

Models with constant load

- (ii) 'outward variant': increase of fragility depends on *out-degree*
 - ▶ load of failing node (i.e. 1) is shared equally among neighbors

$$\phi_i(t) = \sum_{j \in \mathrm{nb}_{\mathrm{in}}(i,\mathcal{A})} \frac{s_j(t)}{k_j^{\mathrm{out}}}$$

- undirected, regular networks:
 - inward and outward variant equivalent
- heterogeneous degree:
 - ▶ failing high-degree nodes cause *less* damage then low-degree nodes
- high-degree node:
 - high vulnerability if connected to low-degree nodes (dissortative networks)

Models with load redistribution

• assumptions:

- 'load' is represented by fragility ϕ_i
- failed nodes distribute total fragility
- changes in fragility ϕ_i do depend on ϕ_j
- examples:
 - ▶ (FBM) fiber bundle model (Kun et. al, 2000)
 - cascading models in power grids (Kinney et. al, 2005)
- variants:
 - ► LLSC: total load is conserved (FBM), local load is shared if nodes fail, links remain active ⇒ broad redistribution
 - ► LLSS: local load shedding: if nodes fail, links break ⇒ fragmented network
- does 'globalization' increases systemic risk?
 - network allows to redistribute load (risk), but also to receive load (risk) from far distant nodes

- ▶ replace $\phi_i \rightarrow (\phi_i \theta_i)$
- result:
 - much smaller cascades (compared to ii)
 - high initial overload needed to trigger cascades

Chair of Systems Design

http://www.sg.ethz.ch/

J. Lorenz, S. Battiston, F. Schweitzer: Systemic Risk in a Unifying Framework for Cascading Processes on Networks, *European Physical Journal B* vol 71, no 4 (2009) pp. 441-460, http://arxiv.org/abs/0907.5325

• $\langle \theta \rangle_{X(t)}$: normalized first moment of θ below X-quantile of p_{θ}

• recursive dynamics with fix point X^{\star}

 $X(t+1) = P_{\theta}(\langle \phi(t) \rangle)$

15 / 36

16 / 36

Chair of Sy

Eidgenössische Technische Hochschule Züric Swiss Federal Institute of Technology Zurich http://www.sg.ethz.ch/

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Chair of Systems Design http://www.sg.ethz.ch/

idgenössische Technische Hochschule Zürici wiss Federal Institute of Technology Zurich

- Costs of banking crisis (wave of bank defaults) are high for economy – measured in output loss of GDP*
- $\bullet\,$ taking systemic risk can enhance overall growth despite of occasional severe crisis^{\dagger}\,

 * Hoggarth, G.; Reis, R. & Saporta, V. Costs of banking system instability: Some empirical evidence Journal of Banking and Finance 2002

^TRanciere, R.; Tornell, A. & Westermann, F. *Systemic Crises and Growth* Quarterly Journal of Economics, 2008

 $+\alpha \operatorname{sign}(\Delta \phi(t))$

Eigenössiche Technische Hachschule Zürich Swiss Federal Institute of Technology Zurich		Chair of Systems Design http://www.sg.ethz.ch/		
Predicting Systemic Risk	Frank Schweitzer	Complex'09 · Tokvo, Japan	04-07 November 2009	34 / 36
Trend Reinforcing				

 $\sigma\xi(t)$

Trend Reinforcement Model

• Fragility of *n* firms evolves as

 $\phi(t+1) = \phi(t) +$

- fragility stochastic shocks trend reinforcing
- trend reinforcing $\nearrow \rightsquigarrow \nearrow \nearrow$,
- \bullet reducing volatility σ
 - ► decreases stochastic shocks → less bankruptcies, BUT
 - ► reduces possibility to break bad trends → more bankrupcies!
- <u>Conclusion</u>: We are safest with intermediate volatility

 $\alpha = 0.05$ $\sigma = 0.2$ 21 bankrupto

^TLorenz, Jan, Battiston, Stefano: Systemic risk in a network fragility model analyzed with probability density evolution of persistent random walks , Networks and Heterogeneous Media, vol. 3, no. 2, June (2008), pp. 185-200

Chair of Systems Design

http://www.sg.ethz.ch/

Predicting Systemic Risk Frank Schweitzer Complex'09 · Tokyo, Japan 04-07 November 2009 35 / 36 Trend Reinforcing

Local optimum explained by stochastic process

• Scaling of displacement for Gaussian Random Walk (GRW) and Persistent Random Walk (PRW)

^TLorenz, Jan, Battiston, Stefano: Systemic risk in a network fragility model analyzed with probability density evolution of persistent random walks , Networks and Heterogeneous Media, vol. 3, no. 2, June (2008), pp. 185-200

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich	Chair of Systems Design http://www.sg.ethz.ch/	

Predicting Systemic Risk Frank Schweitzer Complex'09 · Tokyo, Japan 04-07 November 2009 36 / 36 Conclusion

Conclusions

- general framework for systemic risk
 - **microlevel:** interplay between fragility (ϕ_i) and threshold (θ_i)
 - macrolevel: fraction of failed nodes, $X(t) \Rightarrow$ prediction
- different model classes with unique behavior
 - ▶ (i) constant load, (ii) load redistribution, (iii) overload redistribution
 - phase transition: small changes lead to big impact in systemic risk
 - systemic risk increases for medium heterogeneity
- mechanisms of systemic risk
 - contagion: donations, voter model, social activation,
 - load redistribution: additional reinforcement
 - trend reinforcement: bankrupcies can increase
- role of stochasticity
 - optimal volatility to break bad trends

dgenössische Technische Hochschule Züric viss Federal Institute of Technology Zurich