, technological networks are facing capacity
constraints to a much lower extent than social networks. Consider for ex-
ample the internet as a technological network and the email network in an
organization as a prototype of a social network. The number of hyper-links
a website can contain may not be limited as much as the number of social
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contacts (measured e.g. by mutual email exchange) an individual in an or-
ganization may keep. Thus, the distinction between technological and social
networks and the degree of assortativity and degree-degree correlations can
be derived from the severity of capacity constraints imposed on the number
of links an agent can maintain.

D. Proofs of Propositions, Corollaries and Lemmas

In this section we give the proofs of the propositions, corollaries and lemmas
stated earlier in the paper.

Proof of Proposition 1.

(i) A graph having a stepwise adjacency matrix is a nested split graph
G. A nested split graph has a nested neighborhood structure. The
neighborhood Nj of an agent j is contained in the neighborhood Ni

of the next higher degree agent i with |Ni| = di > |Nj | = dj with
Nj ⊂ Ni. For a symmetric adjacency matrix the vector of Bonacich
centralities is given by b(G, λ) = λAb + u, u = (1, ..., 1)T . For agent
i we get

bi(G, λ) = λ
n
∑

k=1

aikbk(G, λ) + 1 = λ
∑

k∈Ni

bk(G, λ) + 1, (38)

and similarly for agent j

bj(G, λ) = λ
∑

k∈Nj

bk(G, λ) + 1. (39)

Since Nj ⊂ Ni and dj = |Nj | < |Ni| = di we get

bi(G, λ)

bj(G, λ)
=

λ
∑

k∈Ni
bk(G, λ) + 1

λ
∑

k∈Nj
bk(G, λ) + 1

> 1. (40)

The inequality follows from the fact that the Bonacich centrality is
nonnegative and the numerator contains the sum over the same posi-
tive numbers as the denominator plus some additional values.

Conversely, in a nested split graph we must either have Ni ⊂ Nj or
Nj ⊂ Ni. Assuming that bi(G, λ) > bj(G, λ) we can conclude from
the above equation that Nj ⊂ Ni and therefore |Ni| = di > |Nj | = dj .
If there are l distinct degrees in G then the ordering of degrees d1 >
d2 > ... > dl is equivalent to the ordering of the Bonacich centralities
b1(G, λ) > b2(G, λ) > ... > bl(G, λ).

(ii) Consider the agents i, j and k in the nested split graph G(t), such
that dj ≤ dk. Let G′ be the graph obtained from G(t) by adding the
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link ij and G′′ be the graph obtained from G(t) by adding the link
ik. We want to show that the Bonacich centrality of agent i in G′′

is higher than in G′, that is, bi(G
′, λ) < bi(G

′′, λ). For this purpose
we count the number of walks emanating at agent i when connecting
either to agent j or agent k. Since G is a nested split graph, we have

i

j k

Nj Nk

G′ G′′

Figure 16: An illustration of the two networks G′ and G′′, which differ in the links
ij and ik. The neighborhood Nj of agent j and the neighborhood Nk of agent k are
indicated by corresponding boxes. Note that the neighborhood of agent j is contained
in the neighborhood of agent k. The loop at agent i indicates a walk starting at i and
coming back to i before proceeding to either agent j or k.

that Nj ⊂ Nk. An illustration is given in Figure 16. We consider a
walk Wl of length l ≥ 2 starting at agent i in G′. We want to know
how many such walks there are in G′ and G′′, respectively. For this
purpose we distinguish the following cases:

(a) Assume that Wl does not contain the link ij nor the link ik. Then
each such walk Wl in G′ is also contained in G′′, since G′ and G′′

differ only in the links ij and ik.

(b) Consider the graph G′ and a walk Wl starting at agent i and
proceeding to agent j. For each walk Wl in G′ there exists a walk
W̃l in G′′ being identical to Wl except of proceeding from i to j it
proceeds from i to k and then to the neighbor of j that is visited
after j in Wl. This is always possible since the neighbors of j are
also neighbors of k.

(c) Consider a walk Wl in G′ that starts at i but first takes a detour
returning to i before proceeding from i to j. Using the same
argument as in (ii) it follows that for each such walk Wl in G′

there exists a walk of the same length in G′′.
(d) Consider a walk Wl in G′ that starts at agent i and at some point
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in its sequence of agents and links proceeds from agent j to agent
i. For each such walk Wl in G′ there exists a walk W̃l in G′′ that
is identical to Wl except that it does not proceed from a neighbor
of j to j and then to i it proceeds from a neighbor of j to k and
then to i.

The above cases take into account all possible walks in G′ and G′′ of
an arbitrary length l and show that in G′′ there are at least as many
walks of length l starting from agent i as there are in G′.

Now consider the walks of length two, W2, in G′ starting at agent
i and proceeding to agent j. Then there are |Nj | such walks in G′.
However, there are |Nk| > |Nj | such walks in G′′ of length two that
start at agent i.

The Bonacich centrality bi(G(t), λ) is computed by the number of all
walks in G(t) starting from i, where the walks of length l are weighted
by their geometrically decaying factor λl. We have shown that for
each l the number of walks in G′′ is larger or equal than the number
of walks in G′ and for l = 2 it is strictly larger. Thus, the Bonacich
centrality of agent i in G′′ is higher than in G′. Note that all agents in
a nested split graph are at most two links separated from each other
(if there exists any walk between them). Thus, the agent with the
highest degree is also the agent with the highest degree among the
neighbors’ neighbors. From this discussion we see that in a nested
split graph G(t) the local best response of an agent i are the agents
with the highest degrees in i’s second-order neighborhood. 2

Proof of Proposition 2. We give a proof by induction. Let G(t) be a
network generated by ((G(t))∞t=0. The induction basis is trivial. We start
at t = 0 from an empty network G(0) = K̄n, which has a trivial stepwise
adjacency matrix (see also the Definition 6). Since there are no link present
in K̄n we can omit the removal of a link. At t = 1 we select an agent and
connect her to another one. All isolated agents are best responses of the
selected agent. This creates a path of length one whose adjacency matrix is
stepwise. This is true because we can always find a simultaneous columns
and rows permutation which makes the adjacency matrix stepwise. Thus
G(1) has a stepwise adjacency matrix.

Next we consider the induction step G(t) to G(t + 1). By the induction
hypothesis, G(t) is a nested split graph with a stepwise adjacency matrix.
First, we consider the creation of a link ij. Now let agent j be a local best
response of agent i, that is j ∈ BRi(G(t)). Now, a link is created only if
agent i is also a local best response of agent j, that is i ∈ BRj(G(t)). Using
Proposition 1, this means that agent i must be the agent with the highest
degree in the second-order neighborhood of agent j. From the stepwise
adjacency matrix A(G(t)) of G(t) (see Definition 6) we find that adding
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Figure 17: Two possible positions for the creation of a link from agent 4, either to agent 7
or to agent 10, are indicated with boxes. Agent 7 has degree 3 while agent 10 has degree
1. Creating a link to an agent with higher degree results in higher equilibrium payoffs.
Thus, the best response of agent 4 is agent 7 and not agent 10.

the link ij to the network G(t) such that both agents are the agents with
the highest degrees in their second-order neighborhoods results in a matrix
A(G(t) + ij) that is stepwise. Therefore, the network G(t) + ij is a nested
split graph.

We give an example in Figure 17. Let the agents be numbered by the
rows respectively columns of the adjacency matrix. We assume that agent
4 is selected to create a link. Two possible positions for the creation of a
link from agent 4, either to agent 7 or to agent 10 are indicated with boxes.
Since, in a stepwise matrix, the best response agent has the highest degree,
agent 7 is a best response of agent 4 while agent 10 is not. We now can
turn to the best response of agent 7. The agents not connected to agent 7
are indicated by zero entries in the seventh column of the adjacency matrix.
There we find that agent 4 is also a best response of agent 7, since agent
4 is the agent with the highest degree not already connected to agent 7.
Finally, we observe that creating the link 47 preserves the stepwise form of
the adjacency matrix (see also Definition 6).39

For the removal of a link a similar argument can be applied as in the
preceding discussion. Disconnecting from the agent with the smallest degree
decreases the Bonacich centrality and equilibrium payoffs the least. From
the properties of the stepwise matrix A(G(t)) it then follows that the matrix
A(G(t) − ij) is stepwise.

Thus, in any step t in the network formation process (G(t))∞t=0, G(t) is
a nested split graph with an associated stepwise adjacency matrix A(G(t)).

2

39The adjacency matrix is uniquely defined up to a permutation of its rows and columns.
Applying such a permutation, we can always find an adjacency matrix which is stepwise.
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Proof of Corollary 1. In Proposition 2 we have shown that G(t) gen-
erated by (G(t))∞t=0 is a nested split graph for all times t. In a nested split
graph, any node in the connected component is directly connected to the
node(s) with maximum degree. Thus, there exists a path of at most length
two from any node to any other node in the connected component. It follows
that G(t) consists of a connected component and possible isolated nodes. 2

Proof of Proposition 3. We will show that the network formation pro-
cess (G(t))∞t=0 introduced in Definition 3 induces a Markov chain on a finite
state space Ω. Ω contains all unlabeled nested split graphs with n nodes.
It can be shown that |Ω| = 2n−1 [Mahadev and Peled, 1995]. Therefore,
the number of states is finite and the transition between states can be rep-
resented with a transition matrix P. In the following we show that this
Markov chain is irreducible and aperiodic. We then say that (G(t))∞t=0 is
ergodic.

First, we show that (G(t))∞t=0 is a Markov chain. The network G(t + 1)
is obtained from G(t) by removing or adding a link to G(t). Thus, the
probability of obtaining G(t + 1) depends only on G(t) and not on the
previous networks G(t′) for t′ < t, that is

P (G(t + 1) = Gj |G(0) = Gi0 , G(1) = Gi1 , ..., G(t) = Git) =

P (G(t + 1) = Gj |G(t) = Git) . (41)

The number of possible networks G(t) is finite for any time t and the tran-
sition probabilities from a network G(t) to G(t + 1) do not depend on t but
only on α and the current number of agents in the independent sets and
dominating sets, respectively. Therefore, (G(t))∞t=0 is a finite state, discrete
time, homogeneous Markov chain. Moreover, the transition matrix P is
defined by (P)ij = P (G(t + 1) = Gj |G(t) = Gi) for any Gi, Gj ∈ Ω.

Next, we show that the Markov chain is irreducible. Consider two net-
works G, G′ ∈ Ω. (G(t))∞t=0 is irreducible if there exists a positive probability
to pass from any G to any other G′ in Ω. We say that G′ is accessible from G.
For any G there exists a positive probability that in all consecutive steps in
the Markov chain links are removed and no links are created until the empty
network K̄n ∈ Ω is reached. Then there exists a positive probability that
from K̄n only those links are created that generate exactly the network G′.
Therefore, there exists a positive probability to pass from any network G to
any other network G′ with positive probability. Similarly, one can show that
G is accessible from G′. States G and G′ are accessible from one-another.
We say that they communicate and Ω is a communicating class.

Moreover, the Markov chain is aperiodic. Observe that with positive
probability the empty network K̄n can stay empty in the next time step.
This happens when an agent in K̄n is selected for removing a link with prob-
ability 1−α. Since this agent has no links, nothing happens. Thus, the state
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K̄n is aperiodic. The existence of an aperiodic state in the communicating
class Ω implies that the Markov chain induced by (G(t))∞t=0 is aperiodic.

Since we have shown that (G(t))∞t=0 induces a finite Markov chain that is
irreducible and aperiodic, we say that the Markov chain is ergodic. Further,
this means that there exists a unique stationary distribution µ satisfying
µP = µ [see e.g. Seneta, 1973, 2006]. 2

Proof of Proposition 4. We consider the network formation process (G(t))∞t=0

on Ω introduced in Definition 3. At every step t = 0, 1, 2, ... a link is created
with probability α and a link is removed with probability 1 − α. Further,
we consider the complementary network formation process (G′(t))∞t=0 on Ω
where in every period t a link is created with probability α′ = 1 − α and
a link is removed with probability 1 − α′ = α.40 This means that a link is
removed in (G′(t))∞t=0 whenever a link is created in (G(t))∞t=0 and a link is
created whenever a link is removed in (G(t))∞t=0.

As an example, consider the network G represented by the adjacency
matrix A in Figure 17. The complement Ḡ has an adjacency matrix Ā
obtained from A by replacing each one element in A by zero and each zero
element by one, except for the elements on the diagonal. Let H be the
network obtained from G by adding the link 47 (setting a47 = a74 = 1 in
A). The probability of this link being created and thus the probability of
reaching H after the process was in G is 3α/n, either by selecting one of the
two nodes with degrees three or the node with degree five to create a link.
Observe that this is identical to the probability of reaching the network H̄
from Ḡ if either the two nodes with degrees seven or the node with degree
four in Ḡ are selected to remove a link (with probability α′ = 1 − α).

In general we can say that, for any G1, G2 ∈ Ω we have that

P (G(t + 1) = G2|G(t) = G1) = P
(

G′(t + 1) = Ḡ2|G′(t) = Ḡ1

)

. (42)

Next consider the stationary distribution µ of (G(t))∞t=0 and the correspond-
ing transition matrix P. Similarly, consider the stationary distribution µ′

of (G′(t))∞t=0 and the corresponding transition matrix P′. Further, consider
an ordering of states G1, G2, ... in Ω and the transition matrix P with ele-
ments (P)ij giving the probability of observing Gj after the Markov chain

(G(t))∞t=0 was in Gi. Similarly, consider an ordering of states Ḡ1, Ḡ2, ... in

40Two nodes of G′(t) are adjacent if and only if they are not adjacent in G(t). Note that
the complement of a nested split graph is a nested split graph as well [Mahadev and Peled,
1995]. In particular, the networks G′(t) are nested split graphs in which the number of
nodes in the dominating sets corresponds to the number of nodes in the independent sets
in G(t) and the number of nodes in the independent sets in G′(t) corresponds to the
number of nodes in the dominating sets in G(t). Thus, (G′(t))

∞

t=0 has the same state
space Ω as (G(t))∞

t=0, namely the space consisting all unlabeled nested split graphs on n
nodes.
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Ω and the transition matrix P′ with elements (P′)ij giving the probability

of observing Ḡj after the Markov chain (G′(t))∞t=0 was in Ḡi. Equation (42)
implies that P = P′. Moreover, for the stationary distributions it must hold
that µP = µ and µ′P′ = µ′. Since P is irreducible and aperiodic, P has
a unique positive eigenvector and therefore µ′ = µ. It follows that for any
network G ∈ Ω with probability µG we can take the complement Ḡ = G′

and assign it the probability µG to get the corresponding probability in µ′,
i.e. µG = µ′

G′ . 2

Proof of Proposition 5. Before we proceed with the proof of Proposi-
tion 5, we state two useful lemmas.

Lemma 1. Consider the ergodic Markov chain (G(t))∞t=0 with the parameter
0 < α ≤ 1/2 and state space Ω consisting of all nested split graphs. Let
X denote the set of states in Ω in which there is exactly one node with
degree d + 1 and Y the set of states where there is no node with degree
d + 1. Denote by µX the probability of the states in X in the stationary
distribution µ of (G(t))∞t=0 and by µY the probability of states in Y . If the
number of nodes with degree Nd in Y is Θ(n) such that limn→∞ Nd/n > 0
then limn→∞ µY = 0.41

Proof of Lemma 1. Let N(X, Y, y) be the expected number of times states
in X occur before the process reaches Y (not counting the process as having
immediately reached Y if y ∈ Y ) when the process starts in y. Then the
following relation holds (see Theorem 6.2.3 in Kemeny and Snell [1960] and
also Ellison [2000])

µX

µY
= N(X, Y, y). (43)

Let pY X denote a lower bound on the probability that a state in X occurs
after the process is in a state in Y and, conversely, let pXY denote the
probability that a state in Y occurs after the process is in a state in X.
This probability is the same for all states in X, since from the properties
of the Markov chain (G(t))∞t=0, it follows that pXY = 2(1 − α)/n, because
there exist two possibilities to remove the link of the node with degree d+1
and the probability to select a node for link removal is (1 − α)/n. Observe
that this probability vanishes for large n, limn→∞ pXY = 0. Moreover, we

41By f = Θ(g) we mean that

0 < lim inf
n→∞

˛

˛

˛

˛

f(n)

g(n)

˛

˛

˛

˛

≤ lim sup
n→∞

˛

˛

˛

˛

f(n)

g(n)

˛

˛

˛

˛

< ∞.

In particular, f = Θ(1) implies that 0 < limn→∞ f(n) < ∞.
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have that

N(X, Y, y) ≥ pY XpXY

+ 2pY X(1 − pXY )pXY

+ 3pY X(1 − pXY )2pXY

+ ...

= pY XpXY

∞
∑

i=1

i(1 − pXY )i−1

=
pY X

pXY
.

The right hand side of the above inequality takes into account the fact that
states in X can be reached once, twice, etc., before a state in Y is reached
and assigns the corresponding probabilities to compute the expected value.

By assuming that there exists a number Nd of nodes with degree d which
is Θ(n), we have that pY X ≥ αNd/n and limn→∞ pY X > 0. It then follows
that

µX

µY
= N(X, Y, y) ≥ pY X

pXY
=

α

2(1 − α)
Nd −−−→

n→∞
∞. (44)

Since µX is a probability with µX ≤ 1, Equation (44) implies that limn→∞ µY =
0. 2

Lemma 2. For 0 < α ≤ 1/2 the asymptotic expected proportion of isolated
nodes in the limit of large n is given by

n0 =
1 − 2α

1 − α
. (45)

Proof of Lemma 2. We consider the expected change in the number of
links m(t) in G(t) from t to t + 1.42 The number of links increases by one if
any node which does not have the maximum degree n−1 is selected for cre-
ating a link. This happens with probability α (n − Nn−1(t)) /n. The number
of links decreases whenever a node with degree higher than zero is selected
for removing a link. This happens with probability (1 − α) (n − N0(t)) /n.
Putting the above contributions together we can write for the expected
change in the total number of links from t to t + 1

E (m(t + 1)|N(t)) − m(t) =
α

n
(n − Nn−1(t)) −

1 − α

n
(n − N0(t)) . (46)

Taking expectations on both sides of the above equation and denoting by

42We have that 2m(t) =
Pn−1

d=0 Nd(t)d.
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nd(t) = E (Nd(t)/n) we obtain

E (m(t + 1)) − E (m(t)) = α (1 − nn−1(t)) − (1 − α) (1 − n0(t)) . (47)

Let ρ denote the initial distribution of states, with ρi = 1 if Gi = K̄n and
zero otherwise. Further, let m be the column vector whose j-th coordinate,
mj , is the value of m at state Gj ∈ Ω. Let Gi = K̄n then we can write

E (m(t)) = E (m(t)|G(0) = Gi)

=
∑

Gj∈Ω

mjP (G(t) = Gj |G(0) = Gi)

=
∑

Gj∈Ω

(

Pt
)

ij
(m)j =

(

Ptm
)

i
= ρPtm.

For large times t the expectation is computed over the invariant distribu-
tion µ. In particular, limt→∞ ρPt = µ and therefore limt→∞ E (m(t)) =
limt→∞ ρPtm = µm. Similarly, we have that limt→∞ E (m(t + 1)) = limt→∞ ρPt+1m =
µPm = µm. Therefore, limt→∞ E (m(t + 1)) = limt→∞ E (m(t)). Thus, we
can set the left hand side of Equation (46) to zero, in the limit of large t,
and obtain a relationship between the asymptotic expected proportion of
nodes of degree zero and one, respectively,

1 − 2α = (1 − α)n0 − αnn−1, (48)

where we have denoted by nd = limt→∞ nd(t). Next, we consider the chain
(G′(t))∞t=0 which is constructed from (G(t))∞t=0 by taking the complement
of each network G(t) in every period t (see also the proof of Proposi-
tion 4). In the following, denote the asymptotic expected number of links
limt→∞ E (m(t)) of (G(t))∞t=0 by m and of (G′(t))∞t=0 by m′. By construc-
tion, we must have that m = n(n− 1)/2−m′. From Proposition 4 we know
that the Markov chain (G′(t))∞t=0 has the same stationary distribution µ′ as
a process from Definition 3 for a link creation probability of α′ = 1 − α.
For α = 1/2 the two processes are identical and we must have that also
their expected number of links are the same. This implies that for α = 1/2,
m = m′ = n(n − 1)/4. The only nested split graph with this number of
links, for which the complement has the same number of links as the origi-
nal graph, is the one in which each independent set is of size one and also
each dominating set has size one (except possibly for the set correspond-
ing to the

(⌊

k
2

⌋

+ 1
)

-th partition). Thus, for α = 1/2 it must hold that
n0 = nn−1 = 1/n.

Moreover, we know that for α < 1/2 the expected number of maximally
connected nodes (with degree n − 1) is at most as large as the expected
number for α = 1/2, since the probability of links being created strictly
decreases while the probability of links being removed increases for values
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of α below 1/2 (and the probability of a maximally connected node losing
a link strictly increases). Thus nn−1 ≤ 1/n for α ≤ 1/2, and for large n we
can write Equation (48) as follows

1 − 2α = (1 − α)n0, (49)

or equivalently

n0 =
1 − 2α

1 − α
. (50)

For α = 0 no links are created and all nodes are isolated, that is n0 = 1,
while for α = 1/2 the asymptotic expected number of isolated nodes vanishes
in the limit of large n. 2

With these two lemmas in hand, let us now prove Proposition 5. Note
that G(t) is completely determined by N(t) and vice versa. Thus it follows
that {N(t)}∞t=0 is a Markov chain. Denote by nd(t) = E (Nd(t)/n) the
expected proportion of nodes with degree d at time t and let us denote by
nd = limn→∞ nd(t); nd is determined by the invariant distribution µ in the
limit of large times t. Lemma 2 shows that Equation (7) holds for d = 0.
In the following we show by induction that, given that Equation (7) holds
for nd−1 and nd, as n becomes large, also nd+1 satisfies Equation (7) for all
0 ≤ d < d∗, in the limit of large n. For this purpose we consider (a) the
expected number of isolated nodes E (N0(t + 1)|N(t)) and (b) the expected
number of nodes with degree d = 1, ..., d∗, E (Nd(t + 1)|N(t)) at time t + 1,
conditional on the current degree distribution N(t).

(a) Consider a particular network G(t) in period t generated by (G(t))∞t=0

and its associated degree distribution N(t). Figure 18 shows an illustra-
tion of the corresponding stepwise matrix. In the following we compute
the expected change of the number N0(t) of isolated nodes in G(t).
The expected change of N0(t) due to the creation of a link has the
following contributions. An agent with the highest degree k in Nk(t)
can create a link to an isolated agent and thus decreases the number of
isolated agents by one. The expected change from this link is −αNk(t)/n
. On the other hand, if an isolated agent creates a link then the expected
change in the number of isolated agents is −αN0(t)/n.
Moreover, the removal of links can affect N0(t) if there is only one agent
with maximal degree, i.e. Nk(t) = 1. In this case, if the agent with
the highest degree removes a link, then an additional isolated agent is
created yielding an expected increase in N0(t) of (1−α)Nk(t)/n. Next,
if an agent with degree one in N1(t) removes a link, then the number of
isolated agents increases. Note that in a nested split graph N1(t) > 0
implies that Nk(t) = 1 and vice versa. This gives an expected change of
N0(t) given by (1 − α)N1(t)/n.
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Figure 18: Representation of the stepwise matrix A of a nested split graph G and some
selected degree partitions. The stepfunction separating the zero entries in the matrix from
the one entries is shown with a thick line.
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Putting the above contributions together, the expected change in the
number of isolated nodes at time t + 1, conditional on N(t), is given by
the following expression43

E (N0(t + 1)|N(t)) − N0(t) =

− α

n
(N0(t) + Nk(t)) +

1 − α

n
(N1(t) + 1) δNk(t),1. (51)

We can take expectations on both sides of Equation (51). For large times
t the expectation is computed on the basis of the invariant distribution
µ and similarly to the proof of Lemma 2, after taking expectations, we
can set the left hand side of Equation (51) to zero for large times t. Note
that from Lemma 2 we know that the asymptotic expected proportion
n0 of isolated nodes is Θ(1), for n large. Thus we can apply the result
of Lemma 1 which tells us that the networks in which there does not
exist a node with degree one have vanishing probability in µ for large n.
Since the existence of a node with degree one implies that Nk(t) = 1,
in the limit of large n we can set δNk(t),1 = 1. We then obtain from
Equation (51)

n1 =
α

1 − α
n0. (52)

This shows that also n1 satisfies Equation (7). Together with Lemma 2
this proves the induction basis.

(b) We give a proof by induction on the number Nd(t) of nodes with degree
0 < d < d∗ in a network G(t) in the support of the stationary distribu-
tion µ. In the following, we compute the expected change in Nd(t) due
to the creation or the removal of a link. An illustration can be found in
Figure 19.
Let us investigate the creation of a link. With probability α/n a link
is created from an agent in Nk−d(t) to an agent in Nd(t). This yields
a contribution to the expected change of Nd(t) of −αNk−d(t)/n. If a
link is created from an agent in Nk−d+1(t) to an agent in Nd(t) then
the expected change is α/n, if Nk−d+1(t) contains only a single agent.
Similarly, if a link is created from an agent in Nd−1(t) to an agent in
Nd(t) then the expected change of Nd(t) is αNd−1(t)/n, if Nk−d+1(t) =
1. Moreover, if an agent in Nd(t) is selected for link creation then we
get an expected decrease of −αNd(t)/n.
Now we consider the removal of a link. If a link is removed from the
agent in Nk−d+1(t) to an agent in Nd(t) then the expected change of
Nd(t) is −(1 − α)Nk−d+1(t)/n. If a link is removed from an agent in
Nk−d(t) to an agent in Nd+1(t) then the expected increase of Nd(t) is

43δi,j denotes the usual Kronecker delta which is 1 if i = j and 0 otherwise.

63



Ni−1(t)

Ni(t)

Ni+1(t)

N
k
−

i+
2
(t

)
N

k
−

i+
1
(t

)
N

k
−

i(
t
)

Figure 19: Representation of the stepwise matrix A of a nested split graph G. The
stepfunction separating the zero entries in the matrix from the one entries is shown with
a thick line.
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(1−α)/n, if Nk−d(t) = 1. Moreover, if an agent in Nd+1(t) is selected for
removing a link, then we get an expected increase of (1 − α)Ni+d(t)/n,
if Nk−d(t) = 1. Finally, if an agent in Nd(t) is selected for removing a
link, then we get an expected change of −(1 − α)Nd(t)/n.
Putting the above contributions together, the expected change in Nd(t)
is given by

E (Nd(t + 1)|N(t)) − Nd(t) =
α

n

(

−Nd(t) + (Nd−1(t) + 1) δNk−d+1(t),1 − Nk−d(t)
)

+
1 − α

n

(

−Nd(t) + (Nd+1(t) + 1) δNk−d(t),1 − Nk−d+1(t)
)

. (53)

We can take expectations on both sides of Equation (53) and similarly
to part (a) of this proof we can set the left-hand-side of Equation (53) as
t becomes large. For large times t the above expectation is computed on
the basis of the invariant distribution µ. By the induction assumption,
the asymptotic expected proportion nd−1 of nodes with degree d − 1 is
Θ(1) in the limit of large n (as follows from Equation (7)). Thus we can
apply Lemma 1 and neglect the networks in which there does not exist a
node with degree d since they have vanishing probability in µ for large n.
Similarly, we know from the induction assumption that the asymptotic
proportion nd of nodes with degree d is Θ(1) and, by virtue of Lemma
1, we know that the networks in which there does not exist a node with
degree d+1 have vanishing probability in µ for large n. Thus, in the limit
of large n we can set δNk−d+1(t),1 = δNk−d(t),1 = 1, since the existence of
nodes with degrees d and d + 1 implies that Nk−d+1(t) = Nk−d(t) = 1
in the limit of large t and n. Therefore, we get from Equation (53) the
following relationship

nd+1 =
1

1 − α
nd −

α

1 − α
nd−1. (54)

Inserting the expressions for nd−1 and nd from Equation (7) into Equa-
tion (54) yields

nd+1 =
1

1 − α

1 − 2α

1 − α

(

α

1 − α

)d

− α

1 − α

1 − 2α

1 − α

(

α

1 − α

)d−1

=
1 − 2α

1 − α

(

α

1 − α

)d+1

Thus, Equation (7) also holds for nd+1. This proves the induction step.

Finally, we have that the degree distribution must be normalized to one,
i.e.

∑n−1
d=0 nd = 1. We know that the number of agents in the dominating
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sets with degrees larger than d∗ is d∗ (since each set contains only one node
and there are d∗ such sets).44 Adding this to the number of agents in the
independent sets with degree d = 0, ..., d∗ yields

n
d∗
∑

d=0

nd + d∗ = n. (55)

Further, inserting Equation (7) we can derive the number d∗ of independent
sets as a function of n and α

d∗(n, α) =
ln
(

2(1−α)
(1−2α)n

)

ln
(

α
1−α

) . (56)

d∗ is a monotonic decreasing function of n for a fixed value of α. Conversely,
for a fixed value of n we get the limits limα→0 d∗ = 0 and limα→1/2 d∗ = n/2.
This completes the proof. 2

Proof of Corollary 2. The results follows directly from the functional
form of d(n, α) in Proposition 5. 2

Proof of Proposition 6. Let us define the following random variable

Ys = E (Nd(t)|N(s)) . (57)

Since {N(t)}∞t=0 is a Markov chain, the sequence {Ys}t
s=0 is a Martingale with

respect to {N(t)}∞t=0.
45 Moreover, the change in the number of nodes with

degree d per period t is bounded by two, i.e. |Nd(t)−Nd(t−1)| ≤ 2, since at
most one link is added or removed in every period t and this can change the
degrees of at most two nodes. Therefore, we can apply Hoeffding’s inequality
[Hoeffding, 1963], which states that for any 0 < s ≤ t with |Ys − Ys−1| ≤ c
and any ǫ > 0

P (|Yt − Y0| > ǫ) ≤ 2e−
ǫ2

2tc2 . (58)

With Yt = E (Nd(t)|N(t)) = Nd(t) and Y0 = E (Nd(t)|N(0)) = E (Nd(t)) it

44Note that since those networks in which there does not exist a node with degree
0 ≤ d ≤ d∗ in the corresponding independent set can be neglected, the structure of nested
split graphs implies that all dominating sets have size one.

45We have that E (Ys|N(s − 1)) = E (E (Nd(t)|N(s)) |N(s − 1)) = E (Nd(t)|N(s − 1)) =
Ys−1. Further, one can show that the first and second moments of {Ys}

t
s=0 are bounded.

Thus, {Ys}
t
s=0 is a Martingale with respect to {N(t)}∞t=0 [see also Grimmett and Stirzaker,

2001].
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follows from Equation (58) that

P

(
∣

∣

∣

∣

Nd(t)

n
− E

(

Nd(t)

n

)
∣

∣

∣

∣

≥ ǫ

)

= P (|Nd(t) − E (Nd(t))| ≥ nǫ) ≤ 2e−
ǫ2n2

8t .

(59)
This implies that the empirical proportion Nd(t)/n of nodes with degree
d converges in probability to its expected value E (Nd(t)/n), as n becomes
large.

Proof of Corollary 3. See Theorem 1.2.4 in Mahadev and Peled [1995].
2

67


