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1 Introduction

Most natural and social systems evolve according to multistep processes. We refer to this kind of
dynamics as punctuated evolution, because it describes the behavior of nonequilibrium systems
that evolve in time, not according to a smooth or gradual fashion, but by going through periods
of stagnation interrupted by fast changes. These include the growth of urban population [1, 2],
the increase of life complexity and the development of technology of human civilizations [3],
and, more prosaically, the natural growth of human bodies [4].

According to the theory of punctuated equilibrium [5-9], the evolution of the majority of
sexually reproducing biological species on Earth also goes through a series of sequential growth-
stagnation stages. For most of their geological history, species experience little morphological
change. However, when phenotypic variation does occur, it is temporally localized in rare, rapid
events of branching speciation, called cladogenesis; these rapid events originate from genetic rev-
olutions by allopatric and peripatric speciations [10-12]. The resulting punctuated-equilibrium
concept of the evolution of biological species is well documented from paleontological fossil
records [5-9, 13, 14]. It does not contradict the Darwin’s theory of evolution [15], but rather
emphasizes that evolution processes do not unfold continuously and regularly. The change rates
vary with time, being almost zero for extended geological periods, and strongly increasing for
short time intervals. This supports Darwin’s remark [15] that “each form remains for long periods
unaltered, and then again undergoes modification.” Here “long” and “short” are to be understood
in terms of geological time scale, with “long” meaning hundreds of millions of years and ““short”
corresponding to thousands or hundreds of thousands of years.

The development of human societies provides many other examples of punctuated evolu-
tion. For instance, governmental policies, as a result of bounded rationality of decision makers
[16], evolve incrementally [17]. The growth of organizations, of firms, and of scientific fields
also demonstrates nonuniform developments, in which relatively long periods of stasis are fol-
lowed by intense periods of radical changes [18—20]. During the training life of an athlete, sport
achievements rise also in a stepwise fashion [21].

Despite these ubiquitous empirical examples of punctuated evolution occurring in the de-
velopment of many evolving systems, to our knowledge, there exists no mathematical model
describing this kind of evolution. It is the aim of the present paper to propose such a mathemati-
cal model, which is very simple in its structure and its conceptual foundation. Nevertheless, it is
surprisingly rich in the variety of regimes that it describes, depending on the system parameters.
In addition to the process of punctuated increase, it demonstrates punctuated decay, punctuated
up-down motion, effects of mass extinction, and finite-time catastrophes.

The paper is organized as follows. Section 2 presents the derivation of the novel logistic delay
equation that we study in the rest of the paper. Section 3 describes the methodology used to study
the logistic delay equation, both analytically and numerically. The four following sections 4-7
present the classification of all possible types of solutions for the dynamics of a population obey-
ing our logistic delay equations, analyzing successively the four possible situations dominated
respectively by: (i) gain and competition, (ii) gain and cooperation, (iii) loss and competition,
and (iv) loss and cooperation. Section 8 concludes by providing figures, which summarize all
possible regimes.



2 Model formulation

2.1 Derivation of the general model

The logistic equation, advanced by Verhulst [22], has been the workhorse model for describing
the evolution of various social, biological, and economic systems:

dN (1) N(t)

— =N [1 - T} . (1)

Here N (t) is a measure characterizing the system development, e.g., the population size, the
penetration of new commercial products or the available quantity of assets. The coefficient r is
a reproduction rate and K is the carrying capacity. The expression 7(1 — N/K) is interpreted
as an effective reproduction rate which, in expression (1), adjusts instantaneously to N (¢). It is
possible to assume that this effective reproduction rate lags with a delay time 7, leading to the
suggestion by Hutchinson [23] to consider the equation

dN () N(t—r)
— - =rN() [1 - = } : @)

termed the delayed logistic equation. Many other variants of the logistic equation have been
proposed [24-30], uniform or nonuniform, with continuous or discrete time, and with one or
several delays. An extensive literature on such equations can be found in the books [31-33].

All known variants of the logistic equation describe either a single-step evolution, called
the S-curve, or an oscillatory behavior around a constant level. However, as summarized in
the introduction, the development of many complex systems consists not just of a single step,
where a period of fast growth is followed by a lasting period of stagnation or saturation. Instead,
many systems exhibit a succession of S-curves, or multistep growth phases, one fast growth
regime followed by a consolidation, which is itself followed by another fast growth regime, and
so on. This multistep precess can be likened to a staircase with approximately planar plateaus
interrupted by rising steps.

Motivated by the ubiquity of the multistep punctuated evolution dynamics on the one hand
and the simplicity of the logistic equation on the other hand, we now propose what, we think,
is the simplest generalization of the logistic equation that allows us to capture the previously
described phenomenology and much more.

Our starting point is to take into account the main two causes of development, (i) the evolution
of separate individuals composing the system and (ii) their mutual collective interactions, leading
to the consideration of two terms contributing to the rate of change of N (¢):

dN (t)

=N -

CN?(t)
dt '

K(t)

3)

The first term v/ (¢) embodies the individual balance between birth and death, or gain and loss
(depending on whether a population size or economic characteristics are considered), i.e., the
growth rate can be written

Y = Voirth — Ydeath = VYgain — Vioss - (4)



The second term C'N?(t)/K (t) describes collective effects, with the coefficient C' defining the
balance between competition and cooperation,

C = C'comp - CYcoop . (5)

The denominator in the second term of Eq. (3) can be interpreted as a generalized carrying
capacity.

The principal difference between Eq. (3) and the logistic equation is the assumption that the
carrying capacity is a function of time. We assume that the carrying capacity is not a simple
constant describing the available resources, but that these resources are subjected to the change
due to the activity of the system individuals, who can either increase the carrying capacity by
creative work or decrease it by destructive actions. Given the co-existence of both creative and
destructive processes impacting the carrying capacity K (t), we formulate it as the sum of two
different contributions:

K(t)=A+BN(t—r7). (6)

The first term A is the pre-existing carrying capacity, e.g., provided by Nature. In contrast, the
second term is the capacity created (or destroyed) by the system. To fix ideas, let us illustrate
by using this model the evolution of human population of the planet Earth. Then, the second
term BN (¢t — 7) is meant to embody the delayed impact of past human activities in the present
services provided by the planet. There are many complex feedback loops controlling how human
activities interact with the planet regeneration processes and it is generally understood that these
feedback loops are not instantaneous but act with delays. A full description of these phenomena
is beyond the scope of this paper. For our purpose, we encapsulate the complex delayed processes
by a single time lag 7, which will be one of the key parameters of our model. We stress that the
delay time 7 is introduced to describe the impact of past human activity on the present value of
the carrying capacity. This is crucially different from the description (2) by Hutchinson [23] and
others, in which 7 > 0 represents delayed interactions between individuals. In our model (3)
with (6), the cooperation and competition between individuals are controlled by instantaneous
interactions N (¢) x N(t), while the present carrying capacity K (¢) reflects the impact of the
population in the past at time ¢ — 7. The lag time 7 is thought of as embodying a typical time
scale for regeneration or decay of the renewable resources provided by the planet. If positive (re-
spectively, negative), the parameter B describes a productive (respectively, destructive) feedback
of the population on the carrying capacity.

Although Eq. (3) with (6) is reminiscent of the logistic equation (1), it is qualitatively differ-
ent from it by the existence of the time-dependent delayed carrying capacity. As we show in the
sequel, this difference turns out to be mathematically extremely important, leading to a variety
of evolution regimes that do not exist in the logistic equation, neither in the standard version nor
in the delayed one of Hutchinson [23] and others.

In particular, the delayed response of the carrying capacity to the population dynamics is
found to be responsible for the occurrences of regimes in which growth or decay unfold jerkily
in a series of stagnations interrupted by fast changes. The duration of these plateaus is controlled
by the characteristic delay time scale 7, which can be arbitrarily long or short depending on the
domain of application. We capture this remarkable phenomenon by using the term punctuated
evolution in the title (in contrast with “punctuated equilibrium”).



2.2 Reduced variables and parameters

The quantity N (t) is always measured in some units N, ;. For instance, this could be millions

of persons when population is considered, or billions of currency units for economic systems,

or thousands of tons of goods for firm production. Hence, it is reasonable to define the relative

quantity

o) =
Negy

For mathematical analysis, it is convenient to deal with dimensionless quantities. We thus define
the dimensionless value of the pre-existing resources

(7)

A |y
= — 8
“= N ‘0‘ ®
and of the production (or destruction) factor
~
b=B H . 9
C )
The dimensionless carrying capacity is defined as
K(t) |~
t) = ’—‘ . 10
y(t) N, |C (10)
Using (8) and (9), expression (6) becomes
y(t)=a+bx(t—1). (11)

We also define the following notation for the signs of y and of C"
vy C

0'15—7 U2E‘a.

(12)
el

Using a time measured in unit of 1/, and keeping the same notation of time, Eq. (3) reduces to
the evolution equation for z = x(t),

dz x?
Ezalm — 09 — (13)

in which y = y(t) is given by Eq. (11).

There are two time scales in this problem. The first time scale, 1/~ in the dimensional units of
Eq. (3) and 1 in the dimensionless units of Eq. (13), corresponds to the characteristic exponential
growth or decay of the population in the absence of interactions (C' = 0). The second time scale
is the delay parameter 7 in (11), which is expressed in units of the first time scale in our following
investigation.

This equation is complemented by an initial history condition

a(t) =z  (t<0), (14)

according to which
y(t) = yo = a + bxg (t<0). (15)
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Equation (13) possesses two trivial solutions: z(t) = 0, under any initial conditions; and

z(t)=z0 (Yo = 010220) , (16)

occurring under the special initial conditions, given in brackets. In the following, we will mainly
focus our attention on nontrivial solutions.
We now discuss the range of variation of the different parameters.

e The coefficient a, characterizing the initial resources provided by Nature, is non-negative.

e The coefficient b, controlling the impact of past population on the present carrying ca-
pacity, can be either positive or negative, depending on whether production or destruction
dominates. A known example for b < 0 is the destruction of habitat by humans, associated
with deforestation, reduction of biodiversity, and climate changes [34—37]. The destruc-
tion of the global Earth ecosystem is caused by the rapid growth of the human population,
which is sometimes compared with a pathological cancer process that could result in the
eventual extinction of the human population [38]. Another example of destructive activity
is firm mismanagement, and operational risks, which can result in firm bankruptcy and
even in a global economic crisis, when many economic and financial institutions are mis-
managed [39, 40]. One more illustration is the destruction of the economy of a country by
a corrupted government. In contrast, a positive b corresponds to improved exploitation of
resources and increased productivity.

e The initial value z( of the dimensionless population is positive.

e The initial value ¥, of the carrying capacity can be either positive or negative. The standard
case 1s, of course, yo > 0. A negative value y, of the effective carrying capacity at ¢ = 0
can be interpreted as describing a strongly destructive action of the agents that occurred in
the preceding time interval [—7, 0].

Summarizing,
a>0, —oc0o<b< oo, xo >0, —00 < Yo < 00 . (17)

We restrict our investigation to non-negative dimensionless population size z(t) > 0.

Finally, we need to discuss the signs o; and o5, that is, the signs of v and C'. If gain or birth
(respectively, loss or death) prevails, v is positive (respectively, negative). Similarly, C' is pos-
itive (respectively, negative) if competition (respectively, cooperation) dominates. Competition
describes the fight of individuals for scarce resources [1,2]. But in human, as well as in animal
societies, cooperation is often active through feedback selection [41]. Summarizing, there are
thus four possible types of societies, depending on the signs of oq and o5:

o0>0 & o09>0 (gain + competition),
or>0 & o09<0 (gain + cooperation),
o1<0 & 09>0 (loss 4+ competition),
01<0 & 09<0 (loss + cooperation). (18)

We shall study each of these variants in turn in the following sections.



3 Scheme of stability analysis

Before studying the different variants of the evolution equation (13) with (11), it is necessary to
explain the methodology that we have used to deal with such equations. The theory of linear
delay equations and the stability of their solutions have been described in detail in several books
[31-33] and many articles (see Refs. [42-45]). Mao theorem [46] proves that, for time lags close
to zero, nonlinear delay equations inherit some properties of the nonlinear ordinary differential
equations. Increasing the time lag can result in novel solutions, which are principally different
from those obtained in the limit of small lags. One can even obtain multistability [47]. Thus,
nonlinear delay equations are essentially more difficult to study than ordinary differential equa-
tions. The investigation of the solutions of nonlinear delay equations is usually accomplished by
combining analytical methods to study the asymptotic stability of their stationary points, together
with the direct numerical solution of these equations [31-33, 48].

The study of the asymptotic stability of the stationary fixed points of the nonlinear delay
equation (13) with (11) is performed using the general Lyapunov stability analysis as follows. If
stationary solutions x* exist, they satisfy the equation

. oaa)?
— = 0. 19
o1 a + ba* (19)
This gives two fixed points
r1=0, Ty = ao (20)
09 — b

that are assumed to be non-negative. Considering a small deviation from these fixed points given
by (20),

the linearized version of Eq. (13) reads
d
in which
C, = 2027 D, =b 5oy (23)
;=7 a+br}’ j =002 a+br;)

For the first fixed point, this yields
012017 D1:O, (24)
while for the second point, this gives

b(O’l — ].) — 029 D, — bO'Q
bloy — 1)+ 05 O

Cy =0y (25)

Ait we get the following equation for

Looking for solutions of Eq. (21) in the form éx;(t) o e
the characteristic exponent \;:

)‘j = Cj + Dje*)‘ﬂ . (26)

Introducing the variables
W = (/\] — Cj)’T s (27)

7



and
z=7Dje %" (28)

transforms Eq. (26) into the equation
we =z. (29)

The solution to this equation, in terms of the variable IV as a function of the variable 2, defines
the Lambert function W (z). Denoting

W(r) =W(z(r)) =W (rDje ") | (30)

allows us to obtain the solution of (26) as

A =0+ AT 31)

A fixed point is stable when Re \; < 0; it is neutrally stable when Re )\; = 0, which usually
defines a center; and it is unstable if Re A; > 0.

It is necessary to keep in mind that the Lyapunov stability analysis for a nonlinear delay
equation only gives sufficient conditions on the domain of parameters inside which the stationary
solutions are stable. According to the Mao’s theorem [46], a nonlinear delay equation possesses
the same stable fixed points as the related nonlinear ordinary differential equation, but only in
the vicinity of zero delay time. Increasing the delay time can result in new solutions, which are
unrelated to those of the associated ordinary, non-delayed, equation. In addition, when there are
no fixed points, there can arise different types of solutions under varying delay time. Therefore,
for delay equations, the stability analysis has to be complemented by detailed numerical investi-
gation. In the following sections, we will first apply the above stability analysis to the differential
delay equation (13) with (11), for the four different regimes (18). We will then complement it
with a thorough numerical investigation of the trajectories. In particular, our goal is to present an
exhaustive classification of all qualitatively different types of solutions of Eq. (13) with (11) for
the whole possible ranges of the parameters a, b, and 7.

4 Prevailing gain and competition (c; > 0,05 > 0)

4.1 General analysis

When gain (birth) prevails over loss (death) and competition prevails over cooperation, this cor-
responds to the first line in the classification (18). Then Eq. (13) translates into

dx(t)

_ *(t)
o = t) -

a+bx(t—71)"

(32)

At the initial stage for ¢ < 7, for which z(t — 7) = xo, Eq. (32), is explicitly solvable, giving

- Toyoe’
z(t) = P t<r7), (33)

where vy 1s defined in Eq. (15). However, the following evolution of x for ¢ > 7 cannot be
described analytically.



In the general case, there are two stationary solutions

* * a

The first of them is unstable for any @ > 0 and any b, and all 7 > 0. The second fixed point x3 is
stable in one of the regions, when either

a>0, —1<b<1, T>0, (35
or
a=20, 0<b<1, T2>0, (36)
or
a>0, b<—1, T<To, (37
where
_ 1 1 (38)
To = T arccos R

The point x; becomes a stable center (associated with a vanishing Lyapunov exponent \;) for
a>0, b< -1, T="T. (39)

The value 7 diverges, if b " —1, as
T

VI TEY

Varying the system parameters yields the different solutions, which we analyze successively.

b,/ —1).

4.2 Punctuated unlimited growth

When the carrying capacity increases, due to the intensive creative activity of the agents forming
the system, which corresponds to the parameters

a=0, b=>1, 720, (40)

then 2y < yo and the fixed point 2% does not exist. The function z(¢) grows by steps of duration
~ T, tending to infinity as time increases to infinity. Figures 1, 2, and 3 demonstrate the behavior
of x = x(t) as a function of time for different values of the parameters a (Fig. 1), b (Fig. 2),
and the delay time 7 (Fig. 3). Different initial conditions of z( result in the shift of the curves,
as is shown in Fig. 4. The evolution goes through a succession of stages where z is practically
constant, which are interrupted by periods of fast growth. To show that, on average, the growth
is exponential, we present in Fig. 5 the dependence of Inxz(¢) for a long time interval (long
compared with 7).



4.3 Punctuated growth to a stationary level

For a lower creative activity (quantified by b) of the population affecting the effective carrying
capacity, i.e., for
a>(1-"0b)zy, 0<b<1, T>0, (41)

which implies that
To < Yo < l’; )

the value of x(¢) monotonically grows to the stationary solution x5, as is shown in Figs. 6, 7, and
8 for the varying parameters a (Fig. 6), b (Fig. 7), and z( (Fig. 8).

4.4 Punctuated decay to a stationary level

When the pre-existing carrying capacity a is smaller than in the previous cases and the creation
coefficient b is not too high, so that

0<a<(l-b)xg, 0<b<1, T>0, (42)

which means that
xo > x5 >1yp >0,

then x(¢) monotonically decays to the stationary solution z5, as is shown in Fig. 9 for different
parameters b.

4.5 Punctuated alternation to a stationary level

When the initial capacity a is large, but the agent activity is destructive, with the parameters

a > |blzg , —-1<b<0, T>0, (43)
there are two subcases. If
a> (1+|b|)xg ,
so that
o < x5 < Yo ,

then x(t) grows initially. And if
|blzg < a < (14 |b])xg ,

so that
o > x5 > 1Yo >0,

then x(t) decreases initially. However, the following behavior in both these subcases is similar:
x(t) tends to the stationary solution % through a sequence of up and down alternations, as shown
in Fig. 10.

10



4.6 Oscillatory approach to a stationary level

If the capacity is large and the destructive activity is rather strong, such that
a > |blxg , b< -1, T<To, (44)

where 79 is given by Eq. (38), there are again two subcases, when z(t) either increases or decays
initially. But the following behavior for both these subcases is again similar: x(¢) tends towards
the focus x5 by oscillating around it. Contrary to the previous case 4.5, here the stagnation
stages are practically absent, so that the overall evolution is purely oscillatory, with a decaying
amplitude of oscillations, as shown in Fig. 11.

4.7 Everlasting nondecaying oscillations

With the parameters a and b as in the previous case, but with the time lag being exactly equal to
To given by (38), that is, when

a>]b|x0, b<—1, T="To, (45)

then x(t) oscillates around the center x5 without decaying, as shown in Fig. 12. At the initial
time, x can either increase or decrease, as in the previous cases. But, it will rapidly set into a
stationary oscillatory behavior without attenuation.

4.8 Punctuated alternation to finite-time death

The fact that the behavior of the system depends sensitively on the time lag 7 is well exemplified
by the regime in which the values of a and b are the same as in regime 4.7, but the lag becomes
longer, so that

a > |blzo , b< -1, T>Ty. (46)

In this regime, x(¢) alternates between upward and downward jumps, with increasing amplitude,
until it hits the zero level at a finite death time ¢, defined by the equation

a+bx(ty—71)=0, 47)

at which time the rate of decay becomes minus infinity. As in the previous cases, depending on
whether xg < 1o or ¢ > ¥y, the initial motion can be either up or down, respectively. But the
following behavior follows a similar path, with z(¢) always going to zero in finite time, as shown
in Fig. 13. The abrupt fall of the population x(t) to zero can be interpreted as a mass extinction,
as has occurred several times for species on the Earth [49-54]. Here, as in all previous cases, the
considered parameters are such that the initial carrying capacity is positive, yo > 0. The effect of
mass extinction in the present example is caused by the intensive destructive activity (b < —1) of
the agents composing the system. This is an example of total collapse caused by the destruction
of habitat.
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4.9 Growth to a fixed finite-time singularity

Another example of catastrophic behavior happens when the initial carrying capacity is negative
(yo < 0). This occurs when the habitat has been destroyed in the preceeding time interval [—7, 0]
and the destruction goes on for ¢ > 0. For the set of parameters

a < |blzo , b<0, T>t,, (48)

with a sufficiently long time lag 7, the function x(t), solution of Eq. (33), diverges at the singu-
larity time £, given by the expression

R <1 - @> | 49)

Zo

The divergence is hyperbolic, i.e., in the vicinity of ¢,
x(t)ztyot (t—t.—0). (50)

For the parameters (48), the singularity always occurs at the critical time (49) determined by the
values of x4 and yy, independently on the delay time 7 as long as 7 is larger than ¢..

4.10 Growth to a moving finite-time singularity

When the delay time 7 is smaller than the singularity time ¢. given by Eq. 49, with the following
parameters
a < |blzo , b<0, Te<T1<t., (51)

then the critical lag 7., for the given parameters, can only be determined numerically. In this
regime, x(t) grows without bound and reaches infinity in finite time at a moving singularity time
t: > t. which is a function of 7. We find that ¢ goes to infinity as 7 decreases to 7.. The
dependence of the singularity time ¢ as a function of 7 is presented in Fig. 14.

While the model does not describe what happens beyond the singularity, the catastrophic di-
vergence of x(t) can be interpreted as a diagnostic of a transition to another state or to a different
regime in which other mechanisms become dominant. In analogy with the divergences occurring
at the critical points of phase transitions of many-body systems [55-57], it is natural to interpret
the critical points as periods of transitions to new regimes. Ref. [58] has reviewed several ex-
amples of the application and interpretation of the occurrence of finite-time singularities in the
dynamics of the world population, economics, and finance.

4.11 Exponential growth to infinity

As the delay time 7 becomes smaller than the threshold value 7. defined in the previous section,
i.e., for the following parameters

a < |blxg , b<0, 0<7<7,, (52)

the finite-time singularity does not exist anymore. The function z(#) exhibits a simple unbounded
exponential growth to infinity, as time tends to infinity.
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The exact limit of a zero time delay 7 = 0 is not included in this regime. When 7 is exactly
zero, the exponential growth regime is replaced abruptly into the regime of subsection 4.9, with
a fixed-time singularity.

Figure 15 demonstrates the change of behavior of Inz(t) as a function of time for different
values of the delay time 7, for fixed parameters a and b. In this regime, the variable y(¢) tends to
minus infinity with increasing time, and it becomes difficult to interpret it as an effective carrying
capacity. Rather, this regime with negative b expresses the existence of a positive feedback
provided by the cooperation between agents of the system.

5 Prevailing gain and cooperation (o, > 0,09 < 0)

5.1 General analysis

When gain (birth) and cooperation prevail (second line of classification (18)), Eq. (13) becomes

dx(t) 22 (t)
a Ot =

(53)

The same history z(t) = x for ¢ < 0 as in (14) is assumed. For ¢ < 7, for which z(t — 7) = x,

the solution is .
ZoYo€

z(t) = t<T1),
(t) R — (t<7)
with y, given by Eq. (15).
Equation (53) possesses two fixed points
* * a’

The second fixed point z3 is positive for b < —1. The stability analysis, performed following the
methodology explained in Section 3, shows that the first point 27 is always unstable. The second
fixed point 7 can be stable, while non-negative, only for

a=20, -1<b<0, T72>0. (55)

For a — 0, it merges with the first fixed point. The full analysis yields the following different
types of solutions.

5.2 Growth to a fixed finite-time singularity

For the parameters
a > —bxg , Vb , T >t (56)

when yo > 0, the solution is monotonically increasing and becomes singular at the finite catas-
trophe time
t,—1In (1 + @> , (57)
Lo
which does not depend on the delay time 7, similarly to the behavior in Sec. 4.9. The occurrence

of the singularity, in the presence of the positive initial carrying capacity and positive production
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coefficient b, shows that the simultaneous gain and cooperation is not sustainable, since the
system diverges in finite time. This paradox, that initial positive carrying capacity and ever
increasing carrying capacity, intrinsically associated with a positive feedback, leads to a run-
away, has been analyzed in detail in Ref. [58] in another context. To preserve stability, one
would need that either the gain has to turn into loss or cooperation to be replaced by competition.

5.3 Growth to a moving finite-time singularity

For smaller delay time, when either
a>0, b>0, T < T <t., (58)

or
a > |blzo , b<O0, 0<71<t,, (59)

the time of the singularity becomes dependent on the lag. The singularity occurs at ¢, > t., if
b > 0andatt; < t. if b < 0. The divergence is hyperbolic as in expression (50). Keeping the
parameters a and b fixed, but increasing the delay time 7, moves the singularity time ¢ to the left
towards ¢, for b > 0, while ¢} moves to the right again towards ¢. for b < 0.

5.4 Exponential growth to infinity

Under the conditions
a>0, b>0, O<7<T,, (60)

the function x(¢) grows exponentially without bounds. The behavior of z(t) is analogous to that
of Sec. 4.11. The growth of z(t) is continuous, following the increase of the effective carrying
capacity associated with the positive production coefficient b. Contrary to the previous cases of
Sections 5.2 and 5.3, there is no finite-time catastrophe as the shorter delay time allows for a
better matching the carrying capacity and population size.

5.5 Punctuated unlimited growth

When the initial carrying capacity is negative, yo < 0, having been destroyed in the preceeding
time interval [—7, 0], and the parameters are

a>0, be-1-2L 1>0, 61)
Zo

x(t) follows a punctuated unlimited growth, as in Sec. 4.2. In this regime, y(¢) remains negative
and goes to —oo at large times. Thus, y(t) — —oc is difficult to interpret as an effective carrying
capacity.

5.6 Punctuated decay to finite-time death
For the parameters

a>0, —1-2<b<0, 71>0, 62)
Zo
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there exists a time t4, defined by Eq. (47), when x(¢) sharply drops to zero, as shown in Fig. 16.
This is the point of mass extinction. While the decay of x(t) is a finite succession of plateaus
and drops, contrary to the case of Sec. 4.8, there are no oscillations, but just a monotonic decay
to death. The disappearance of x(t¢) in this regime is due to the destructive activity (b < 0)
aggravated by the prevailing birth (gain) and cooperation.

5.7 Punctuated decay to zero
For the parameters as in (55), that is,
a=0,—-1<b<0,7>0, (63)

x(t) decays to zero as time tends to infinity in a punctuated fashion following a succession of
plateaus followed by sharp drops. This behavior is illustrated in Fig. 17 for different values of
the parameters. As in section 5.5, the decay of x(¢) is due to the destructive activity (b < 0)
aggravated by the prevailing birth (gain) and cooperation.

6 Prevailing loss and competition (o; < 0,09 > 0)

6.1 General analysis

Let us now consider the regime corresponding to the third line of classification (18). In this case,
Eq. (13) takes the form

dx(t) x2(t)
=—x(t) - —— . 64
dt =(t) a+bx(t—r7) ©4)
The initial history is the same as in Eq. (14). In the time interval ¢ < 7, the solution reads
—t
LoYol
x(t) = t<T1), 65
0= <) (65)
with yy given by Eq. (15).
There are two fixed points
* * a

The second fixed point x3 is relevant only when it is non-negative.
The stability analysis, complemented by numerical investigations, shows the following prop-
erties. The first stationary solution x7 = 0 is stable for the parameters

a#0, Vb , 7>0. (67)

The second stationary solution z5 # 0 is stable, while being positive, for

a>0, b< —1, T<To, (68)
where
= L arccos [ — ! (69)
T0 = b2 —1 I b .



A distinct regime occurs for a = 0, for which the two fixed points merge together (2] = x5 =
0). This double fixed point 0 is stable when either

a=0, b<-1, 7>0 (70)

or
a=0, b>0, T>0. (71)

The domains (67) and (68) overlap, indicating the existence of bistability, i.e., both stationary
solutions (66) are stable simultaneously for a > 0 and b < —1. For these parameters, the solution
x(t) tends to one of these fixed points depending on whether the initial condition xq falls in the
domain of attraction of the first or second fixed point. The basin of attraction of the fixed point
x7 (respectively, %) is defined by the condition zy < x3 (respectively, ¢ > x3).

6.2 Monotonic decay to zero

For any positive starting carrying capacity 4y > 0, when

a>0, b>-—2L  r>0, (72)
Lo
the solutions to Eq. (64) always monotonically decay to zero, as is shown in Fig. 18. The
case (71) is included here. The same behaviour occurs under conditions (70), though then yj is
negative. The meaning of such a decay is evident: Prevailing loss and competition do not favor
the system development.

6.3 Oscillatory approach to a stationary level

The situation is much more ramified, when yo < 0. If yg < —x¢, so that

a>0, b<—-1-2 0<r<mn, (73)
Zo

where 7y is given by Eq. (69), then the solution z(t) oscillates around the focus 3, tending to it
as time increases. This behaviour is illustrated by Fig. 19.

6.4 Everlasting nondecaying oscillations

In the region of the parameters

a>0, b<—L—§, < T<T, (74)
0
where 71 depends on the values of a and b, the solution z(t) oscillates without decay, as is
presented in Fig. 20. The amplitude of the oscillations increases with increasing time lag 7.
Note that the period of the oscillations is much longer than the time lag. Though this case looks
similar to that studied in Sec. 4.6, there is a principal difference. Here, the oscillations persist
not just for one particular lag 7, but in the whole interval of lags, given in Eq. (74).

16



6.5 Punctuated growth to a moving finite-time singularity

With the same range of the parameters a and b, as in Eq. (74), but with the larger delay time in
the interval
1 <7T<T, (75)

when yy < —x, a finite-time singularity occurs at time ¢}, defined by the equation
a+bx(t:i—71)=0, (76)

where z(t) diverges hyperbolically as in Eq. (50). The second characteristic delay time 7, de-
pends also on the values of a and b. The difference from the divergences of Sec. 4.10, depicted in
Fig. 15, is that in the present case the function x(t) first decreases with time before accelerating
towards the singularity. In Fig. 21, we observe that there can be several punctuated phases, the
first decay followed by growth, followed by decay, followed by the final acceleration to infinity
in finite time.

For 7 > 7, the divergence is replaced by a monotonic decay to zero, as in Sec. 6.2.

The cases of Secs. 6.3, 6.4, and 6.5 illustrate how, being in the same range of the parameters
a and b, but merely varying the time lag 7, can result in a principally different behaviour of the
solution z(t).

6.6 Up-down approach to a stationary level

The cases of Secs. 6.3, 6.4, and 6.5 correspond to yy < —x. We now consider the case
—To < Yo < 0 , (77)

for which the behavior z(t) depends on the relative value of 7 compared with a characteristic 7,
which can be defined only numerically, being such that

Te < To < te (78)
where 7 is given by Eq. 38 and
t,=—In (1+@) . (79)
Zo
With a good approximation, 7, is close to 7. For the parameters satisfying the conditions
a>0, -—1-— —<b<-1, O<7<rm, (80)
Zo

the solution x(¢) first increases sharply before decaying to the stationary point x5, as shown in
Fig. 22.

6.7 Growth to a finite-time singularity

There are several cases of infinite growth occurring in finite time, which are similar to one of the
cases considered above, although they happen under quite different conditions. For the parame-
ters
a a
a>0, —1- —<b< - —, T>1., (81)



with . given by Eq. (79), the divergence occurs at time ¢., analogously to the behavior docu-
mented in Sec. 5.2.
When the delay time 7 becomes smaller than ¢, in the region of the parameters

a>0, -1- Lcpe-L  Lor<t, (82)
Zo Zo

there exists a critical time ¢ which is a function of a, b and 7, at which x(t) diverges hyperboli-
cally as in Sections 5.3 or 6.5.

6.8 Exponential growth to infinity

For time delays 7 smaller than 7. and the parameters

a>0, —l<b<-2 0<r<nm, (83)
Zo

the point of singularity moves to infinity, and z(¢) exhibits an exponential growth with time, as
in Secs. 4.11 or 5.4.

7 Prevailing loss and cooperation (o1 < 0,09 < 0)

7.1 General analysis

If loss (death) and cooperation prevail, this corresponds to the fourth line of classification (18).
Then, Eq. (13) becomes
dx(t)

_ r*(t)
e —x(t) +

a+bx(t—r1)"
As everywhere above, the same history condition (14) is assumed. As above, there exists a first
regime for ¢ < 7, for which the solution can be written explicitly as

(84)

t

ToYol
x(t) = t<T1), (85)
() Yo — (1 —e™) ( )
where 1 1s given by Eq. (15).
Equation (84) possesses two stationary points
a
Ty , T2 =1 (86)

The second fixed point x5 is non-negative for either @ > 0 and b < 1 or @ = 0. The stability
analysis of Sec. 3 shows that the first fixed point x7 is stable for all nonzero a, any b, and any
7, as in Eq. (67). In contrast, the second fixed point 23 is unstable for any ¢ > 0 and b < 1 for
which it is positive.

The special case a = 0 is such that the two fixed points merge together: =7 = 25 = z* = 0.
Then the Lyapunov stability analysis of Sec. 3 indicates that +* is unstable for 0 < b < 1. Itis
stable, when either

a=0, b<0, 7T>0, (87)

18



or

a=20, b>3, 7>0, (88)
or
a=0, 1<b<3, T<To, (89)
where ;
To = arccos(2 — b 1<b<3). 90)
= i 2 ) (

It is worth stressing that these results follow from the stability analysis of the linearized delay
equation. As has been emphasized in Sec. 3, the Lyapunov analysis of the asymptotic stability
for the delay equations gives only sufficient conditions of stability. The determination of the
actual region of parameters, for which the stationary solutions of a delay equation are stable,
requires to complement the Lyapunov analysis by detailed numerical checks. This has been done
everywhere above.

To stress the necessity of accomplishing detailed numerical calculations for delay equations,
let us consider the present case that provides a good illustration of such a necessity. The Lya-
punov analysis for the fixed point 2* = 0, when 1 < b < 3, indicates that this point is stable
for 7 < 719, as expressed by conditions (89). However, from numerical calculations, it follows
that the actual region of stability is larger, and extends to all 7 > 0. In order to illustrate this
difference, we present in Fig. 23, for the case of a = 0, the solutions to the exact delay equation
(84), compared with its linearized variant. The linearized approximation exhibits an unstable
behavior, while the solution to the full Eq. (84) is stable.

In this way, we have determined that the stationary solution z* = 0 is stable for all non-
negative a, any b, and all 7.

7.2 Monotonic decay to zero

When x( < y, and the parameters are

a>0, b>1—2.  r>0, 1)
Zo

the function z(¢) monotonically decays to zero. This behavior is similar to that of Sec. 6.2,
with the difference that, for some parameters, the decaying solution does not have a constant
convexity, as is demonstrated in Fig. 24. A similar decay to zero occurs for y, < 0, with the
parameters

a=0, b<O0, T>0. 92)

This decaying behavior is caused by the prevailing loss.

7.3 Growth to a fixed finite-time singularity

For 0 < yg < xg and

a>0, —Lopa1- L s> 93)
To i)
where
= _In <1_ @> | (94)
)



the solution z(t) diverges hyperbolically at ¢.. The finite singularity time ¢ is independent of the
delay time 7 as long as the later remains larger than ..

7.4 Growth to a moving finite-time singularity

For 7 < t., the catastrophic divergence occurs at a singularity time ¢, whose value depends on
7. For the parameters

a>0, -—Lop<o, O<T<t,, (95)
Lo

the divergence occurs at ¢ < t., which moves to the right towards ?., as 7 increases to .. In
contrast, for the parameters

a>0, O<b<l- L s <r<t,, (96)
Zo

where 7, depends on the parameters a and b, the divergence occurs at a point ¢, > ¢., which
moves to the left towards t., as 7 increases. This behavior is analogous to that described in Sec.
5.3.

7.5 Exponential grows to infinity

For the parameters a and b as defined in Eq. (96), but for smaller time lags, such that
0<7< 7, 97)

the solution z(t) to Eq. (84) grows exponentially at large times, similarly to the regimes docu-
mented in Secs. 5.4 and 6.8.

7.6 Monotonic decay to finite-time death

For 1y < 0, and for the parameters

>0, b<——  7>0, (98)
Zo

the solution z(t) decays monotonically to zero in finite time, reaching zero at time ¢,4, defined by
the equation a + bx(t; — 7) = 0. When ¢ tends to ¢, from below, z(t) sharply drops to zero, as
shown in Fig. 25. This behavior differs from the finite-time death regime described in Sec. 4.8
by the absence of punctuated alternations. And it also differs from the finite-time death regime
of Sec. 5.6 by the absence of punctuated steps. Here, death in the present regime is due to the
destructive activity of agents under the prevailing loss term in Eq. (84).

8 Conclusion

We have suggested a new variant of the logistic-type equation, in which the carrying capacity
consists of two terms. One of them corresponds to a fixed carrying capacity, provided by Nature.
And another term is the carrying capacity created (or destroyed) by the activity of the agents
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composing the considered society. The created (or destroyed) capacity is naturally delayed, as
far as any creation/destruction requires some time. We take into account both the creative but
also destructive impact of the agents on the carrying capacity. This is quantified by a coefficient
b of activity which is positive for creation and negative for destruction.

Four different situations have been analyzed, depending on the signs of the two terms entering
our delay logistic equation. We have taken into account that the growth rate is positive, when
gain (birth) prevails and it is negative if loss (death) is prevailing. The sign of the second term in
the equation is negative if the competition between agents is stronger than the effects resulting
from their cooperation. The sign of the second term turns positive when their cooperation is
dominant.

We have carefully investigated all the possible emergent regimes, using both analytical and
numerical methods. This has led to a complete classification of the possible types of different so-
lutions. It turns out that there exists a large variety of solution types. In particular, we find a rich
and rather sensitive dependence of the structural properties of the solutions on the value of the
delay time 7. For instance, in the regime where loss and competition are dominant, depending on
the value of the initial carrying capacity and of 7, we find monotonic decay to zero, oscillatory
approach to a stationary level, sustainable oscillations and moving finite-time singularities. This
should not be of too much surprise, since delay equations are known to enjoy much richer prop-
erties than ordinary differential equations. In this spirit, Kolmanovskii and Myshkis [32] provide
an example of a delay-differential equation, whose properties are as rich as those of a system
of ten coupled ordinary differential equations. We have illustrated in different figures the main
qualitative properties of the different solutions, not repeating the presentations of solutions with
similar behavior.

The rich variety of all possible regimes is summarized in Figs. 26 to 29. The solution types,
occurring in the most realistic and the most complicated case of Sec.4, when gain and competition
prevail, is presented in the scheme of Fig. 26. Respectively, Fig. 27 illustrates the admissible
regimes of Sec. 5, when gain prevails over loss and cooperation is stronger than competition.
Figure 28 summarizes the qualitatively different regimes of Sec. 6, when loss prevails over
gain and competition is stronger than cooperation. Finally, Fig. 29 demonstrates the variety of
solution types described in Sec. 7, when loss is larger than gain and competiton prevails over
collaboration.

The main goal of the present paper has been the formulation of the novel model of evolution
and the study of the mathematical and structural properties of its solutions. In the introduction,
we have briefly mentioned some possible interpretations. To keep the paper within reasonable
size limits, we defer the detailed discussions of possible applications to future publications. How-
ever, in order to connect the particular solutions, and the related figures, to real-life situations, we
can mention several concrete cases, where experimental observations are summarized in explicit
graphs.

The experimental data for the dynamics of the world urban population growth, presented in
Ref. [3] (Fig. 7) is very close to the punctuated evolution of our Figs. 1 and 2. The total world
population growth, considered back to 10° years before present (see Figs. 1 and 2 in Ref.[59])
is also reminiscent of our Fig. 2. The data on the energy production and consumption, listed
in several tables and figures of the BP Statistical Review of World Energy [60], are again very
similar to our Figs. 1, 2, and 6. Percentage of women in economics [61] (Figs. 1, 2, and 3)
follow the ladder-type dynamics as in our Figs. 1 and 2. The same type of ladder evolution is
documented for the growth of some cells in humans [62] (Fig. 1) and in insects [63] (Fig. 3).
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The decay of human cells [64] (Fig. 6) is analogous to that of our Figs 9 or 16. The diminishing
woman fertility rate in European countries [65] (Figs. 6 and 7) corresponds to our Fig. 9. There
are many other experimenatal data whose dynamics correspond to some of the solutions we have
described and whose more quantitative investigation is left for the future.
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Figure Captions

Fig. 1. Solutions z(t) to Eq. (32) as functions of time for the parameters a = 2 (solid line)
and a = 5 (dashed-dotted line). Other parameters are: xqg = 1, b = 1, and 7 = 20. Solutions
grow monotonically by steps of duration ~ 7, and z(t) — +oo as t — +o0.

Fig. 2. Solutions z(t) to Eq. (32) as functions of time for the parameters b = 2 (solid line)
and b = 3 (dashed-dotted line). Other parameters are: a = 2, o = 1, and 7 = 20. Solutions
grow monotonically by steps of duration ~ 7, and x(t) — 400 as t — oc.

Fig. 3. Solutions z(t) to Eq. (32) as functions of time for the parameters 7 = 10 (solid line)
and 7 = 20 (dashed-dotted line). Other parameters are: a = 2, o = 1, and b = 1. Solutions
grow monotonically by steps of duration ~ 7, and z(t) — 400 as t — oc.

Fig. 4. Solutions z(t) to Eq. (32) as functions of time for the parameters xy = 1 (solid line)
and z( = 3 (dashed-dotted line). Other parameters are: a = 2, b = 1, and 7 = 20. Solutions
grow monotonically by steps of duration ~ 7, and z(t) — +o00 as t — oc.

Fig. 5. Logarithm of the solutions x (%) to Eq. (32) as functions of time for the parameters b =
2 (solid line) and b = 5 (dashed-dotted line) exemplifying their average long-term exponential
growth. Other parameters are: a = 2, xp = 1, and 7 = 10.

Fig. 6. Solutions z(t) to Eq. (32) as functions of time for the parameters a = 2 (solid line),
a = 3 (dashed line), and a = 4 (dashed-dotted line). Other parameters are: xq = 1, b = 0.5, and
7 = 20. The solutions x(¢) monotonically grow by steps to their stationary points 5 = a/(1—b)
as t — oo. Stationary points are: x5 = 4 (for solid line), x5 = 6 (for dashed line), and 25 = 8
(for dashed-dotted line).

Fig. 7. Solutions z(t) to Eq. (32) as functions of time for the parameters b = 0.25 (solid
line), b = 0.5 (dashed line), and b = 0.75 (dashed-dotted line). Other parameters are: a = 2,
xog = 1, and 7 = 20. The solutions z(¢) monotonically grow by steps to their stationary points
xy =a/(1 —b)ast — oo. Stationary points are: x5 = 8/3 ~ 2.67 (for solid line), 25 = 4 (for
dashed line), and z7 = 8 (for dashed-dotted line).

Fig. 8. Solutions z(t) to Eq. (32) as functions of time for the parameters xo = 0.5 (solid
line), zy = 2 (dashed line), and xy = 3.5 (dashed-dotted line). Other parameters are: a = 2,
b = 0.5, and 7 = 20. The solutions z(t) monotonically grow by steps to their stationary point
x5=a/(1—0)=4ast— occ.

Fig. 9. Solutions z(t) to Eq. (32) as functions of time for the parameters b = 0.1 (solid
line), b = 0.4 (dashed line), and b = 0.7 (dashed-dotted line). Other parameters are: a = 0.25,
x9 = 3, and 7 = 20. The solutions z(¢) monotonically decrease by steps to their stationary
points 25 = a/(1 — b) as t — oo. Stationary points are: =5 = 5/18 ~ 0.278 (for solid line),
xy = 5/12 ~ 0.417 (for dashed line), and 25 = 5/6 ~ 0.833 (for dashed-dotted line).

Fig. 10. Solutions z(t) to Eq. (32) as functions of time for the parameters b = —0.66 (solid
line) and b = —0.33 (dashed-dotted line). Other parameters are: a = 3, xo = 1, and 7 = 20.
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The solutions () non-monotonically grow by steps to their stationary points x5 = a/(1 — b)
as t — oo. The stationary points are: x5 = 1.80723 (for solid line) and 25 = 2.25564 (for
dashed-dotted line).

Fig. 11. Solution z(t) to Eq. (32) as a function of time for the parameter 7 = 5 < 79 =
5.91784. Other parameters are: @ = 3, zp = 1, and b = —1.1. The solution x(¢) tends in an
oscillatory manner to its stationary point 5 = a/(1 — b) = 1.42857 as t — oc.

Fig. 12. Solution z(t) to Eq. (32) as a function of time for the parameter 7 = 7, = 5.91784.
Other parameters are: @ = 2, xg = 1, and b = —1.1. The solution z(¢) oscillates around its
stationary point 5 = a/(1 — b) = 0.952381 as t — oc.

Fig. 13. Solutions x(¢) to Eq. (32) as functions of time for the parameters b = —1.25 (solid
line) and b = —1.75 (dashed-dotted line). Other parameters are: a = 3, ro = 1, and 7 = 20.
The solutions x(t) oscillate with increasing amplitude until time ¢; = 149.932 (for solid line)
and t; = 105.972 (for dashed-dotted line) defined by the equation a + bz (t; — 7) = 0, at which
O] ———

Fig. 14. Dependence of the critical time t’(7), where the function x(¢) exhibits a singularity,
as a function of the lag 7. Here the parameters are: @ = 0, zp = 1,and b = —1.5. Attime t = ¢,
the solution has a singularity: ()|, = +00. The instant ¢} is defined by a+bx(t; —7) = 0.
The time ¢, = In(1 — yo/z0) = 0.916291 is the point of singularity.

Fig. 15. Solutions x(t) to Eq. (32) as functions of time for the parameters 7 = 0.1 (dashed-
dotted line), 7 = 0.2 (dotted line), 7 = 0.3 (dashed line), and 7 = 0.4 (solid line). The other
parameters are: a = 2, o = 2, and b = —1.5. Forall 7 > ¢, = In(1 — yo/x¢) = 0.405465,
we have ¢} = t.. If 7 < t,, there exists 7. &~ 0.27217 such that if 0 < 7 < 7., then (t) grows
exponentially to +oo. If 7. < 7 < £, then there exists a point of singularity ¢ > ?., defined by
a+ bx(t; — 7) = 0, such that z(t)|;—¢—o = +00. When 7 — t. — 0, then 7 — t. + 0. The
values of ¢ are respectively ¢ = 0.40560 (for solid line, 7 = 0.4) and ¢} = 0.50993 (for dashed
line, 7 = 0.3).

Fig. 16. Solutions x(t) to Eq. (53) as functions of time for the parameters b = —1.5
(solid line) and b = —1.8 (dashed-dotted line). Other parameters are: a = 1, zo = 1, and
7 = 10. The solutions z(t) decrease by steps until time ¢, = 10.6932 (for solid line) and
tq = 22.0171 (for dashed-dotted line) defined by the equation a + bx(t; — 7) = 0. At these times,
F(0)]1tg-0 = —o0.

Fig. 17. Solutions z(t) to Eq. (53) as functions of time for the parameters b = —0.25 (solid
line), b = —0.5 (dashed line), and b = —0.75 (dashed-dotted line). Other parameters are: a = 0,
xo = 1, and 7 = 20. The solutions = (t) monotonically decrease by steps to their stationary point
" =0ast — oo.

Fig. 18. Solutions x(t) to Eq. (64) as functions of time for the parameters b = —2 (solid line)

and b = 8 (dashed-dotted line). Other parameters are: a = 3, zo = 1, and 7 = 10. The solutions
x(t) monotonically decrease to their stationary point * = 0 as ¢t — oc.
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Fig. 19. Solutions x(t) to Eq. (64) as functions of time for the parameters 7 = 0.4 (solid
line) and 7 = 0.5 (dashed-dotted line), where 7 < 75 = 0.505951. Other parameters are: a = 1,
xg = 1, and b = —2.5. The solutions z(t) converge by oscillating to their stationary point
x5y =—a/(b+1)=2/3ast — 0.

Fig. 20. Solution z(t) to Eq. (64) as a function of time for the parameter 7 = 0.605 > T,
where 75 = 0.505951. Other parameters are the same as for Fig. 19. The solution x(¢) exhibits
sustained oscillations with an amplitude which is an increasing function of the delay time 7 and
a period much larger than 7.

Fig. 21. Logarithmic behavior of solutions z(¢) to Eq. (64) as functions of time for the
parameters 7 = 0.626 (solid line), 7 = 1.126 (dashed line), 7 = 1.626 (dotted line), and 7 =
2.126 (dashed-dotted line), where 71 < 7 < T». Other parameters are the same as for Fig. 19.
There exist points of singularity ¢, defined by a + bx(t; — 7) = 0, where x(t)|;—:—o = +00.
These points are: ¢; = 11.4328 (for solid line), % = 2.87170 (for dashed line), t% = 3.33026 (for
dotted line), and ¢ = 3.83074 (for dashed-dotted line).

Fig. 22. Solutions z(t) to Eq. (64) as functions of time for the parameters 7 = 0.48 (solid
line) and 7 = 0.485 (dashed-dotted line), where 7 < 75 = 0.495125. Other parameters are:
a =2,z9 = 1,and b = —2.5. The solutions x(t) tend non-monotonically to their stationary
pointzy = —a/(b+1) =4/3 ast — oc.

Fig. 23. Solutions z(t) to Eq. (84) (solid line) and to the corresponding equation obtained
by linearizing Eq. (84) around the fixed point £* = 0 (dashed-dotted line). Parameters for the
equations are: ¢ = 0, b = 2, and 7 = 4 (note that 7 > 7y = 7). The figure shows that the solution
to the linearized equation is unstable for 7 > 7, as the stability analysis prescribes, whereas the
solution to the nonlinear equation is stable for 7 > 7y, tending to its stationary point z* = 0 as
t — 00.

Fig. 24. Solutions x(t) to Eq. (84) as functions of time for the parameters b = 0.55 (solid
line) and b = 5 (dashed-dotted line). Other parameters are: a = 1, ro = 2, and 7 = 20. The
solutions z(t) decrease monotonically to their stationary point z* = 0 as t — oc.

Fig. 25. Solutions z(t) to Eq. (84) as functions of time for the parameters b = —5 (solid line),
b = —7.5 (dashed line), and b = —10 (dashed-dotted line). Other parameters are: a = 2, xg = 1,
and 7 = 0.5. The solutions z(t) decrease monotonically with a sharp but continuous drop ending
at 0 at time ¢, = 1.24290 (for solid line), t; = 1.66635 (for dashed line), and t; = 1.97114
(for dashed-dotted line) defined by the equation a + bz(t; — 7) = 0. At these moments, of time
E(0)]tg-0 = —o0.

Fig. 26. Scheme of the variety of qualitatively different solution types for the most compli-
cated and the most realistic regime of Sec. 4, when gain (birth) prevails over loss (death) and

competition is stronger than cooperation.

Fig. 27. Scheme of qualitatively different solution types for the case of Sec. 5, when gain
prevails over loss and cooperation prevails over competition.
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Fig. 28. Summarizing scheme of qualitatively different solution types for the case of Sec. 6,
when loss prevails over gain and competition prevails over cooperation.

Fig. 29. Summarizing scheme of qualitatively different solution types for the case of Sec. 7,
when loss prevails over gain and cooperation prevails over competition.
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Figure 1: Solutions x(t) to Eq. (32) as functions of time for the parameters a = 2 (solid line)
and a = 5 (dashed-dotted line). Other parameters are: xqg = 1, b = 1, and 7 = 20. Solutions
grow monotonically by steps of duration ~ 7, and z(t) — +oc as t — +o0.
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Figure 2: Solutions z(t) to Eq. (32) as functions of time for the parameters b = 2 (solid line) and
b = 3 (dashed-dotted line). Other parameters are: a = 2, xo = 1, and 7 = 20. Solutions grow
monotonically by steps of duration ~ 7, and z(t) — +o00 as t — 0.
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Figure 3: Solutions x(t) to Eq. (32) as functions of time for the parameters 7 = 10 (solid line)
and 7 = 20 (dashed-dotted line). Other parameters are: a = 2, o = 1, and b = 1. Solutions
grow monotonically by steps of duration ~ 7, and x(t) — 400 as t — oc.
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Figure 4: Solutions x(t) to Eq. (32) as functions of time for the parameters xo = 1 (solid line)
and x(o = 3 (dashed-dotted line). Other parameters are: a = 2, b = 1, and 7 = 20. Solutions
grow monotonically by steps of duration ~ 7, and x(t) — 400 as t — oc.
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Figure 5: Logarithm of the solutions z(¢) to Eq. (32) as functions of time for the parameters b = 2
(solid line) and b = 5 (dashed-dotted line) exemplifying their average long-term exponential
growth. Other parameters are: a = 2, xo = 1, and 7 = 10.
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Figure 6: Solutions z(t) to Eq. (32) as functions of time for the parameters a = 2 (solid line),
a = 3 (dashed line), and a = 4 (dashed-dotted line). Other parameters are: xqg = 1, b = 0.5, and
7 = 20. The solutions x(¢) monotonically grow by steps to their stationary points 5 = a/(1—b)
as t — oo. Stationary points are: x5 = 4 (for solid line), x5 = 6 (for dashed line), and 25 = 8

(for dashed-dotted line).
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Figure 7: Solutions x(t¢) to Eq. (32) as functions of time for the parameters b = 0.25 (solid
line), b = 0.5 (dashed line), and b = 0.75 (dashed-dotted line). Other parameters are: a = 2,
xo = 1, and 7 = 20. The solutions z(¢) monotonically grow by steps to their stationary points
xy =a/(1 —b) ast — oo. Stationary points are: x5 = 8/3 ~ 2.67 (for solid line), 25 = 4 (for
dashed line), and z7 = 8 (for dashed-dotted line).
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Figure 8: Solutions z(t) to Eq. (32) as functions of time for the parameters o = 0.5 (solid
line), zy = 2 (dashed line), and xy = 3.5 (dashed-dotted line). Other parameters are: a = 2,
b = 0.5, and 7 = 20. The solutions z(t) monotonically grow by steps to their stationary point
x5=a/(1—0)=4ast— occ.

37



a:0.25,x0:3,T:20

3
X(t) |
2.5
1.5 T \ i

— — — — —

Figure 9: Solutions x(¢) to Eq. (32) as functions of time for the parameters b = 0.1 (solid
line), b = 0.4 (dashed line), and b = 0.7 (dashed-dotted line). Other parameters are: a = (.25,
xg = 3, and 7 = 20. The solutions z(¢) monotonically decrease by steps to their stationary
points 25 = a/(1 — b) as t — oo. Stationary points are: =5 = 5/18 & 0.278 (for solid line),
xy =5/12 ~ 0.417 (for dashed line), and 25 = 5/6 ~ 0.833 (for dashed-dotted line).
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Figure 10: Solutions z(t) to Eq. (32) as functions of time for the parameters b = —0.66 (solid
line) and b = —0.33 (dashed-dotted line). Other parameters are: a = 3, ro = 1, and 7 = 20.
The solutions () non-monotonically grow by steps to their stationary points x5 = a/(1 — b)
as t — oo. The stationary points are: x5 = 1.80723 (for solid line) and z5 = 2.25564 (for
dashed-dotted line).
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Figure 11: Solution x(¢) to Eq. (32) as a function of time for the parameter 7 = 5 < 75 =
5.91784. Other parameters are: a = 3, zo = 1, and b = —1.1. The solution z(¢) tends in an
oscillatory manner to its stationary point 25 = a/(1 — b) = 1.42857 as t — oc.
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Figure 12: Solution x(t) to Eq. (32) as a function of time for the parameter 7 = 7 = 5.91784.
Other parameters are: a = 2, rg = 1, and b = —1.1. The solution z(t) oscillates around its
stationary point z5 = a/(1 — b) = 0.952381 as t — oc.
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Figure 13: Solutions z(t) to Eq. (32) as functions of time for the parameters b = —1.25 (solid
line) and b = —1.75 (dashed-dotted line). Other parameters are: a = 3, ro = 1, and 7 = 20.
The solutions x(t) oscillate with increasing amplitude until time ¢; = 149.932 (for solid line)
and t; = 105.972 (for dashed-dotted line) defined by the equation a + bz (t; — 7) = 0, at which
#(1)] —ty-0 = —00.
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Figure 14: Dependence of the critical time ¢%(7), where the function x(¢) exhibits a singularity,
as a function of the lag 7. Here the parameters are: a = 0, xyp = 1, and b = —1.5. Attime ¢ = ¢},
the solution has a singularity: z()|;—_o = +o0c. The instant ¢} is defined by a +bx(t; —7) = 0.
The time t. = In(1 — yo /o) = 0.916291 is the point of singularity.
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Figure 15: Solutions z(t) to Eq. (32) as functions of time for the parameters 7 = 0.1 (dashed-
dotted line), 7 = 0.2 (dotted line), 7 = 0.3 (dashed line), and 7 = 0.4 (solid line). The other
parameters are: a = 2, o = 2, and b = —1.5. Forall 7 > ¢, = In(1 — yo/x¢) = 0.405465,
we have ¢} = t.. If 7 < t,, there exists 7. &~ 0.27217 such that if 0 < 7 < 7., then z(t) grows
exponentially to +o0. If 7. < 7 < £, then there exists a point of singularity ¢ > ?., defined by
a+ bx(t; — 7) = 0, such that z(t)|;—¢—o = +00. When 7 — t. — 0, then 7 — t. + 0. The
values of ¢ are respectively ¢’ = 0.40560 (for solid line, 7 = 0.4) and ¢} = 0.50993 (for dashed

line, 7 = 0.3).
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Figure 16: Solutions z(t) to Eq. (53) as functions of time for the parameters b = —1.5 (solid

line) and b = —1.8 (dashed-dotted line). Other parameters are: a = 1, xo = 1, and 7 = 10. The
solutions x(t) decrease by steps until time ¢; = 10.6932 (for solid line) and t; = 22.0171 (for
dashed-dotted line) defined by the equation a + bx(t; — 7) = 0. At these times, &(t)|;—t,—0 =
—00.
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Figure 17: Solutions z(t) to Eq. (53) as functions of time for the parameters b = —0.25 (solid
line), b = —0.5 (dashed line), and b = —0.75 (dashed-dotted line). Other parameters are: a = 0,
xog = 1, and 7 = 20. The solutions x(¢) monotonically decrease by steps to their stationary point
" =0ast — oo.
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Figure 18: Solutions x(t) to Eq. (64) as functions of time for the parameters b = —2 (solid line)
and b = 8 (dashed-dotted line). Other parameters are: a = 3, vy = 1, and 7 = 10. The solutions
x(t) monotonically decrease to their stationary point * = 0 as ¢t — oc.
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Figure 19: Solutions z(t) to Eq. (64) as functions of time for the parameters 7 = 0.4 (solid line)
and 7 = 0.5 (dashed-dotted line), where 7 < 75 = 0.505951. Other parameters are: a = 1,
xg = 1, and b = —2.5. The solutions z(t) converge by oscillating to their stationary point
x5y =—a/(b+1)=2/3ast — 0.
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Figure 20: Solution z(t) to Eq. (64) as a function of time for the parameter 7 = 0.605 > T,
where 79 = 0.505951. Other parameters are the same as for Fig. 19. The solution x(¢) exhibits
sustained oscillations with an amplitude which is an increasing function of the delay time 7 and
a period much larger than 7.
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Figure 21: Logarithmic behavior of solutions z(t) to Eq. (64) as functions of time for the pa-
rameters 7 = 0.626 (solid line), 7 = 1.126 (dashed line), 7 = 1.626 (dotted line), and 7 = 2.126
(dashed-dotted line), where 71 < 7 < 7o. Other parameters are the same as for Fig. 19. There
exist points of singularity ¢}, defined by a + bx(t; — 7) = 0, where x(t)|;—:—o = +00. These
points are: ¢ = 11.4328 (for solid line), t; = 2.87170 (for dashed line), ¢’ = 3.33026 (for dotted
line), and ¢} = 3.83074 (for dashed-dotted line).
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Figure 22: Solutions x(t) to Eq. (64) as functions of time for the parameters 7 = 0.48 (solid
line) and 7 = 0.485 (dashed-dotted line), where 7 < 75 = 0.495125. Other parameters are:
a = 2,29 = 1,and b = —2.5. The solutions z(t) tend non-monotonically to their stationary
pointzy = —a/(b+1) =4/3 ast — oc.
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Figure 23: Solutions z(t) to Eq. (84) (solid line) and to the corresponding equation obtained
by linearizing Eq. (84) around the fixed point * = 0 (dashed-dotted line). Parameters for the
equations are: ¢ = 0, b = 2, and 7 = 4 (note that 7 > 77 = 7). The figure shows that the solution
to the linearized equation is unstable for 7 > 7, as the stability analysis prescribes, whereas the
solution to the nonlinear equation is stable for 7 > 7, tending to its stationary point z* = 0 as
t — oo.
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Figure 24: Solutions z(t) to Eq. (84) as functions of time for the parameters b = 0.55 (solid line)
and b = 5 (dashed-dotted line). Other parameters are: a = 1, vy = 2, and 7 = 20. The solutions
x(t) decrease monotonically to their stationary point * = 0 as ¢t — oc.
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Figure 25: Solutions z(t) to Eq. (84) as functions of time for the parameters b = —5 (solid line),
b = —7.5 (dashed line), and b = —10 (dashed-dotted line). Other parameters are: a = 2, xg = 1,
and 7 = 0.5. The solutions z(¢) decrease monotonically with a sharp but continuous drop ending
at 0 at time t; = 1.24290 (for solid line), t; = 1.66635 (for dashed line), and t; = 1.97114
(for dashed-dotted line) defined by the equation a + bxz(t, — 7) = 0. At these moments, of time
E()li—tg-0 = —o00.
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Figure 26: Scheme of the variety of qualitatively different solution types for the most compli-
cated and the most realistic regime of Sec. 4, when gain (birth) prevails over loss (death) and
competition is stronger than cooperation.
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Figure 27: Scheme of qualitatively different solution types for the case of Sec. 5, when gain
prevails over loss and cooperation prevails over competition.
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Figure 28: Summarizing scheme of qualitatively different solution types for the case of Sec. 6,
when loss prevails over gain and competition prevails over cooperation.
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Figure 29: Summarizing scheme of qualitatively different solution types for the case of Sec. 7,
when loss prevails over gain and cooperation prevails over competition.
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