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Motivation

Motivation

systemic risk

I system: comprised of many interacting agents
I risk that whole system fails

examples
I financial sector (banks, companies)
I epidemics (humans: SARS, plaque, animals: bird flu)
I power grids (blackout due to overload)
I material science (bundles of fibers)

common features
I failure of few agents is amplified ⇒ system failure
I individual agent dynamics: fragility, threshold for failure
I interaction: network topology
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Motivation

Aim: develop a common framework for systemic risk

cover examples from different areas
I what do they have in common?, what makes them unique?

highlight critical conditions
I role of heterogeneity?, leads diversification to larger systemic risk?

allow prediction and prevention
I how does the fraction of failed nodes evolve over time?
I Can we counterbalance failure propagation?
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Complex Systems

Theory of Complex Systems

system comprised of a large number of strongly interacting
(similar) subsystems (entities, processes, or ’agents’)
I examples: brain, insect societies (ants, bees, termites), ...

complex network: agents ⇒ nodes, interactions ⇒ links

, , ,- - --,, -
-,Micro Level ⇔ , , ,- - --,, -

-,Macro Level

challenge: The micro-macro link
I How are the properties of the elements and their interactions

(“microscopic” level) related to the dynamics and the properties of the
whole system (“macroscopic” level)?

Chair of Systems Design
http://www.sg.ethz.ch/



Predicting Systemic Risk Frank Schweitzer Complex’09 · Tokyo, Japan 04-07 November 2009 5 / 36

Micro and Macro Description

Micro Dynamics: Individual Agent

node i with interaction matrix A

I state si (t) ∈ {0, 1}: ’healthy’, ’failed’ ⇒ s(t) = s1(t), ..., si (t), ..., sn(t)
I fragility φi (t) > 0: susceptibility to fail, may depend on other nodes
I (individual) threshold θi for failure

key variable: net fragility:

zi (t) = φi (t, s,A)− θi
deterministic dynamics

si (t + 1) = Θ[zi (t)]

I si = 1 if zi (t) ≥ 0; si = 0 if zi (t) < 0
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Micro and Macro Description

Macro Dynamics: System Level

global fraction of failed nodes ⇒ prediction

X (t) =
1

n

n∑
i=1

si (t)

dynamics
I assumption: probability distribution p(z), (zi = φi − θi )

X (t + 1) =

∫ ∞
0

pz(t)(z)dz = 1−
∫ 0

−∞
pz(t)(z)dz

I cascading process: failures modify net fragility of other nodes

pz(t+1) = F(pz(t))

systemic risk: X (t →∞) = X ? → 1

I iterate X (t) dependent on φ(0), θ(0)
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Different Model Classes

Models with constant load

assumptions:

I ’load’ of nodes is constant (equals one)
I changes in fragility φi do not depend on φj

(i) ’inward’ variant: increase of fragility depends on in-degree

φi (t) =
1

k in
i

∑
j∈nbin(i ,A)

sj(t)

examples:
I model of social activation (Granovetter, 1978)
I model of bankrupcy cascades (Battiston et. al, 2009):

firms characterized by robustness ρi ⇒ φi , θi = ρ0
i /a

ρi (t + 1) = ρ0
i −

a

k in
i

∑
j∈nbin(i ,A)

si (t)
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Different Model Classes

Example: Inward variant - node C fails

φ
label

θ

non-failed node

failing node

failed node

-1 1

z

0
failing!

0
0.7

A

0
0.7

B
0

0

C

0
0.3

D

0
0.5

E
0

0.55

F

0
0.55

G

0
0.55

H

0
0.55

I

1
0.7

1
0.70

0

0.5
0.3

0
0.5 0

0.55

0
0.55

0
0.55

0
0.55

1
0.7

1
0.71

0

0.5
0.3

0.2
0.5 0

0.55

0
0.55

0
0.55

0
0.55

low degree node ⇒ high vulnerability to fail
I failure causes little damage, cascade stops after 2 steps
⇒ no ’systemic risk’
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Different Model Classes

Example: Inward variant - node E fails

φ
label

θ

non-failed node

failing node

failed node

-1 1

z

0
failing!

0
0.7

A

0
0.7

B
0

0.3

C

0
0.3

D

0
0

E
0

0.55

F

0
0.55

G

0
0.55

H

0
0.55

I

0
0.7

0
0.70

0.3

0.5
0.3

0
0 1

0.55

1
0.55

1
0.55

1
0.55

0
0.7

0
0.70.33

0.3

0.5
0.3

1
0 1

0.55

1
0.55

1
0.55

1
0.55

1
0.7

1
0.70.33

0.3

1
0.3

1
0 1

0.55

1
0.55

1
0.55

1
0.55

1
0.7

1
0.71

0.3

1
0.3

1
0 1

0.55

1
0.55

1
0.55

1
0.55

high degree node ⇒ low vulnerability to fail
I failure causes big damage (to low degree nodes), cascade involves all

nodes ⇒ ’systemic risk’
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Different Model Classes

Models with constant load

(ii) ’outward variant’: increase of fragility depends on out-degree

I load of failing node (i.e. 1) is shared equally among neighbors

φi (t) =
∑

j∈nbin(i ,A)

sj(t)

kout
j

undirected, regular networks:

I inward and outward variant equivalent

heterogeneous degree:

I failing high-degree nodes cause less damage then low-degree nodes

high-degree node:

I high vulnerability if connected to low-degree nodes
(dissortative networks)
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Different Model Classes

Example: Outward variant - node C fails

φ
label

θ

non-failed node

failing node

failed node

-1 1

z

0
failing!

0
0.7

A

0
0.7

B
0

0

C

0
0.3

D

0
0.5

E
0

0.55

F

0
0.55

G

0
0.55

H

0
0.55

I

0.33
0.7

0.33
0.70

0

0.33
0.3

0
0.5 0

0.55

0
0.55

0
0.55

0
0.55

0.33
0.7

0.33
0.70.5

0

0.33
0.3

0.5
0.5 0

0.55

0
0.55

0
0.55

0
0.55

0.33
0.7

0.33
0.70.5

0

0.53
0.3

0.5
0.5 0.2

0.55

0.2
0.55

0.2
0.55

0.2
0.55

low degree node causes more damage than in ’inward’ variant
I ’systemic risk’ strongly depends on initial position, distributions
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Different Model Classes

Models with load redistribution

assumptions:
I ’load’ is represented by fragility φi

I failed nodes distribute total fragility
I changes in fragility φi do depend on φj

examples:
I (FBM) fiber bundle model (Kun et. al, 2000)
I cascading models in power grids (Kinney et. al, 2005)

variants:
I LLSC: total load is conserved (FBM), local load is shared

if nodes fail, links remain active ⇒ broad redistribution
I LLSS: local load shedding: if nodes fail, links break
⇒ fragmented network

does ’globalization’ increases systemic risk?
I network allows to redistribute load (risk), but also to receive load

(risk) from far distant nodes
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Different Model Classes

Load redistribution

LLSC: network remains active

φi (t) = φ0
i +

∑
j∈reach0→1

in (i ,A,s)

φ0
j

#reach1→0
out (j , s,A)

I reach1→0
out (i , s,A): healthy nodes reachable through only failed nodes

I reach0→1
in (i ,A, s): nodes that can reach i through only failed nodes

LLSS: network can be fragmented

φi (t) =

 φi (t − 1) +
∑

j∈failin(i)

φj (t−1)
#susout(j) if si (t) = 0

0 otherwise
I failin(i): set of in-neighbors of i which failed at t − 1
I susout(j): set of out-neighbors of j which remain alive after t − 1

twofold reinforcement: failin(i) increases, susout(j) decreases

increase of ’systemic risk’ depends on network topology, intitial
position of failing nodes, distributions of fragility
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Different Model Classes

Models with overload redistribution

assumptions:
I failing nodes only distribute overload ⇒ net fragility
I nodes still carry load (no complete dropout)

example: economic networks of liabilities
I fragility: total liability minus expected payments
I threshold: operating cash flow

two variants: LLSC, LLSS
I replace φi → (φi − θi )
result:
I much smaller cascades (compared to ii)
I high initial overload needed to trigger cascades
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Macroscopic Results

Macroscopic reformulation

aim: compare different model classes → set pz(0)

assumptions: fully connected network
I independent distributions of θ, φ, approximate p(φ)→ δ〈φ(t)〉

pz(t) = δ〈φ(t)〉 ∗ p−θ → p〈φ(t)〉−θ

macroscopic dynamics

X (t + 1) =

∫ ∞
0

p〈φ(t)〉−θ(z)dz = Pθ(〈φ(t)〉)

Pθ(x) =

∫ x

−∞
pθ(θ)dθ

procedure: express 〈φ(t)〉 in terms of X (t) ⇒ recursive equation
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Macroscopic Results

(i) constant load:

〈φ(t)〉 = X (t)

(ii) load redistribution:

〈φ(t)〉 =
φ0

1− X (t)
I reach0→1

in (i ,A, s) = n X (t), #reach1→0
out (j , s,A) = n(1− X (t))

(iii) overload redistribution:

〈φ(t)〉 =
−〈θ〉X (t) X (t)

1− X (t)
I 〈θ〉X (t): normalized first moment of θ below X -quantile of pθ

recursive dynamics with fix point X ?

X (t + 1) = Pθ(〈φ(t)〉)
J. Lorenz, S. Battiston, F. Schweitzer: Systemic Risk in a Unifying Framework for

Cascading Processes on Networks, European Physical Journal B vol 71, no 4 (2009) pp.
441-460, http://arxiv.org/abs/0907.5325
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Macroscopic Results

Comparison of Macrodynamics

initial conditions normally distributed: z(0) ∼ N (−µ, σ)
I cases (i), (iii): θ ∼ N (µ, σ), case (ii): θ ∼ N (µ+ φ0, σ)
I σ: measure of initial heterogeneity in θ across nodes

initial failure: X (0) = Φµ,σ(0)
I cumulative normal distribution function

µ

σ

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0

0.25

0.5

0.75

1
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Macroscopic Results

Final fraction of failed nodes X ?

µ

σ

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

µ

σ

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

µ

σ

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

µ

σ

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1

First-order phase
transition: small
variations in initial
conditions lead to
complete failure

non-monotonous
behavior for case (ii):
intermediate σ most
dangerous

Top left: class (i) constant
load. Top right: class (ii)
load redistribution with
initial load φ0 = 0.25.
Bottom left: class (ii) with
φ0 = 0.4. Bottom right:
class (iii) overload
redistribution.
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Macroscopic Results

Net fraction of failed nodes X ? − X (0)

µ

σ

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

µ

σ

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

µ

σ

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

µ

σ

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1

Systemic risk resulting
from cascades only

Top left: class (i) constant
load. Top right: class (ii)
load redistribution with
initial load φ0 = 0.25.
Bottom left: class (ii) with
φ0 = 0.4. Bottom right:
class (iii) overload
redistribution.
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Macroscopic Results

Differences of X ? between classes

µ

σ

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

µ

σ

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

µ

σ

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

µ

σ

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1

case (i): larger failures
for small load than case
(ii)

small µ, large σ: less
failure for case (i)

no model class leads to
smaller risk in general

Top Left: X∗
(i)
− X∗

(ii)
. Top

Right: X∗
(i)
−X∗

(iii)
. Bottom

Left: X∗
(ii)φ0 = 0.25

− X∗
(iii)

.

Bottom Right:
X∗

(ii)φ0 = 0.4
− X∗

(ii)φ0 = 0.25
.
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Stochastic Contagion Models

Stochastic contagion models

deterministic dynamics: si (t + 1) = Θ[φi (s,A)− θi ]
stochastic dynamics: failure/recovery with some prob. p(zi )

si (t + 1) =


1 with pi (1, t + 1|1, t; zi ) if si (t) = 1
1 with pi (1, t + 1|0, t; zi ) if si (t) = 0
0 with pi (0, t + 1|0, t; z ′i ) if si (t) = 0
0 with pi (0, t + 1|1, t; z ′i ) if si (t) = 1

assumption: recovery transition at different z ′i (t) = φi − θ′i
dynamics: Chapman-Kolmogorov equation

pi (1, t+1)− pi (1, t) = −p(0|1, z ′i ) pi (1, t)+p(1|0, zi ) [1− pi (1, t)]
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Stochastic Contagion Models

Transition probabilities

detailed balance condition
pi (1)

1− pi (1)
=

p(1|0; z ′i )
p(0|1; zi )

assumption for stationary distribution: logit function

pi (1;β, β′; zi , z
′
i ) =

exp(βzi )

exp(βzi ) + exp(−β′z ′i )

transition probabilities

p(1|0; zi ) = γ
exp(βzi )

exp(βzi ) + exp(−β′z ′i )
p(0|1; z ′i ) = γ′

exp(−β′z ′i )
exp(βzi ) + exp(−β′z ′i )

-1 -0.5 0 0.5 1
z

0

0.2

0.4

0.6

0.8

1

p
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Stochastic Contagion Models

Mean-field approximation

global fraction of failed nodes

〈X (t)〉 =
1

n

∑
i

pi (1, z , t)

dynamics

X (t + 1)− X (t) = (1− X (t))

∫
R

pz(z(t)) p(1|0; z(t)) dz

−X (t)

∫
R

pz(z ′(t)) p(0|1; z ′) dz ′.

deterministic limit: p(1|0; z) = Θ(z) ; p(0|1; z) = Θ(−z)

X (t + 1) =

∫ ∞
0

pz(z(t))dz

stochastic model with homogeneous threshold zi = z

X (t + 1)− X (t) = (1− X (t)) p(1|0; z)− X (t) p(0|1; z)
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Stochastic Contagion Models

Example: Linear Voter Model

contagion: driving process in epidemics, social herding

I node i ’adopts’ state of neighboring nodes j with some probability
I competition between two absorbing states: system failure/no failure

transition depends on local frequency, reverse transition possible

pi (1|0) = fi ; pi (0|1) = 1− fi
general framework: LVM recovered by choosing:

p(1|0, zi ) =
γ

2
[1 + βzi ] ; p(0|1, zi ) =

γ′

2

[
1− β′z ′i

]
γ = 1 ; β = 2 ; θ =

1

2
⇒ φi = fi

macroscopic dynamics: mean-field approximation

fi (t)→ X (t) ⇒ X (t + 1)− X (t) = 0

I formation of global state, {0}, or {1}
I but 〈X 〉 = X (t = 0), i.e. probability for systemic risk depends on initial

condition
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Stochastic Contagion Models

Nonlinear Voter Model

Example: Nonlinear Voter Model

pi (1|0) = fi (t) F1(fi (t)); pi (0|1) = (1− fi (t))F2(fi (t))

10 0.4 0.6 0.80.2

κ

minority voting

(majority voting)
linear VM

against the trend

(x)x

x

global dynamics depends on nonlinearity → F1(X ), F2(X )

X (t + 1)− X (t) = X (t)(1− X (t))
[
F1(X )− F2(X )

]
I linear VM: F1 = F2 = 1
I nonlinear VM: small non-linearities → global failure or coexistence
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Stochastic Contagion Models

Nonlinear Voter Model

Nonlinearity and Systemic Risk

0 0.2 0.4 0.6 0.8 1
 α1

0

0.2

0.4

0.6

0.8

1

 α
2

correlated coexistence

random coexistence

complete invasion

nonlinear response
F1(X ),F2(X )→ α1, α2: different
global dynamics

even for positive frequency dependence
X ? < 1 possible

even for ’against the trend’ X ? → 1
(system failure) possible

heterogeneity of individual dynamics: κ→ κi (t)
I reluctance to adjust indiv. state may even speed up global failure

H.U. Stark, C. Tessone, F. Schweitzer, PRL 101 (2008) 018701;
ACS - Advances in Complex Systems 11/4 (2008) 87-116

F. Schweitzer, L. Behera, European Physical Journal B 67 (2009) 301-318
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Stochastic Contagion Models

Nonlinear Voter Model

Example: Epidemic Spreading

infection of healthy node: p(1|0, zi ) = ν ki q;
I ν: infection rate, q: prob. neighbor is infected, ki : node degree

spontaneous recovery of infected node: p(0|1) = δ
general framework: LVM recovered by choosing:

p(1|0, zi ) =
γ

2
[1 + βzi ] ; p(0|1, zi ) =

γ′

2

[
1− β′z ′i

]
γ = 1 ; β = 2 ; θ =

1

2
⇒ φi = ν ki q ; γ′ = 2δ ; β′ = 0

mean-field approximation: fi ∼ q ∼ X , ki = k

X (t + 1)− X (t) = ν k X (t)(1− X (t))− δX (t)

I ν < νc = δ/k ⇒ X ∗ = 0; ν ≥ νc ⇒ X ∗ > 0 (unique fix point)

SI model: no recovery δ = 0 ⇒ X ? = 1

X (t + 1)−X (t) = ν kX (t)(1−X (t)) ; X (t) =
1

1 + e(t−µ)/τ

I global dynamics: logistic growth
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Stochastic Contagion Models

Epidemics of Donations

Example: Epidemics of Donations

data: donations after tsunami desaster (Dec 2004)
I 01-06/2005: Ntot = 1, 556, 626, Atot = 126, 879, 803 EUR

Fraction of the total number
of donations (inset: relative
growth of amount of
donations)
I Fit: µ = 8.05± 0.07,

1/c = τ = 1.98± 0.06

F. Schweitzer, R. Mach: The Epidemics of Donations: Logistic Growth and
Power Laws, in: PLoS ONE vol. 3, no.1 (2008) e1458
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Stochastic Contagion Models

Epidemics of Donations

Influence of the media

+

+

+

+

+

+

+

+

+

+++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

0.
0

0.
5

1.
0

1.
5

Time

1
τ

04/12 05/01 05/03 05/04 05/05

F.S., R. Mach, PLoS ONE (2008)

slowing-down of mean-field interaction

1/τ =
[
α + (β/t) + (γ/t)2

]
c = 1/τ : number of successful interactions per time interval
I early stage: people were more enthusiastic to donate money
I later stage: became more indifferent

decrease of 1/τ in time ⇒ lack of public interest
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Stochastic Contagion Models

Epidemics of Donations

Summary of stochastic contagion models

fit into general framework ⇒ γ, β, θ; φ

VM’s belong to class (i): constant load
I but homogeneous threshold and stochatic failure

SI, SIS model belong to class (i) model
I but φi ∼ ki fi , number of connections important

asymmetric transitions, hysteresis effects are possible

Chair of Systems Design
http://www.sg.ethz.ch/

Predicting Systemic Risk Frank Schweitzer Complex’09 · Tokyo, Japan 04-07 November 2009 31 / 36

Economic systems

Credit networks with heterogeneous degree

idea: firms/banks fail if ’debt’ is larger than ’cash’
I directed credit network: firms have extended credit to neighboring

firms (debtors), i.e. ’cash’ of firm i depends on paid debts of firm r
I if firm r defaults, this increases the fragility of firm i

node i with in-degree ki (neighboring nodes)
I fragility: φi (t) ∼ xi (t), local fraction of failed nodes xi (t) = j(t)/k
I probability of independent failure follows binomial distribution:

B(j , k) =

(
k

j

)
pj(1− p)k−j

what happens, when node r with total debt a fails?
I transfers a load of a/k to its neighours ⇒ increase of fragility

φi (t) = φ0 + aj(t − 1)/k if si (t) = 0
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Economic systems

global dynamics (mean-field limit)
I assumptions: p = X (t), degree distribution g(k), θi = θ

X (t + 1) =
∑
k

g(k)
k∑

j=0

B(j , k ,X (t)) Pr
(
φ+

j a

k
> θ

)
for narrow distribution g(k)→ k

X (t + 1) =
k∑

j=0

B(j , k ,X (t)) Pr
(
φ+

ja

k
> θ

)
⇒ prediction of avalanche of failure for given t

Battiston, Stefano, Delli Gatti, Domenico, Gallegati, Mauro, Greenwald,
Bruce, Stiglitz, Joseph E.: Credit chains and bankruptcy propagation in production
networks, in: Journal of Economic Dynamics and Control, vol. 31, no. 6 (2007),
pp. 2061-2084
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Economic systems

Systemic risk in financial systems - good or bad?

Costs of banking crisis (wave of bank defaults) are high for
economy – measured in output loss of GDP∗

taking systemic risk can enhance overall growth despite of
occasional severe crisis†

∗
Hoggarth, G.; Reis, R. & Saporta, V. Costs of banking system instability: Some empirical evidence Journal of

Banking and Finance 2002
†

Ranciere, R.; Tornell, A. & Westermann, F. Systemic Crises and Growth Quarterly Journal of Economics, 2008
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Trend Reinforcing

Trend Reinforcement Model

Fragility of n firms evolves as

φ(t + 1) = φ(t)︸ ︷︷ ︸
fragility

+ σξ(t)︸ ︷︷ ︸
stochastic shocks

+α sign(∆φ(t))︸ ︷︷ ︸
trend reinforcing

trend reinforcing ↗ ↗↗, ↘ ↘↘
reducing volatility σ
I decreases stochastic shocks
→ less bankruptcies, BUT

I reduces possibility to break bad trends →
more bankrupcies!

Conclusion: We are safest with
intermediate volatility
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†
Lorenz, Jan, Battiston, Stefano: Systemic risk in a network fragility model analyzed with probability density

evolution of persistent random walks , Networks and Heterogeneous Media, vol. 3, no. 2, June (2008), pp. 185-200
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Trend Reinforcing

Local optimum explained by stochastic process

Scaling of displacement for Gaussian Random Walk (GRW) and
Persistent Random Walk (PRW)

φ(t + 1) = φ(t) + σξ(t)︸ ︷︷ ︸
diffusive scaling

+ αtrend︸ ︷︷ ︸
ballistic → diffusive

GRW dominates for α
σ → 0, PRW for α

σ →∞
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numerical results
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†
Lorenz, Jan, Battiston, Stefano: Systemic risk in a network fragility model analyzed with probability density

evolution of persistent random walks , Networks and Heterogeneous Media, vol. 3, no. 2, June (2008), pp. 185-200
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Conclusion

Conclusions

general framework for systemic risk
I microlevel: interplay between fragility (φi ) and threshold (θi )
I macrolevel: fraction of failed nodes, X (t) ⇒ prediction

different model classes with unique behavior
I (i) constant load, (ii) load redistribution, (iii) overload redistribution
I phase transition: small changes lead to big impact in systemic risk
I systemic risk increases for medium heterogeneity

mechanisms of systemic risk
I contagion: donations, voter model, social activation,
I load redistribution: additional reinforcement
I trend reinforcement: bankrupcies can increase

role of stochasticity
I optimal volatility to break bad trends
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