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1 Introduction

We present a self-consistent model for explosive finaneibbkes, with nonlinear positive feedbacks
with mean-reversal residuals. The conditional expectéarme exhibit faster-than-exponential ac-
celeration decorated by accelerating oscillations. Aemisasl advance of our model compared with
previous specifications such as that of Johansen-LedoiteBe (1999) is to allow for stochastic

conditional expectations of returns which describe cartturs updates of the investors’ beliefs and
sentiments.

Two different modeling strategies lead to the same final gqkcification: (i) a rational-expectation
(RE) model of rational bubbles with combined Wiener and @insUhlenbeck innovations describ-
ing the dynamics of rational traders coexisting with noiselérs driving the crash hazard rate; or
(i) a behavioral specification of the dynamics of the st@tizadiscount factor describing the overall
combined decisions of both rational and noise traders.

Tests on residuals show a remarkable low rate’4) of false positives when applied to a GARCH
benchmark. When tested on the S&P500 index from Jan. 3, 1®B5v. 21, 2008, the model
correctly identifies the bubbles ending in Oct. 1987, in Q897 and in the summer of 1998 and the
ITC bubble ending on the first quarter of 2000. Different umoibt tests confirm the high relevance of
the model specification. Our model also provides a diagondéstithe duration of bubbles: applied to
the period before Oct. 1987 crash, there is clear evidemtétib bubble started at least 4 years earlier.
Using Bayesian inference, we find a very strong statisticefigpence for our model compared with a
standard benchmark, in contradiction with the result ofri¢hand Feigenbaum [2006]. Our positive
result stems from the mean-reverting structure of the uedsdof the conditional returns modeling
the bubbles, which is shown to be essential in order to olat@ionsistent model. Absent in previous
specifications, this feature constitutes the main advaht¢ei®work, leading to the novel positive
results. The same tests performed on seven major bubblesgy(Kong 1997, ITC 2000 bubble,
Oil bubble ending July 2008, the Chinese bubble ending iromt 2007 and others) suggest that
our proposed volatility-confined LPPL model provides a estiesit universal description of financial
bubbles, namely a super-exponential acceleration of plem®rated with log-periodic oscillations
with mean-reverting residuals.

The present work offers an innovative way to break the statenm the ex-ante detection of bub-
bles, which has been much discussed in the literature. Btanoe, Gurkaynak [2008] summarizes
econometric approaches applied to the detection of finhbalables, stating that the “econometric
detection of asset price bubbles cannot be achieved withisdasdory degree of certainty. For each
paper that finds evidence of bubbles, there is another ohétthihe data equally well without allow-
ing for a bubble. We are still unable to distinguish bubblesrf time-varying or regime-switching
fundamentals, while many small sample econometrics pnablaf bubble tests remain unresolved.”

Bubbles are often defined as exponentially explosive prigagh are followed by a sudden col-
lapse. As summarized for instance by Gurkaynak [2008], tleblpm with this definition is that
any exponentially growing price regime, that one would eablubble, can be also rationalized by
a fundamental valuation model. This is related to the probileat the fundamental price is not di-
rectly observable, giving no indisputable anchor to undei how observed prices may deviate from
fundamental values. This was exemplified during the lasrirt bubble culminating in 2000 by
fundamental pricing models, which incorporated real oiim the fundamental valuation, basically
justifying any price. Mauboussin et al. [1999] were amorgyitiost vocal proponents of the proposi-
tion offered close to the peak of the Internet bubble, théebéusiness models, the network effect,
first-to-scale advantages, and real options effect couddwatt rationally for the high prices of dot-
com and other New Economy companies. These interestingsvesywounded in early 1999 were



in synchrony with the general positive sentiments of thé market of 1999 and preceding years.
They participated in the general optimistic view and adaetth¢ strength of the herd. Later, after the
collapse of the bubble, these explanations seemed |leastatty.

Our model addresses in an innovative way this problem of eefiand identifying bubbles. It ex-
tends in a novel direction a class of processes that havegrepased to incorporate the positive feed-
back mechanisms that can push prices upward faster-th@menrtially. This faster-than-exponential
characteristics is one of the main diagnostic that we cengad a bubble. Many financial economists
recognize that positive feedbacks and in particular hgrdira key factor for the growth of bubbles.
Herding can result from a variety of mechanisms, such asipation by rational investors of noise
traders strategies [Long et al., 1990], agency costs anctapnincentives given to competing fund
managers [Dass et al., 2008] sometimes leading to the egtikemzi schemes [Dimitriadi, 2004], ra-
tional imitation in the presence of uncertainty [Roehnat Sornette, 2000], and social imitation. The
relevance of social imitation or “word-of-mouth” effectasa long history (see for instance [Shiller
[2000], Hong et al. [2005]] for recent evidence). Our appioss to build on previous specifications
that describe faster-than-exponential growth of pricéen@d hereafter “super-exponential”) [Sornette
and Andersen, 2002, Sornette, Takayasu, and Zhou, 2003].

The Johansen-Ledoit-Sornette (JLS) model [Johansen 08B, 2000] constitutes a first attempt
to formulate these ingredients into a traditional asseimgimodel. Starting from the rational expec-
tation model of bubbles and crashes developed by Blancii&] and by Blanchard and Watson
[1982], the JLS model considers the critical propertieemeht in the self-organization of complex
systems. In the JLS model, the financial market is composé&dmfypes of investors: perfectly ra-
tional investors who have rational expectations and oreti traders who are prone to exhibit herding
behavior. The dynamics of the price is described by the ug@hetric Brownian motion plus a jump
process controlled by its crash hazard rate. The noisergattze the crash hazard rate according
to their collective herding behavior, leading its critidedhavior. Due to the no-arbitrage condition,
this is translated into a price dynamics exhibiting supgremential acceleration, with possible addi-
tional so-called “log-periodic” oscillations associatgih a hierarchical organization and dynamics
of noise traders. Using the stochastic discount factor (SBérnette and Zhou [2006] extended the
JLS model to include inter-temporal parameters and fundssheconomic factors.

In the Johansen-Ledoit-Sornette (1999, 2000) model, tp@rithmic return is drawn from a nor-
mal distribution with a time-varying drift,

Ty = lnpt¢+1 - lnpti ~ N<AHt¢+1,ti7 02<ti+1 - tl))7 A[—[t - Ht¢+1 - Ht¢ ) (1)

i+1,t

where

H, =A—DB(t,—t;)° |1+ ¢ cos(wln(t. — ;) + ¢) | - (2)
I (37

This so-called log-periodic power law (LPPL) dynamics gi\®y (2) has been previously proposed
in different forms in various papers (see for instance Stenet al. [1996], Feigenbaum and Fre-
und [1996], Johansen and Sornette [1999, 2001], Feigenpa0@i], Zhou and Sornette [20034a],
Drozdz et al. [2003], Sornette [2004b]). The power law— B(t. — t;)” expresses the super-
exponential acceleration of prices due to positive feekilmaechanisms, alluded to above. Indeed,
for B > 0 and0 < § < 1, the rate of change at,, diverges as — t;. The term proportional to
cos(wln(t. —t;)) + ¢) describes a correction to this super-exponential behawiuch has the sym-
metry ofdiscrete scale invariance (DSornette, 1998]. This formulation (2) results from anadsg
with critical phase transitions (or bifurcations) occaogiin complex adaptive systems with many



interacting agents. The key insight is that spontaneousipat of organization between investors
emerge from repetitive interactions at the micro-leves9bly catalyzed by top-down feedbacks pro-
vided for instance by the media and macro-economic reagdimigich are translated into observable
bubble regimes and crashes. A common mathematical signatsuch critical behavior is found in
the power law singularities that accompany the faster-thgronential growth. The additional accel-
eration oscillations may result from the existence of areigchierarchy of the organization of traders
[Sornette and Johansen, 1998], or from the interplay betweeinertia of transforming information
into decision together with nonlinear momentum and preeersal trading styles [Ide and Sornette,
2002].

Previous tests of the LPPL model (1) with (2) and its varido@i®ng to the following three main

types:

1. non-parametric tests of the super-exponential behawidrespecially of the log-periodic oscil-
latory structure applied to residuals of prices time sgéé®u and Sornette, 2002, 2003a,b];

2. nonlinear least-square fits of price and log-price timeesg¢Johansen and Sornette, 2001, Sor-
nette and Johansen, 2001, Zhou and Sornette, 2008, Scehatte2009];

3. Bayesian methods applied to the time series of returnafj@land Feigenbaum, 2006].
Each type has limitations.

e Non-parametric approaches to the LPPL models have focissemgally on testing the statisti-
cal significance of the log-periodic component of pricedaals in bubble regimes ending with
crashes. In themselves, they do not provide complete tédte €PPL model (1) with (2) and
its variants.

e Calibrating directly price or log-price time series may ¢uoe spurious high measures of
goodness of fits (Granger and Newbold 1974, Phillips 1986)aA&onsequence of their non-
stationarity, the goodness of fit may not reflect the propertif the underlying data generating
process. Indeed, prices or log-prices are to a good appatikimgenerated by non-stationary
unit-root processes, obtained from the integration ofi@tary returns. Such integration me-
chanically reddens the spectrum, damping the high-frequenmponent of the time series,
which may lead to the illusion that the generating procesggisrministic.

e This problem has led Feigenbaum [2001] and Chang and Feagemf2006] to propose tests
of the LPPL model applied to the return time series. Indekd,tPPL model (1) with (2)
also predict a LPPL structure for the returns. The difficuiiyh this approach is that direct
filters of the LPPL patterns from daily returns have been tenabtil now to detect a signal pre-
dicted to be one-order-of magnitude smaller than the backgt noise (Feigenbaum [2001];
see however Sornette and Johansen [2001] for a more paginterpretation of Feigenbaum’s
results). The standard financial econometric responseg@tbblem is to work with monthly
or quarterly time scales, so that the volatility is reduaedelative value compared to the drift,
approximately by the square root of the number of days in atmonin a quarter. Unfortu-
nately, this is hardly applicable to the problem of detegtamd calibrating financial bubbles
since the signal we are looking for is by construction transi Therefore, the luxury of long
time series spanning many months or quarters is not availétd bubble expands over 4 years,
this provides only 48 months and 16 quarters, not sufficiematibrate econometric models.
Chang and Feigenbaum [2006] later made the first attempt pbogma Bayesian method which



is better suited for the analysis of complicated time-semedels like the JLS model expressed
in terms of returns. Through the comparison of marginallilkeds, they discovered that, if
they did not consider crash probabilities, a null hypothesodel without log-periodical struc-
ture outperforms the JLS model. And if the JLS model was ttiney found that parameter
estimates obtained by curve fitting have small posteriopgipdity. Even though the LPPL hy-
pothesis might be correct, they concluded that researsherdd abandon the class of models
in which the LPPL structure is revealed through the expextadn trajectory.

These problems can be fundamentally traced back to thelfactie JLS model describes a de-
terministic time-varying drift decorated by a non-staionstochastic random walk component. In
accordance with rational expectation, this predetermdetdrministic price path is the unbiased ex-
pectation of a representative rational agent in the mankate the stochastic component describes the
estimation errors. The problem is that the stochastic namdalk component is a variance-increasing
process, so that the deterministic trajectory strays éardimd farther away from the observable price
path. This is the reason why direct calibration of pricesiac@nsistent with the estimation of the
unbiased expectation of prices. And, as we shall demoerdbebw, this is also the reason for the
lack of power of the Bayesian approaches applied to thernr¢itme series.

In this context, the innovation of our approach is to modiky 8LS model by a new specification of
the residuals, that makes the process consistent witht giriee calibration, thus addressing the issues
raised by Granger and Newbold [1974] and Phillips [1986h trutshell, the realized observable price
path during bubbles is attributed to a deterministic LPPimponent, while the estimation errors by
rational investors is modeled by a mean-reve@uailstein-Uhlenbeck (O-U)rocess. While keeping
the structure of the model based on time-varying expectatd future returns, the daily logarithmic
returns are no longer described by a deterministic drifodsted by a Gaussian-distributed white
noise. Instead, specifying a mean-reversal noise compoimenno-arbitrage condition predicts that
the expected returns become stochastic, which representtgoing reassessment by investors of
the future returns.

Section 2 presents the new model, which we call the “votgtdonfined LPPL model”, from two
different perspectives, a first derivation based on ratierpectation and an equivalent demonstra-
tion using the stochastic discount function. Section 3gmesa first battery of empirical statistical
tests. Applying direct calibrations of the new LPPL speaitiion to prices generated by GARGH q)
processes show that the rate of false positives in termseafighection of bubble regimes is smaller
than 0.2%. Using tests on residuals of the price calibratr@thod applied to shrinking windows
converging to the crash of October 1987, we are able to iiyemtilear bubble regime starting about
4 years before the crash occurred. Section 4 implementsdlgedBan analysis, extending the ap-
proach of Chang and Feigenbaum [2006] to our LPPL specificatith O-U residuals. The results
show a very strong significance of the LPPL model versus adatanbenchmark, as the marginal
likelihood calculated from the data within bubbles priorth@ Oct. 1987 crash is about 150 times
larger than that of models in which daily returns have no LBRUcture. Section 5 presents the re-
sults of the tests of section 3 to seven other major bubbleagHKong 1997, ITC 2000 bubble, Oil
bubble ending July 2008, the Chinese bubble ending in Oc@@@7 and others) to confirm that our
proposed volatility-confined LPPL model provides a comsistiniversal description of financial bub-
bles, namely a super-exponential acceleration of pricerdéed with log-periodic oscillations with
mean-reverting residuals. Section 6 concludes.

n discrete times, it becomes an AR(1) process



2 Volatility-confined LPPL model

Our volatility-confined LPPL model can be obtained in two wagi) using the traditional economic
framework of rational expectation and (ii) on the basis efBlehavioral Stochastic Discount Factor
(BSDF) Although both derivations lead to the same specificatibay rovide different and com-
plementary economic interpretations. In the following tsusections, we present in turn these two
derivations.

2.1 Derivation based on theRational Expectation (RE) condition

Let us consider a financial market in which a regime shift egcchanging from a standard GARCH
process into a bubble phase. The price dynamics in the bubdi@e is assumed to be given by the
following process.

dl
- = p(t)dt + oydY + owdW — kdj , (3a)
dY = —aYdt+dWw . (3b)

The symboll denotes the stock index or price of the assetl&hdenotes the standard Wiener process.
The time-varying drift leading to the price accelerationiebhis characteristic of a bubble regime is
represented by (¢) and the jump processtakes the value zero before the crash and one afterwards.
The constant denotes the percentage price drops during a crash. Theastacproces$” plays an
important role in the model. Fér < o < 1, Y is an Ornstein-Uhlenbeck process, so thetandY

are both stationary. As we shall see, this property enshedstie calibration of the LPPL model to
the price time series is consistent, which was not the castéostandard JLS model in the absence
of Y. Equation (3b) describes a self-stabilization mechanisouwing in the market that confines
the volatility to remain bounded during the bubble gestattl the way until the downward jump
(or crash) occurs. Far = 0 or in absence ot’, the model recovers the original form of the price
dynamics in the JLS model. The JLS model is therefore nothutg special case of our model (3)
with (3b). The corresponding version in discrete time ofW&h (3b) reads

Infin —Inly =y + oy (Yo = i) + ower — 6Ajy (4a)
Yipp=(1-a)Y;+e, (4b)

wheres;, ~ N(0, 1).
Let us assume that the dynamics of the Stochastic DiscowtdiH&EDF) satisfies:
dA—At = —rdt — pydY — pydW . (5)
t
The factorr quantifies the difference between the risk-free intergstreand the dividend growth rate
0 (r =ry—9). The termspydY andpy, dWW amount to transforming the objective drift of the return
process into its corresponding risk-neutral version, ki@ro-arbitrage condition (6) written below.
The SDF can be interpreted as the excess return over thenspiast that an asset must earn per unit
of risk variance associated respectively with the two pseesY” andV. Only these two stochastic
processes need to be considered in the dynamigés sifice any others which are uncorrelated with
and!V do not contribute to the pricing of the assets considereel. fidre SDFA is the pricing kernel
of the financial market, that reflects the risk-neutral plolitg measure in which the current intrinsic
price of any asset is equal to the value of its expected digdoiiure payoffs. When the market is
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complete and the no-arbitrage condition holds, the prodiitte SDF with the value procegét) of
any admissible self-financing trading strategy implemeie trading on a financial asset must be a
martingale process,

A)I(t) = E[A)I() | F] Vt' >t (6)

or rewritten in differential form
By [d(A(#)I()] =0, (7)

where the expectation operathy, | - | represents the expectation conditional on all currentased
information corresponding to thealgebra#;,. From condition (7), we obtain

0=F =B —+—+——=
o hn TP TN L
= {—rdt — py By, (dY)} + {Ey, (1)) dt + oy By, (dY) — kh(t)dt} = > > piodt
i,j=Y,W
(8)
= By, (u(t))dt — rdt — kh(t)dt — > Y piojdt + (oy — py) By, (dY)
1,j=Y,W
= Ey, (u(t))dt — rdt — kh(t)dt = > " piodt + (oy — py)(—ae )Y, )t
i,j=Y W

Theterm)_ > p;o; is the required excess return remunerating all risks atxbepgion of the crash
i,j=Y,W

risk associated with the jump of amplitude We will denote it as>: for short. Then, the above

equation leads to

Eio(u(t) = (r + pZ) + £h(t) + aloy — py)e " 0)Y,, . (©)

The dynamics of the crash hazard rate), given byE, [dj] = h(t)dt, plays a very important here, as
it does in the JLS model. Expression (9) includes the expexteess return that needs to remunerate
rational investors for being exposed to the risk of a cradficivcan occur with the hazard rdié).
Here as in the JLS model, we assume that the crash hazard(tatis driven by the behavior of
“noise traders”, who herd into successive phases of euplamd panics. Assuming a dynamics of
local imitations and herding on a hierarchical network afigbinfluences as in the JLS model, this
leads to the crash hazard rate following a LPPL (log-pecipdiwer law) process of the type (2).
Compared with the JLS model, the new ingredi®nin (3b) translates into an additional term
proportional toe=*(=%)Y; in expression (9). Rather then being deterministic as inJtt® model,
the returnEy, (u(t)) that is anticipated at time, for the time horizon up ta is a function of the
specific stochastic realizatidn, of the O-U proces$” which is known at,. This property captures
the possible updates of belief of RE investors. Even thoughaBsumes that a RE investor always
makes an unbiased estimation of the actual return, it ismatio account for the fact that his/her belief

would adjust to the flow of available information, i.e(t;) = Ey, (Cli) # Ey, (%) = u(ts), for

I,
ty # to.
SinceE,, (Y;) = e~*t=)Y, by construction of the O-U proce$s, the simplest specification for
the drift termu(t) of the price process (3), which is compatible with (9), reads

u(t) = (r + p%) + wh(t) + aloy — py)Y;. (10)
Substituting (10) into (3), we obtain

dI
7= [+ pX + kh(t)]dt — apyYdt + (oy + ow )dW (11)
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Similarly, substituting (10) into (4), we obtain the diserédormulation for the dynamics of the loga-
rithmic returns:

Infiy —Inly = py + oy (Yo — Vi) + ower
= [r + pX + kh(1)] — apy Yy + (oy + ow)er (12a)
= [r+ pX + ch(t)] + py Vi1 — Vi) + (oy + ow — py)es (12b)

As explained below equation (9), following the JLS model, agsume that the crash hazard rate
h(t) follows a deterministic time-dependence, that describescollective behavior of noise traders
approaching a critical time at which the probability pertuime for a crash to occur peaks sharply.
Using a model of social imitation on a hierarchical netwofksocial influences, JLS obtained a
crash hazard rate obeying a LPPL process. Sincge ¥ andx are assumed constant, the term
r + p¥ + kh(t) is following a LPPL deterministic procesSH (t) = H(t + 1) — H(t), whereH ()
is given by expression (2).

Then, using (12b), the residual = In I; — H (t) of the logarithm of the asset value with respect
to the deterministic LPPL process is given by

Vi1 — = py (Yer1 — Vi) + (oy + ow — py)er - (13)

Operationally, the process is nothing but the residuals of the nonlinear calibrationhaf process
H (t) to the asset price time seriksl;.

We make the hypothesis that price regimes where bubbles@deare characterized by a strong
deterministic componerf (¢) in the log-price dynamics. As a consequence, one can expede
residuals/, remain bounded, so that the log-price remains “guidedHhy). If H(t) was stochastic,
we would say thatn [, and H (¢) are cointegrated [Granger and Hallman, 1991]. Translatete
context of expression (13), this implies that we considerdhse wherey + oy ~ py with |oy +
ow — py| < py. Inthis limit, the residuals, are stationary and can be taken proportionafita.e.,
they follow an AR(1) process. Thus, we assume

Avy =1 — 1y = —ay + 1wy 14
whereu, is a Gaussian white noise. From (12b) and (13) and using thateen of AH (¢), we get
Inlyy —Inl, = AH(t) + A, . (15)
Combining (15) and (14), the recursive formula for the laidpanic asset prices reads
Inlyyy=Inli+AH, —a(lnl, — Hy) + uy . (16)
Equivalently, the equation for the logarithmic return is

Ti+1 = In Iti+1 —In Iti ~ N(AHti-Hati - a(lnIti - Hti)’ Ui(ti-f—l - ti))v AHti+1,ti = Hti+1 - Hti :

17)
Compared with the conditional probability distributiorvgn by expression (1) valid for the JLS
model, our model introduces a new stochastic term in thé diffis new termx(In I, — H;,) ensures
that the log-price fluctuates around while remaining in teghborhood of the LPPL trajectory,.
This formulation ensures the consistency of modeling tigedioce by the deterministic LPPL com-
ponent as a global observable emergent macroscopic chaséics. We refer to model (17) as the
“volatility-confined LPPL model.” Obviously, this modelystrategy leading to the general form (17)
holds for arbitrary deterministic modeis,.



2.2 Derivation based on the concept of thé&tochastic Discount Factor (SDF)
with critical behavior

We now present an alternative derivation of the volatibionfined model (17) with a LPPL drift
trajectory (2), from a completely different angle companeth the RE bubble model of the previous
section. Our alternative derivation describes the dynamwiithe impact of herding investors on asset
prices via a novel specification of the stochastic discoactoir. This different approach is motivated
by several weaknesses of the RE model.

e The RE model segments rather artificially the respectivesrof noise traders on the one hand
and of RE investors on the other hand. The former are asswreshtrol the crash hazard rate
only via their herding behavior, and their impact on pricéendirect through the no-arbitrage
condition representing the actions of RE investors thét tive conditional expected return to
the crash hazard rate.

¢ Within the logic of the RE model, notwithstanding the detevistic predictability of the crash
hazard rate obtained via the corresponding determinisioe romponent, the RE investors
cannot on average make profit: the RE investors are remeaeiraim taking the risk of being
exposed to a crash. Over all possible scenarios, their eegbgain is zero. But RE agents
endowed with different preferences could in principle tdge the risk-neutral agents. The
homogeneity of the RE agent preferences is therefore adliimiit of the model.

Rather than using the interplay between the noise trademnglthe crash hazard rate and the
risk-adverse rational investors acting as market makeesativibute the characteristics of the price
behavior to the internal dynamics of therket sentimentiVe propose to capture the critical behavior
of an asset price resulting from the emergent collectivamimation of the complex financial system
by a specification of the stochastic discount factor (SDF).

The starting point is to recognize the existence of critahhamics (in the sense of complex
systems) occurring in financial markets. The critical dyiesmneflects the herding behavior of imi-
tational investors, which leads to increasing correlaibatween the agents translated into financial
bubbles. Such behaviors result from imperfective inforargtthe use of heuristics and possible bi-
ases in the judgements of heterogeneous investors. Iltreftine natural to combine insights from the
field of behavioral finance and the concepts of criticalityeleped in the theory of complex systems
[Sornette, 2004a].

From a behavioral finance perspective, we refer to Shefiio, @xtended the SDF into a so-called
Behavioral SDF (BSDF)r'he BSDF is supposed to provide a behaviorally-based sgigbf different
theories of asset pricing [Shefrin, 2005]. In this approdabb BSDF can be interpreted as a market
sentiment factor, which according to Shefrin, is not a gchla a stochastic process reflecting the
deviation of subjective beliefs described by a certainesentative agent (the market itself) relative
to objective beliefs and of market’s equilibrium time disabfactor relative to the situation when all
investors hold objectively correct beliefs. Expressedhwliscrete times, the BSDF can be defined as

Pr(x) 5%:

(z) 0%y

AST(ZL‘t) _ W(xt> -

T (m) O Lo ()] R (18)

where the exponent’ stresses that the BSDF embodies the “sentiment” of the rmhafiee term
m(x;) denotes the price of a contract that promises a unit-valagdffy should event; occurs at
timet¢. w(xz,) is thus the state price of the basic security associatedthvhime-event paift, ;).



IT denotes the objective probability density aRg is the representative investor’s subjective belief
density distribution, which can be derived by aggregatimg heterogeneous investor’'s subjective
beliefs given a set of adequate state pricgsdenotes the coefficient of relative risk aversion of the

market. g is the interest rate used to discount future payoffs. Tha t’%&% 5tR is the product

of the deviation of market’s subjective beliefs to objeetheliefs and of markets equilibrium time
discount rate relative to the objective discount rate. &fwee, it plays the role of enarket sentiment
factor, which we denote b$(z;) below. Notice that the remaining terms of equation (18)espond
to the traditional SDF, which we still denote By This leads to expres&®' (z;) as the product of
®(z;) andA, or in continuous time, as

AT = ®(t)A(L) , (19)
with Pala)) o
_ I'R(T¢ _ st —Yr(Tt
M%%:HWJ'@%’ A(t) = 8y [g ()] 7700 (20)

Armed with this representation (19), we propose to captueenarket critical behavior through
the dynamics of the market sentiment factor, which is assuimd®e characterized by the following
jump process

dd

P,
The coefficient: is assumed to be small, as it describes the amplitude of thatabas of the market’s
equilibrium discount rate from the objective discount riaténormal” times. In contrast, the teray
governs the occurrence of a possible catastrophe of theemsektiment resulting from a critical
collective amplification of pessimism leading to a run-aw&yhen the market operates close to a
critical point, increasing crowds of bearish investordigain their social imitational network to drive
down the market’s sentiment which may, as a result, fallgigavith some probability. For all state
except the most extreme jump-crash associated with.stgtere havePg(z;) < I1(z;), i.e., investors
underestimate the risks. On the other haRg(xz**) > II(z**)), which means that the whole market
becomes over-pessimistic at the time when the extreme e&veetealed. We also assume that the
expectationF,(dj) = h(t)dt of the jump procesd; defines the hazard rat€t). The difference with
the RE model of subsection 2.1 is that, hefi€) represents the probability for an overwhelming
synchronized bear raid to occur, conditional on the fact tha raid has not yet happened. As in
subsection 2.1, we assume thhat) follows a deterministic time-dependence with LPPL proiesrt
that are typical of a critical behavior on a hierarchicalweek. Using (19) and (21), we have

AT d(DA) AP, dA, dDydA,
L VR R VL Y W
For the price process, we use the same model (4) as in theopsesubsection and the same
process (5) for the SDRK(¢). The main difference with the RE model of subsection 2.1 & the
dynamics of the asset price given by (4) does not have a jump t8ince we attribute the possible
occurrence of a crash to a phase transition resulting frorarditng behavior, it is in accord with
intuition that the inherent process of the asset price dycsmdoes not contain jumps.
Assuming that the financial market is complete and in absefhadek-free arbitrage, the product

of the rate of change of asset price and of the BSDF shouldfgdlie martingale ccondition, i.e.,
E;[d(A?T1})] = 0. With (22) and (4), this leads to

—L—adt—bdj. (21)

—[T—a]dt—bdj+pde+deW. (22)

=[r+pX—a+bh(t)|dt — apyYdt + (oy + ow )dW . (23)
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This equation has the same structure as expression (1llihettaith the RE model, with just a
redefinition of the constants+ pX — r + pX — a andx — b. With the same price dynamics, the
conditional probability distribution of returns are idexall. It is this model (23) or equivalently (11)
that we will calibrate and test in the next sections.

But, before doing so, let us interpret the economic meanfrigeoabove derivation based on the
concept of the BSDF with critical behavior. In contrast witle RE model, there is not need here for
a representative rational investor playing the role of aketamaker fixing the price on the basis of
his rational expectations. The underlying origin of the timgiale condition and the mechanism for
the crash are quite different from that of the RE model. First assume that the financial market
is complete, i.e.Arrow-Debreu securities (A-Dsyre available to all investors that allow a perfect
replication of the asset value before the crash. In the esalye of the bubble regime, as the whole
market is over-optimistic, the probability for a sharp pridrop is underestimated and taken to be
vanishingly small. Hence, the price of A-Ds for a crash statalso zero. In this situation, the
current price of the asset is the aggregation of the priceslfavailable A-Ds that correspond to
all expectable states of price variations in the market. il tgoes on, the percentage of bearish
investors becomes larger and larger, as the deviation ofgket price from its fundamental value
increases. When the fraction of bearish investors appesatie critical value from below, with
some non-zero probability, the market sentiment may shitiver-pessimic and, as a consequence,
trigger a sudden jump. This jump occurs as a result of amglgiéjectively perceived probability
for a crash, embodying the now predominant over-pessitristis. Because there are not yet A-Ds
associated to the states corresponding to very sharplindegprices, nobody is able to hedge this
extreme risk. Therefore, there is a tension hovering owventarket, which is described by the hazard
rateh(t) = FE,(dj)/dt, wheredj punctuates the dynamics (21) of therket sentimerfiactor. The
existence of the hazard rate leads investors to requireshigiiurns to compensate for their ridks
This is implemented by the martingale condition, expres#ivat there is no opportunity for riskless
arbitrage. However, when the downward jump happens, adisitors suddenly find that the available
A-Ds that replicate the asset price have become cheap. Thenational for them to short sell their
stock and buy all the A-Ds. Given the absence of A-Ds for em&relrops of stock price, this then
leads to an arbitrage opportunity. This results in furtheécepfall, fueled by the positive feedback
of the strategic allocation used by investors (short thetamsd long the A-Ds). The crash is thus
the result of the cumulative effect of this vicious circleyesponding to a spontaneous breaking of
equilibrium [Sornette, 2000].

3 Tests based on the Ornstein-Uhlenbeck structure of Residls
of the LPPL model

We now describe a first series of empirical tests perform@wgusodel (23) (or equivalently (11)),
supplemented by the LPPL specification (2). One key featutieel Ornstein-Uhlenbeck (O-U) struc-
ture of the residuals. This suggests that evaluations ofmmgtel of a bubble regime should test both
for the presence of significant LPPL signatures as well agherO-U property of residuals. Ac-
cording to (14), this translates into an AR(1) test for th&@dweals obtained by fitting the asset price
trajectory using a LPPL process (2). We will therefore use sivategies. The first one developed

2In this model, the stock price in the bubble regime is riskeini But quite different from the RE model in which only
the representative RE investor requires a compensatidnsa@xposition to market risks, here all investors in thekagr
irrespective of whether they are rational or irrationag aollectively requiring higher and higher returns as thiekbe
develops.

11



in this section calibrates the asset price and then testhiéoD-U properties for the residuals. The
second one, which is implemented in section 4, uses the @gquivspecification (17) on the asset
returns to develop a Bayesian inference test.

3.1 Evaluation of GARCH processes to test for errors of type [false positive)

Recall that the purpose of this paper is to test the claimfthahcial bubbles can be diagnosed from
their super-exponential price dynamics, possibly deearély log-periodic accelerating oscillations.
A first approach is to test whether standard financial pr@&sesshibit such signatures. As an illustra-
tion, let us consider the GARCH (1,1) model

Inl; —Inly_ 1 = po + oy

2

24
o =05 +a(lnly —Inl,_y— o)+ Bo; &4

where the innovation is distributed according to the Studendistribution (withn degrees of free-
dom). Estimating this GARCH(1,1) model on the S&P500 indmthfie US market from Jan. 3, 1950
to Nov. 21, 2008 at the daily time scale (such that one unietincrement in (24) corresponds to
one day) yields the following parameters: conditional mefireturny, = 5.4 x 10~4, conditional
variances, = 5.1 x 1077, ARCH coefficiento = 0.07, GARCH coefficient3 = 0.926 and number
of degrees of freedom of the student distribution close 7.

Calibrating the LPPL specification (2) to a given price tcégey will always provide some output
for the parameters and the residuals. In order to qualifiBfeL calibration, we impose the following
restrictions on the parameters

B >0
0.1<3<09
6<w<13
IC] <1
These conditions (25) can be regarded as the “stylizedresatf LPPL”, which were documented
in many previous investigations (see Johansen [2004] anan¥en and Sornette [2006] for reviews
documenting these stylized facts). The two first conditiBns 0 and0.1 < § < 0.9 ensures a faster-
than-exponential acceleration of the log-price with aigatslope at the critical timé&.. The condition
6 < w < 13 constrains the log-periodic oscillations to be neitherfsi (otherwise they would fit
the random component of the data), nor too slow (otherwisg Would provide a contribution to
the trend, see Huang et al. [2000] for the conditions on takssical significance of log-periodicity).
The last restrictior)C'| < 1 in (25) was introduced by Bothmer and Meister [2003] to eaghat
the hazard raté(t) remains always positive. For the sake of brevity, we referaiditions (25) as
the LPPL conditions We also impose the search of the critical titnéo be no further than one year
beyond the last data point used in the fit.

Table 1 shows the results obtained by calibrating the LPRicifipation (2) to synthetic time
series generated with the GARCH model (24), with the LPPLddams (25), and the unit-root tests
on the residuals. We have performed these tests on two s&@06fsynthetic GARCH time series:
(i) samples of random lengths, with lengths uniformly dizited from750 days to1500 days and (ii)
samples of fixed length df500 days. The unit-root tests are the Phillips-Perron test hadickey-
Fuller test, which are such that a rejection of the null hizests H, implies that the residuals are
stationary (and therefore are compatible with the Ornstiitenbeck process posited in our model
presented in the previous section 2). Table 1 shows firstyasraall rate of false positives, i.e., less
than0.2% of the 2000 GARCH-generated time series are found to obey B conditions, and

(25)
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would thus be diagnosed as being in a bubble regime. Secahélynit-root tests show that, for

most residual time series obtained as the difference battveesynthetic GARCH time series and
their LPPL calibration, one can not reject the null, i.e. tb€iduals are non-stationary. This confirms
that our model is not a good fit to synthetic GARCH time series.

3.2 Tests on the S&P500 US index from Jan. 3, 1950 to Nov. 21,08

We now apply the same procedure as in the previous subsegatiba S&P500 index in the US from
Jan. 3, 1950 to Nov. 21, 2008. But we do not have of course theyof a large sample of different
realizations, as for the synthetically generated GARCH:tsaries. Instead, we generate two sets
of time windows of750 successive trading days. The first (respectively secord}¥ sdbtained by
sliding windows of750 days over the whole duration of our data sets with time inemshof 25 days
(respectively 50 days), referred to as windows of type | dmddpectively. The first (second) set has
563 (262) windows.

In table 2, we can see that, for set | (respectively Il), atfoac P ppr, = 2.49% (respectively
2.84%) of the windows obey the LPPL conditions (25). This is morantla factor of ten larger than
the corresponding fraction for the synthetic GARCH timaeserFor this fraction of windows which
obey the LPPL conditions, all of them reject the two unittr@sts for non-stationarity, showing that
the time windows, that qualify as being in a bubble regim®etiog to our model, also give residuals
which are stationary, as required from the Ornstein-Uhdeklspecification of the residues of our
model. In contrast, table 2 shows that, as for table 1, thgelamajority of windows give residuals
for which the null unit-root hypothesis of non-stationgriiannot be rejected. This means that, for
most windows that do not obey the LPPL conditions, theirdhesis are non-stationary, providing two
reasons for diagnosing these windows as being in a non-bubgime. This result, together with the
100% rate of rejection of the null hypothesis for non-staaiaty for the subset of windows which
obey the LPPL conditions, provides a strong support for codeh In contrast, for windows that are
diagnosed to be in a bubble regime, their residues are atitaiiya stationary, in accordance with
our model. A crucial additional evidence is provided by &aBlwhich lists the windows that obey
the LPPL conditions. We find that all of them correspond taoqur preceding well-known crashes.
This confirms that our method for identifying bubbles extslai very low rate of errors of type | (false
positives).

Summarizing our results obtained so far, we can state tlait&ly-97.5% of the time intervals
of 750 trading days within the period from Jan. 3, 1950 to Ntdy. 2008 correspond to non-bubble
regimes, rather well described by a GARCH process. We hase akle to characterize LPPL sig-
natures of bubbles that occupy about 2.5-3% of the whole itmeeval. These percentages suggest a
highly selective and efficient detection filter. We testfiertthis selectivity by focusing on the classic
crash of October 1987, to test how well we can diagnose a bukbime preceding it. We consider
shrinking windows with increasing starting dates and fixast bate of Sep. 30 1987. We scan the
starting dates with a resolution of 5 days and stop with thetskt window of size equal to 750
trading days. We expect that the LPPL conditions and thetieje of the null unit-test hypothesis
for the residuals should be observed increasingly as théngtalate of the windows moves upward
towards the crash date. Table 4 shows the results for diffetarting dates, which confirm remark-
ably well our expectations. The closer the starting date thé crash date, the larger is the fraction
Py ppr, of windows that obey the LPPL conditions. Of these, a fractib s ationaryResi.[Lppr, = 100%
reject the null unit-root tests of non-stationarity. Comgahwith the overall fraction o£.5 — 3% of
windows that pass the LPPL conditions over the whole timerual from Jan. 3, 1950 to Nov. 21,
2008, this fraction rises drastically from about 20% to 10@%tthe time windows most influenced
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by the latest part of the time series closest to the crasls Juggests the existence of a regime shift
from a GARCH-like process to a LPPL bubble regime as time @ggres the Oct. 1987 crash. Note
also that all 43 windows that pass the LPPL conditions haasist dates around the end of 1983,
suggesting that the bubble that led to the great Oct. 19&8hatarted around the beginning of 1984.
This results is very interesting in so far that it strenggh#ére interpretation of crashes as the outcome
of a long maturation process, and not due to proximal caustee @revious few days or weeks.

The left panel of Fig. 1 shows the fit of the logarithm of the SP US index with expression
(2) over the time interval from Jan. 3, 1984 (the first tradday in 1984) to Sep. 30, 1987. The
time series of the residuals of this fit is shown in the uppghntrpanel and its partial autoregression
correlation function (PACF) is depicted in the lower riglainel for lags from 0 to 20 days. All values
of the PACF with lags larger than fall within two standard deviations, indicating the abseid
linear dependence. Combined with the result of the Phiflpsron test on this series of residuals
shown in Table 5, this suggests that these residuals arestaitbnary (they reject the unit root test
of non-stationarity) and furthermore they can be closelyraximated by an AR(1) process with a
mean-reverting coefficienta ~ —0.03. This supports our proposal to model the residuéls of
the LPPL as generated by a Ornstein-Uhlenbeck process.

4 Bayesian inference for our modified LPPL model with Ornsten-
Uhlenbeck residuals

We now describe the second series of empirical tests peeusing model (23) (or equivalently
(11)), supplemented by the LPPL specification (2). Whileghevious section 3 has used the asset
price to test for the presence of LPPL conditions and hastdstad for the Orstein-Uhlenbeck (O-U)
properties for the residuals, here we use the other equivgecification (17) on the asset returns to
develop a Bayesian inference test.

Our approach parallels that of Chang and Feigenbaum (2@d6hé implementation of the
Bayesian inference. But a fundamental difference is thhilenheir implementation used the speci-
fication (1), our model (17) contains the additional term(In p, — H,;) stemming from the intrinsic
guiding mechanism associated with the O-U model of the vedstdecorating the deterministic LPPL
bubble trajectory. We show below that this new term makethallifference in establishing the sta-
tistical significance of LPPL properties of asset returns.

Equation (1) suggests that one might detect directly thelL&énature in returns by removing
the effects caused by the intrinsic guiding mechanism destsatwith the O-U model of the residuals.
Defining the random variabi,;, = —a(Inp, — H;), we define thedjusted returras

Téd :Tt—\lft:AHt+Ut. (26)

Recall thatA H; results directly from the hazard rate and contains the LRghas The residual;,
should then be a white noise process. The adjusted retfifndefined by (26) for the S&P500 US
index from Jan. 3, 1984 to Sept. 30, 1987 are shown in Fig. 2 cmtinuous curve shows H;,
where the parameters for the procégsare obtained by a nonlinear least square fit as in the previous
section. Unsurprisingly, one can see that the determintstmponent is very small compared with
the typical amplitude of the adjusted returns. Note thattmae relative smallness of the LPPL signal
viewed in the return time series has been noted earlier @abigum, 2001, Chang and Feigenbaum,
2006]. Itis not clear how to develop a test that directly festthe existence of a significant LPPL
component in the time series of adjusted returns shown in2ig
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The general weakness of the likelihood analysis of logguicity on returns is not a surprise
when viewed from the perspective offered by the analysisudrg) et al. [2000]. Using numerically
intensive Monte- Carlo simulations, Huang et al. [2000]vg&0 that, for regularly sampled time se-
ries as is the case for financial time series, the log-pearismjnal is much more significant in the
cumulative signal than in its first difference (and that gsihe cumulative signal does not create
spurious log-periodicity), due to the well-known fact tlategration corresponds to low-pass filter-
ing. This suggests that working on returns, while being tla@dard of econometric studies, may
actually be sub-optimal in this case. Sornette and Johd@6€1i] summarized in their section 9 the
Monte-Carlo tests which have been performed by variouspggtwmaddress specifically this problem,
including [Feigenbaum and Freund, 1996, 1998], both onrstidally generated price levels and on
randomly chosen time intervals of real financial time seribsse tests show the high statistical sig-
nificance of logperiodicity in the log-price trajectory be¢ the crash of October 1987 and on several
other bubbles.

We thereupon turn to the method of Bayesian inference tcstigate the statistical significance
of LPPL features in the return time series. Following thdgduphy attached to Bayesian analysis,
two models can be compared by estimating the ratio of theeposprobability for each model given
the data, this ratio being called tlBayesian factar Let M, denotes the benchmark model afgl
its corresponding set of parameters. Similarly, 1ét denotes an alternative model with its set of
parameter&;. Then, the Bayesian factor of model, compared with model/, is defined as

Bur :p(51|Q;M1)
PR p(E0 | Q5 M)

S p(Onr, ;M1)p(Q|0ar, ;M1)dOnr, (27)
_ p(Q) _ fp(9M1§ Ml)p(Q | Onr,; M1)d9Ml
fp(eMO;MO)p(%fMO;MO)dGMO S POy Mo)p(Q | Onsy: Mo)dby,
P

In this expressiond,, denotes the vector of parameters for modél The termp(= | @ ; M)
represents the posterior probability for the set of paramen model)M/, given the observed data
Q. The termp(6,; M) is the prior probability chosen for the parametéia model A/. Within the
framework of Bayesian hypothesis testingiif;, 1, is larger thari, one should accept the alternative
model because the posterior probability for its paramétassenjoyed a larger increase from its initial
prior basis level, which implies that the alternative mazdai explain the data better than the reference
model. If the prior probabilities are not too restrictivedafor a large sufficient data set, Bayesian
inference amounts to comparing the likelihood function atle model and the Bayesian factor test
tends asymptotically for large data sets to the likelihcattbrtest.

Let us consider the time series of retufgs} sampled at the time instants {to, t1,t2, -, tn}-
For the reference model, as in Chang and Feigenbaum [20@6¢haose the Black-Scholes model
whose logarithmic returns are given by

Ty ~ N(,u(tl — tz;l), Uz(ti — tz'fl)) . (28)

The drift i is drawn from the prior distributio®V (u.,., o,). The variance? of daily returns is specified
in terms of its inverse = 0—12 known as the “precision” in the language of Bayesian amslybBhe
precision describes how precisely the random variablebeilknown and thus the higher the better.
The precision is supposed to be drawrras I'(a., ;).

The alternate hypothesis model is our volatility-confin@PIL model. Recalling expression (17)
with our present notations, the returns of the alternatiee@hare described by

ri ~ N(AH; ;-1 —a(qi-1 — Hi—1), o2t —ti1)) (29)
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where

AHi,i—l = B(tc — tz‘_l)ﬁ 1 + L COS(W hl(tc — ti—l)) + ¢)
L+(57

— B(t.— ;)% |1+ L cos(wln(t, — t;)) + ¢)
L (3

The LPPL characteristics of the model fArZ; ;_, are encoded in the the vector of parameters
(A, B,C, B,w, ¢,t.). For simplicity, we assume that these parameters are drasapendently from
the following prior distributions:

A ~ N(pa,o04)

B ~ F(O‘BaﬁB)

U(o,1)

ﬁ ~ B(Oéﬁ Bs) (30)

W o~ F(O‘w vﬁw)

¢ ~ U(0,2r)

te—tn ~ (o, , Br,)

wherel’, B andU denote thel-distribution, B-distribution and uniform distribution respectively.

In practice of bayesian inference, tliédistribution andB-distribution are often adopted as prior
probability distributiod. The I'-distribution is usually used to describe non-negativéade, and

has the density function i§(z; a, 3) = 57T () 2 ' exp (%) , With E(X) = agandVar(X) =
af3?. T(z) is the gamma function defined &$z) = [°¢* ‘e 'dt. The random variable realized

between 0 and 1 is usually assigned with beta prior denshigtwis f(x; «, 5) = B(; 5T (1 —
3)P~1, whereB(z) is beta function satisfying (u, v) = W Accordlngly the mean and variance
of the variable withB-distribution areE/(X) = _%5 andVar(X) = m Then, the full

set of parameters of the volatility-confined LPPL modetis: (u, 7, «, &). The prior density for our
model is given explicitly by the product of all marginal pisdor the each parameter

(:LL - ,ur>2

1
p(0rppr; LPPL) = mexp {—T‘Q} X fr(; az, B7)

X fr(a; g, Ba) X ! exXp [—M] x fr(B;ag, Bs)
V2mo 4 202
1
X fB(B;ap, Bs) X fr(w;ay, fw) X Y. X fr(te —tn; Qro—tn s Bro—ty) » (31)
for 0 ppr € 2 =R* x R} x [0, 1] x [0,27) x [tn, 00). According to (29), giverf,ppr, andg;_1,

the updated posterior density f@ris

T (¢ — gi—1 + (g1 — Hi—1) — AH;;1)?

i giv Ouppr LPPL) =  [—— T exp |—
P4 | gi-1, Orprr ) 27 (t; — ;1) P [ 2(t; —ti1)

(32)

3 -distribution andB-distribution are also calledonjugate prior familybecause by adopting a prior density of Beta
(Gamma) form one also obtain a posterior density of Beta (@ayform, but with different parameters. Although there
is no necessity to adopt conjugate prior, the conjugate prigperty is very convenient for it avoids having to integra
numerically to find the normalising constant in the postediensity [Young and Smith, 2005].
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Thus, the conditional density of the returns given the goemameters reads

N
p(Q | 0ppr; LPPL) = [ [ P(a | i1, 0rppr s LPPL) (33)

i=1

and the log marginal likelihood needed for the computaticthe Bayesian factor is given by

Z =In ([p(@LppL)p(Q | QLPPL;LPPL)dQLppL) . (34)

Expression (34) defines nothing but a smoothing of the hkeld function performed with respect to
some a priori weight for the input parameters.

Before proceeding to the calculation of expression (34)fprp;, and-%xs and obtain the Bayesian
factor, we should point out that a major difficulty with they®aian inference test lies with the fact
that the prior distribution is in general unknown to us. Tdifficulty cannot really be alleviated by
trying different priors and by checking the correspondingtpriors, because all posteriors are false
as long as we do know the true a priori distribution of the peeters. We stress that there is a highly
non-trivial assumption underlying the Bayesian inferetest, namely that the parameters can be con-
sidered as random values: random parameters would needénaj@n ensemble of different sample
realizations (or series of experiments), whereas we agedsted here in one particular realization (or
sample). In a sense, the Bayes approach to hypothesiggtessames that some kind of ergodicity
on a single sample applies and that the sample is of suffigilemgje size. But this needs to be tested
and it is not a trivial task.

Given this, we nevertheless pursue, if only for the goal ehparing with the negative results of
the same procedure applied to the JLS model by Chang andrbaigs [2006]. To implement the
Bayesian inference test, we consider the same data set@e bedmely the S&P 500 US index ,
but concentrating on the period from Jan. 3, 1984 to Sep. @87 10 correspond with our previous
analysis. The constant drift, the precisionr, coefficient B and C, super-exponentja| circular
frequency for log-periodic oscillatiom and phase term are assigned with the same priors as those
in Chang and Feigenbaum [2006]. The coefficigntvhich is the final expected price at critical time,
is taken from a normal distribution with[A] = 6 andVar[A] = 0,05 to roughly accord with the
extend of price fluctuations near the critical time. Sincean be a few days or months after the
real crash, but with the most probable value just being tastcday, we choosE[t. — tx] = 30
and standard deviation g8V ar[t. — tx] = 30. Additionally, we choos&[a] = /Var[a] = 0.05,
which roughly reflects our estimated results obtained froentest using shrinking windows with a
fixed last date of Sep. 30 1987 and with time increments of 5.dalge following gives the priors:

p ~ N(0.0003, (0.01)%)

T n~



The integrals in (34) for the log marginal likelihood havesheestimated by the Monte-Carlo
method with 10000 sampling values for each integral compbrie order to ascertain the validity of
our numerical estimation of pp;, in (34) and to estimate its confidence interval, we have tepea
these calculation 100 times. We also performed the samealatitins for.#zs and finally get

LippL(2.5% — 97.5%) = 3173.546 — 3176.983

Ls(2.5% — 97.5%) = 3169.808 — 3170.097 . (35)
A difference of the average loglikelihodg pp1, — Zs Of about translates into a very large Bayesian
factorexp(ijpL — jBS) ~ % ~ 150. The Bayesian inference test therefore suggests that our
volatility-confined LPPL model strongly outperforms theaBk-Scholes benchmark.

Our result contrasts decisively with that of Chang and Fdigeim [2006]. Using our numerical
scheme, we were able to reproduce the negative resultsedpmy Chang and Feigenbaum [2006]
that the JLS model is not significantly preferred to the bematk model according to the Bayesian
inference test. Thus, our new results cannot be ascribedsfmuaous numerical implementation
but reveals the importance of the specification of the redgduThe difference can be traced back
to the Ornstein-Uhlenbeck model of residuals, which makelfRAPL fits self-consistent. Given the
empirical price data, any agnostic economist would haveitoqore weight on our volatility-confined
LPPL model than on the standard benchmark without supesregial growth and log-periodicity.

In addition, we calculate the log marginal likelihood foetholatility-confined PL (power law)
model. The PL model is the special case of the volatilityfireed LPPL model obtained fa@r' = 0 in
expression (2). The PL model keeps the super-exponentigbonent but neglects the log-periodic
oscillatory component. The following compares the logelikoods of the two models in their 2.5-
percentile to 97.5-percentile range obtained over theiligion of their numerical estimations:

LippL(2.5% — 97.5%) = 3173.546 — 3176.983

36
Lor,(2.5% — 97.5%) = 3175.520 — 3178.425 . (36)

This shows that there is no significant gain in the Bayesiatofavhen going from the PL model
to the LPPL model, Actually, the Bayesian factor for the Wtitg-confined PL model tends to be
somewhat larger than that of the volatility-confined LPPLd®lo This should probably be attributed
to the stronger impact of the priors of the later due to itgdanumber of parameters, compared with
the former.

Indeed, since the Bayes approach suggests to smooth oikilitedods corresponding to different
parameter values by an a priori density, it is a legitimatestjon to ask why such smoothing may
work. When the sample sizetends to infinity, the maximum-likelihood ML-estimatesdedn the true
values and the likelihood function under the integral in)(3ts out” only a narrow neighborhood
of the true values. Thus, the behavior of the a priori densitigide of this neighborhood becomes
irrelevant, and the Bayes approach tends to the maximurihidaed approach, of course under the
condition that the chosen prior would not ascribe zero wieighhe true parameter value. However,
when the sample size is moderate or small and the number afegders is not small, the situation
becomes more and more uncertain. The likelihoods can haeeaddeven many) local maxima in
the present case of log-periodicity. Proponents of the Baygproach argue that this multiplicity is
overcome by integration (smoothing). But, for finite samgilee n, the smoothing in the marginal
likelihood may be more harmful (in particular under unfordte choices of the prior): smoothing and
its positive effects (suppression or decreasing muliiglaf local peaks) come at the price of a loss of
efficiency. We believe this could explain the somewhat begeformance of the LP model compared
with the LPPL model within the Bayesian inference tests.
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In conclusion, we find a decisive preference in favor of the@Rdl LPPL models against the bench-
mark model, which supports the claim that the super-expiadgaroperty of the price constitutes an
important characteristics of financial bubbles.

5 Out-of-sample tests of the volatility-confined LPPL modelo
diagnose other bubbles

We now apply the above described procedure and tests offisagree for the LPPL property to
different price time series that contain other historige@aulative bubbles. Our goal is to test for the
validity and universality of the volatility-confined LPPLadel.

We proceed in two steps. For each time series to be analyzediysv calibrate the nonlinear
model (1) with (2) to the logarithm of the price. If the LPPLrameters determined from the fit
for a certain period meet the LPPL conditions (25), a spéeeldubble is then diagnosed within
this period. The volatility-confined LPPL model is then saped to be applicable. Second, we test
the O-U property as well as the order of autoregression ofdbrluals obtained from the previous
calibration step in the same time interval. This is a teshefdtationarity of the residual time series.

We consider some of the most important speculative bubhbtshiave occurred in the World in
the last decades. Specifically, we study

e the bubble in the USA as well as in other European marketdetdb a crash at the end of the
summer of 1998 (the so-called Russian crisis),

¢ the booming market in Hong Kong in the mid-1990s ending withash of October 1997,

¢ the ITC bubble reflecting over-optimistic expectation oleareconomy ending in the spring of
2000 with a big crash of the NASDAQ index,

¢ the so-called oil bubble which started arguably around 28163 and ended in July 2008 [Sor-
nette et al., 2009], through it marks on the S&P500 index and,

e the recent Chinese bubble, characterized by crazy ups amasdand a sixfold increase of the
Chinese indices in just two years, followed by a dramatigpdnoa mere half year to one-third
of its peak value attained in October 2007. We use the Shasgbek Exchange Composite
index (SSEC) and Shenzhen Stock Component index (SZSQ)hwané two of the major stock
index in Chinese market.

Table 6 displays the parameters obtained from the caltrati the LPPL model to these bubbles.
One can verify that the LPPL conditiods > 0,0.1 < 3 < 0.9,6 < w < 13, and|C| < 1 are met
for these bubblés

Table 7 gives the results of the O-U test for the residualainbd from calibrating the nonlinear
model (1) with (2) to the logarithm of each time series. Camiri the results of the different unit-
root tests, we conclude that all indices except one have tbgiduals qualifying as generating by a
stationary process at the 99.9% confidence level. The drceistthe Shenzhen stock component
index for which the confidence level to reject the null of reiationarity is 99%. The estimated
coefficienta of auto-regression associated with the O-U process is leetveé2 and0.06. This range

4For the SSEC index, the estimat@ds found equal td).905, which is barely outside the chosen qualifying interval
[0.1,0.9]. Changing slightly by a few days the time window in which thésfiperformed puts back the exponghwithin
the qualifying interval.

19



of values corresponds approximately to our choice for ther glistribution of the coefficienty in
the Bayesian analysis reported in the previous section.|d3tecolumns of Table7 list the order of
the AR model obtained for the residuals. Two criteria of orsldection are tested for robustness. In
almost all cases, the two different criteria give the sangeoequal td for the AR model, with only
one exception being the Hang Seng Index for which the HQrmitesuggests an AR(3).

The above tests performed on these seven bubbles preseniables 6 and 7 suggest that our
proposed volatility-confined LPPL model, first tested fag bubble and crash of October 1987, is not
just fitting a single “story” but provide a consistent uns@&rdescription of financial bubbles, namely
a super-exponential acceleration of price decorated wgtpleriodic oscillations with mean-reverting
residuals.

6 Concluding remarks

We have presented a model of bubbles, termed the volatitibfined LPPL model, to describe and
diagnose situations when excessive public expectatiofstafe price increases cause prices to be
temporarily elevated.

To break the stalemate in the literature concerning thectdeteof bubbles, we have proposed to
focus on three characteristics: (i) the faster-than-egptial growth of the price of the asset under
consideration represented by a singular power law behdujaan accelerated succession of transient
increases followed by corrections captured by a so-catigeperiodic component and (iii) a mean-
reversing behavior of the residuals developing aroundvtioditst components, which by themselves
form the log-periodic power law (LPPL) model.

These three properties have been nicely tied together adi@nal-expectation (RE) model of
bubbles with combined Wiener and Ornstein-Uhlenbeck iations describing the dynamics of ra-
tional traders coexisting with noise traders driving thastr hazard rate. An alternative model has
been proposed in terms of a behavioral specification of tinawfycs of the stochastic discount factor
describing the overall combined decisions of both rati@mal noise traders.

The test of the volatility-confined LPPL model has proceeietvo steps. First, we calibrated
the nonlinear model (1) with (2) to the logarithm of the pricee series under study and diagnosed
a bubble when the LPPL parameters determined from the fit éertain period meet the LPPL con-
ditions (25). Second, we tested for the stationarity of #sdual time series. Applied extensively to
GARCH benchmarks and to eight historical well-known bubbiee found overall that these bubbles
obey the conditions for the volatility-confined LPPL modebhavery high confidence level (99.9%)
and that the rate of false positives is very low, at alio2fto. These results suggest that we have iden-
tified a consistent universal description of financial belsbhamely a super-exponential acceleration
of price decorated with log-periodic oscillations with me&verting residuals.

Further validation will come by testing further on other lwmobubble cases and in real time.
These studies are currently underway and will be reportseidiere.
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Table 1: Test of the LPPL specifications (2) to synthetic tseres generated with the GARCH model
(24), with the LPPL conditions (25), and the unit-root testighe residuals. For each type of samples,
1’000 time series have been generated.

type of percentage of signif. percentage of not rejectiigg false positive
samples LPPL condition satisfied level Phillips-Perron keyeFuller rate
random a=0.01 94.1% 94.1% 0.2%
length 0.2% a = 0.001 72.8% 72.8% 0.2%
fixed a=0.01 93.8% 93.8% 0.1%
length 0.1% a = 0.001 72.7% 72.7% 0.0%
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Table 2: Test of the LPPL specifications (2) and the unit-tests on the residuals, for time series of
750 consecutive trading days of the S&P500 US index in the ialerom Jan. 3, 1950 to Nov. 21,
2008. The first (respectively second) set of windows is oletéby sliding windows of50 days over
the whole duration of our data set with time increments of agsd(respectively 50 days)P; ppr.,
denotes the fraction of windows that satisfy the LPPL cooditPs,tionaryresi.|1ppr, IS the conditional
probability that, out of the fractio®; pp;, of windows that satisfy the LPPL condition, the null unit-
root test for non-stationarity is rejected for the residual

days of number of signif. percentage of not rejecting,
one step  windows Prepy level Phillips-Perron Dickey-FuIIe?stfmonmyResi~\LPPL
a=0.01 96.45% 96.45% 100%
25 563 249 —(001  69.27% 69.27% 100%
a=0.01 96.81% 96.81% 100%
50 282 284%— —(001  70.92% 70.92% 100%
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Table 3: Windows of the S&P500 US index in the interval from.B 1950 to Nov. 21, 2008 that obey
the LPPL conditions. Windows of type | (respectively typedie obtained by sliding a time interval
of 750 days over the whole duration of our data sets with time inemsiof 25 days (respectively 50

days).

start of window

end of window

rejedt, for residuals

type of sliding step

May. 7,1984  Apr. 24, 1987 Yes I
Jun. 12,1984  Jun. 1,1987 Yes | &I
Jun. 18,1984  Jul. 7,1987 Yes I
Mar. 15,1991  Feb. 16,1994 Yes | &I
Mar. 25,1994 Mar. 13, 1997 Yes I
May. 3,1994  Apr. 18, 1997 Yes [ &I
Jun. 8,1994 May. 23, 1997 Yes I
Jul. 14,1994  Jun. 30, 1997 Yes [ &I
Sep. 23,1994  Sep. 10, 1997 Yes [ &1l
Oct. 28,1994  Oct. 15, 1997 Yes I
Apr. 28,1995  Apr. 11, 1998 Yes [ &I
Jun. 5,1995 May. 15, 1998 Yes I
Jun. 11,1995  Jun. 21, 1998 Yes I &I
Sep. 16,1996  Sep. 30, 1999 Yes [ &1l
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Table 4: Test for the validity of the LPPL conditions and tmaibt tests on residuals in windows all
ending on Sep. 30, 1987 with different starting dates folS&&500 US index. The smallest window
size is 750 days P, ppy, is the percentage of windows that obey the LPPL conditioralithe test
windows. PsiagionaryResi |LppL IS the probability that the null unit-root tests for nontgiaarity are
rejected for the residuals, conditional on the fact that4REL conditions are met. The unit-root tests
are also the Phillips-Perron and Dickey-Fuller tests (lpptiduce the same results) with significance
level of 0.001.

start of number of number of series

window samples  satisfy LPPL condition/LPPL  DstationaryRes. [LPPL
Jan. 2, 1980 242 43 17.78% 100%**
Jan. 3, 1983 90 43 47.48% 100%**
Sep. 1, 1983 57 42 73.68% 100%**
Dec. 1, 1983 44 43 97.73% 100%**
Mar. 1, 1984 32 32 100% 100%**
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Table 5: Phillips-Perron unit root test on residuals of taébcation of the S&P 500 index by the
LPPL model (1) with (2) over the interval from Jan. 3 1984 tp.S20 1987.

Adj. t-Stat Prob.*
Phillips-Perron test statistic -4.008 0.0001
Test critical values 0.1% -3.588
1% -2.567
5% -1.941
Model Coefficientw Std.Error s-Statistic Prob.
Vig1 = —Ql + Uy 0.029 0.0077 -3.789 0.0002
R-squared 0.015 Mean dependent var -9.95E-05
Adjusted R-sgaured 0.015 S.D. dependent var 0.0084
S.E. of regression 0.0084 AIC -6.7286
Sum squared resid 0.0662 SC -6.7234
Log likelihood 3186.97 Durbin-Watson stat 1.7928
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Table 6: Parameters obtained from the calibration of théimear model (1) with (2) to the logarithm
of the different price indices named in the first column.

index Latart tend te I} w ) B C
S&P500 Jan-03-91 Apr-30-98 Jul-11-98 0.3795 6.3787 4.33®60833 0.7820
FTSE100 Jun-01-94 May-30-98 Aug-26-98 0.4022 12.1644 (®940.0571 0.8076
HangSeng Jan-03-95 Jul-31-97 Oct-28-97 0.7443 7.4117 72.96.0042 0.7955
NASDAQ Apr-01-97 Feb-28-00 May-27-00 0.1724 7.3788 3.23140134 0.9745
S&P500 Dec-01-04 Jul-15-07 Oct-26-07 0.1811 12.9712 15382419 -0.8884

SSEC Feb-01-06 Oct-31-07 Jan-23-08 0.9050 7.3538 2.3618D54. -0.6277

SZSC Feb-01-06 Oct-31-07 Dec-14-07 0.8259 6.3039 6.283211Q. 0.7344
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Table 7: Stationarity tests on the residuals of the finanoiices obtained from the the calibration
of the nonlinear model (1) with (2) to the logarithm of thefeient price indices named in the first
column. Tripled stars(***) and double stars(**) respeetiy denote 0.1% and 1% significance levels
to reject the nulld, that the residual process has a unit raotis the mean-reverting parameter of
the Ornstein-Uhnlenbeck generating process of the relsiddde orders of the AR model for the

residuals selected using the Schwarz information Critef8C) and the Hannan-Quinn Criterion are
listed in the last two columns.

_ unit-root test . AR order
index Lstart fena Phillips-Perron Dickey-Fuller Coefficienta SIC HQ
S&P500 Jan-03-91 Apr-30-98 -4.451 -4.594* 0.022 1 1
FTSE100 Jun-01-94 May-30-98 -4.731 -4.893* 0.045 1 1
HangSeng Jan-03-95  Jul-31-97 -3.756 -3.482** 0.041 1 3
NASDAQ Apr-01-97 Feb-28-00 -3.849 -3.759* 0.037 1 1
S&P500 Dec-01-04 Jul-15-07 -4.000 -4.229* 0.053 1 1
SSEC Feb-01-06 Oct-31-07 -3.932 -3.808** 0.064 1 1
SZSC Feb-01-06 Oct-31-07 -3.111 -2.960* 0.041 1 1
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Figure 1: Left panel: fit of the logarithm of the S&P500 US irdeth expression (2) over the time

interval from Jan. 3, 1984 (the first trading day in 1984) tp.S30, 1987. Upper right panel: time

series of the residuals of the fit shown in the left panel. Longht panel: partial autoregression
correlation function (PACF) of the residuals. The valuehs PACF at lag 1 is equal to 0.9709. For
lags larger than 1, the PACF is bounded betwedwo standard deviations.
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Figure 2: Time series of adjusted returns defined by expreg26) for the S&P500 US index from
Jan. 3, 1984 to Sept. 30, 1987. The smooth continuous lingsstiee LPPL term\ H,, whereH, is
defined by equation (2).
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