Dynamics of Economic Networks

Frank Schweitzer

fschweitzer@ethz.ch

in collaboration with:

P. Gröber, K. Press, J. Glattfelder, M. Geipel M. König, S. Battiston, M. Napoletano

Economic Networks

- ... one example (from Amadeus database)
 - networks reflect structure of economic control
- some types of economic networks:
 - ownership networks between firms (investments)
 - networks of board members of firms (decisions)
 - R& D networks (transfer of knowledge)
 - supply networks (transfer of goods)
 - credit networks (transfer of risk)


Download Tools for Network Vizualization (M. Geipel)

from our homepage www.sg.ethz.ch/research/graphlayout

Ownership Networks and Geography

• how does geography impact the structure of ownership control?

Eidgenössische Technische Hachschule Zürich Swiss Federal Institute of Technology Zurich

Economic Networks

- consist of nodes (\Rightarrow firms) and links (\Rightarrow interactions)
- Physics perspective: focus on the links
 - topological features, degree distribution, path length
 - centrality, modularity, clustering, cliquishness, ...
 - dynamics (preferential attachment)
- Economics perspective: focus on links and nodes
 - eigendynamics of nodes (e.g. growth, R&D, entry/exit)
 - eigendynamics of links (adaptation, creation/removal)
 - different time scales of link and node dynamics
 - quality of links (unidirectional, weight, costs)
 - feedback of links on the node dynamics
 - utility maximization vs. boundedly rational behavior

Costs and benefits

- economic system: large number of interacting agents
- agent *i*: *utility* from economic interaction with agents *j*:

$$ext{utility}_i(t) = \sum_j ext{benefits}_{ij}(t) - ext{costs}_{ij}(t)$$

▶ aim: (i) increase benefits, (ii) reduce costs, (iii) do both

benefits:

- reach a common goal (optimal use of resources)
- exchange of knowledge (R&D network)

osts:

- exploration costs (search for partners)
- transaction costs (costs for interaction)
- friction from differences in 'behavior', 'opinion', ...
- costs for maintenance of connections
- (indirect: 'dissipation', 'saturation')

Application: Emergence of Local Cultures

- economics: localized producer networks (clusters)
 - ▶ need of a shared understanding on what constitutes acceptable business practice ⇒ *local cultures* (= social norms)
- benefits of local cultures
 - avoid coordination dilemma among firms (alignment of quantities produced, investment incentives for research and training)
 - $\Rightarrow\,$ foster positive externalities: knowledge spillovers, pooled labour markets
- existing studies: game theoretic analysis
 - require "known" optimum behaviour and a notion of "oughtness" for co-operation
- our model: investigates which behaviour comes to be shared
 - ▶ no ex-ante best behaviour (many strategies \rightarrow business success)

Dynamics of economic networks Frank Schweitzer PAESS Conference · Porto Alegre, Brazil 25-29 Nov 2008 7 / 27

Bounded confidence model

Convergence toward shared behavior

agent i: 'economic' behavior $x_i(t) \in [0,...,1]$

assumption: utility increases if everyone shares same behavior

• benefit: b = const., costs: $\sim \Delta x$

 $u_i(t) = \sum_j b - c |x_i - x_j|$

2 assumption: interaction ij occurs only iff $u_{ij}(t) > u_{thr}$

 $|x_i - x_j| < \varepsilon = (b - u_{\mathrm{thr}})/c$

- \blacktriangleright possibility of interaction depends on 'open-mindedness' ε
- bounded confidence model (Deffuant et al., 2000)

assumption: interaction leads to more similar behavior

 $x_i(t+1) = x_i(t) + \mu [x_j(t) - x_i(t)]$ $x_j(t+1) = x_j(t) + \mu [x_i(t) - x_j(t)]$

• $\mu = 0.5$: both agents adopt the 'mean' behavior

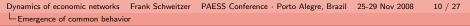
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Influence of emerging in-groups

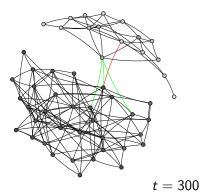
Influence of emerging in-groups

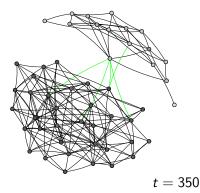
- interacting agents added to each other's in-group I_i and I_j
 - partnership relations from past interactions
- evidence that in-groups constrain agent behaviour
 - game theory (Fehr & Fischerbacher 2004)
 - group theory (French 1956, Lehrer 1956, Wagner 1978)
 - social impact theory (Latané 1981, Latané & Nowak 1997)
- influence of *emerging in-groups* on agent's *i* behaviour x_i?
 - effective behaviour x_i^{eff} considers mean in-group behaviour x_i^I

 $x_i^{\text{eff}} = (1 - \alpha_i)x_i + \alpha_i x_i^{I}$


- group influence α_i increases with group size
- permanent influence of in-group on interaction: $\left|x_{i}^{\text{eff}}-x_{i}^{\text{eff}}\right|<\varepsilon$
 - \blacktriangleright search for new partners is costly \rightarrow keep past partners
 - keep behavior close to past partners to allow further interaction

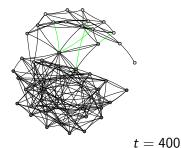
Co-evolution of economic network and behavior


- randomly choose agents i, j at time t
- Iink dynamics (considers existing in-group)
 - $\Delta x^{\text{eff}}(t) < \varepsilon \Rightarrow$ link formation (interaction)
 - $\Delta x^{\text{eff}}(t) > \varepsilon \Rightarrow$ no link created or *existing link is removed*
- **Q** dynamics in individual behavior (considers $x_i(t)$, $x_j(t)$)
 - interacting agents become more similar
- adjustment of effective behavior
 - agent $i, j: x_i \to x_i^{\text{eff}}, x_j \to x_j^{\text{eff}}$
 - ▶ in-groups of *i* and *j*: x_i^{eff} , x_i^{eff} affected by changed $x^{l_i(t)}$, $x^{l_j(t)}$


Result: feedback between agents' behavior and their in-group structure \Rightarrow Computer simulation

Results of computer simulations

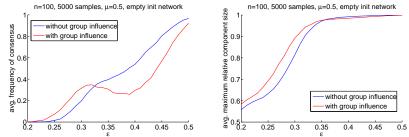
Group Influence: two nearly separated components...


• 50 agents, $\varepsilon = 0.3$

- green link: agents would not interact without group influence
- red link: agents would not interact anymore

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

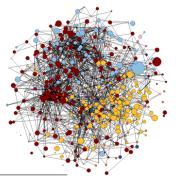
... finally united


t = 500

- group influence (on average and a large range of ε)
 - fosters coalescence of components
 - increases maximum component size
 - ⇒ consensus toward a common behavior

Influence of interaction costs on behavioral consensus?

large costs \Leftrightarrow small 'open-mindedness' $\varepsilon = (b - u^{\text{thr}})/c)$


• large costs ($0 < \varepsilon < 1/3$)

in-group influence increases probability to reach consensus

- size of largest component increases
- small costs (1/3 $< \varepsilon < 1/2$)
 - with in-group influence, consensus becomes less probable
 - but size of largest component is not affected by in-group influence

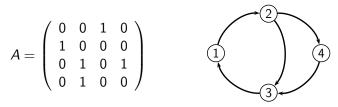
Application: Innovation Networks

- complex technologies \Rightarrow firms must rely on knowledge transfers
 - ► Recent studies: relationship/performance of existing R&D networks
 - emergence of R&D networks, not just on existing networks

Picture from NEMO: Network Models, Governance and R&D collaboration networks, www.nemo-net.eu

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Dynamics of economic networks Frank Schweitzer PAESS Conference · Porto Alegre, Brazil 25-29 Nov 2008 14 / 27


Model outline: agent dynamics

Costs and benefits in knowledge exchange

• agent *i*: knowledge stock $x_i(t) > 0$, knowledge growth:

 $\frac{dx_i}{dt} = B_i(\mathbf{A}, \mathbf{x}) - C_i(\mathbf{A}, \mathbf{x})$

- ▶ interaction (e.g. R&D collaborations) \Rightarrow adjacency matrix **A**
- $B_i(\mathbf{A}, \mathbf{x})$: benefits (knowledge spillovers) $\Rightarrow \dot{x}_i = \sum_{i=1}^n a_{ij} x_j$
- $C_i(\mathbf{A}, \mathbf{x})$: costs of collaborations ~ number of links d_i

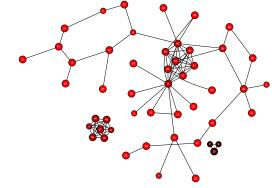
agent's 'profit' over certain time period: u_i(t) = λ_{PF} − cd_i
 λ_{PF} = lim_{t→∞} x_i/x_i: largest real (Perron-Frobenius) eigenvalue of A

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

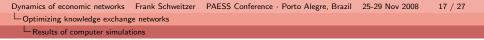
Dynamics of economic networks Frank Schweitzer PAESS Conference · Porto Alegre, Brazil 25-29 Nov 2008 15 / 27

Model outline: link dynamics

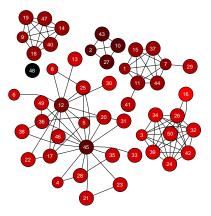
Evolution of the economic network


- Problem of maximizing u_i: optimize collaborations (→ λ_{PF}), network structure (d_i) ⇒ minimize costs (~ c)
- network dynamics: (initialization: empty graph)
- **1 quasi-equilibrium**: fast knowledge growth **A** fixed \rightarrow profits u_i reach balanced growth
- **2** perturbation of network: pair of agents (i, j) is selected at random
 - ▶ link $ij \notin E(G)$ is created if
 - ★ either u_i or u_j is increased and none of u_i and u_j is decreased (incremental improvement)
 - link $ij \in E(G)$ is deleted if
 - ★ at least one agent gains from the change (asymmetry!) link deletion involves severance cost: $v(\alpha, c) = (1 - \alpha)c$ with $\alpha = c'/c$ $\alpha \in [0, 1]$: $\alpha = 0$: full loss of investment, $\alpha = 1$: no loss
- ${f 3}$ stop if network is pairwise stable, otherwise go to ${f 1}$

Model outline: link dynamics


Example: Equilibrium network for $\alpha = 0.0$

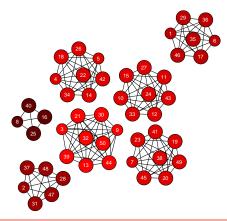
- heterogeneous degree distribution (hubs), giant component
- high severance cost prevent agents from further deleting links
- pairwise stability \neq efficiency (suboptimal solution)


n = 50, c = 0.15, darker colours \rightarrow higher profits

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

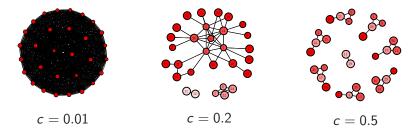
Example: Equilibrium network for $\alpha = 0.2$

stronger clustering, disconnected components



Example: Equilibrium network for $\alpha = 1.0$

• the smaller severence costs (loss after reconfiguration), the larger the tendency to form disconnected cliques (fully connected groups)



Simulations: Growing Networks with $\alpha = 0$

intial setting: empty graph ⇒ final setting: equilibrium network
0 < c < 0.5: fully connected graph is efficient network

- equilibrium networks more sparse and clustered with increasing c
- inefficient equilibrium networks are reached
 - for given cost, multiple equilibria exist
 - equilibrium network is path dependent (stochastic influences)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Dynamics of economic networks Frank Schweitzer PAESS Conference · Porto Alegre, Brazil 25-29 Nov 2008 20 / 27

Knowledge Growth with Quadratic Costs

Knowledge Growth with Quadratic Costs

node dynamics

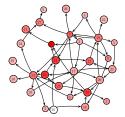
$$\frac{dx_i}{dt} = -dx_i + b\sum_{i=1}^n a_{ji}x_j - c\sum_{i=1}^n a_{ij}x_i^2$$

- network dynamics:
 - pair of agents, i and j, is selected at random
 - different agent strategies
 - ★ unilateral link deletion/creation ⇒ indirect reciprocity
 - ★ bilateral link deletion/creation ⇒ direct reciprocity
 - decision are bounded rational
 - * locally bounded (no complete information on the system)
 - * temporarily bounded (finite time horizon)

M. König, S. Battiston, F. Schweitzer: Modeling Evolving Innovation Networks, in: Innovation Networks – New Approaches in Modeling and Analyzing (Eds. A. Pyka, A. Scharnhorst), Springer (2007)

Dynamics of economic networks Frank Schweitzer PAESS Conference · Porto Alegre, Brazil 25-29 Nov 2008 21 / 27

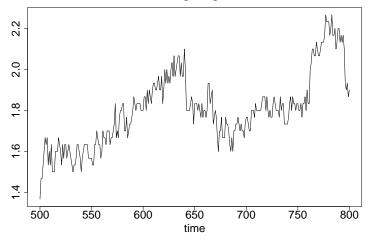
Baseline case


Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Baseline case: linear benefit and null costs

node dynamics

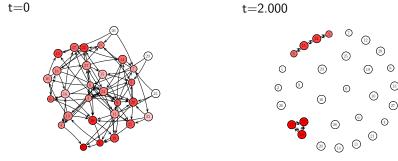
$$\frac{dx_i}{dt} = -dx_i + \sum_{i=1}^n a_{ji}x_j$$


 network dynamics: initial *random* network, remov least fit node, replacement with random links

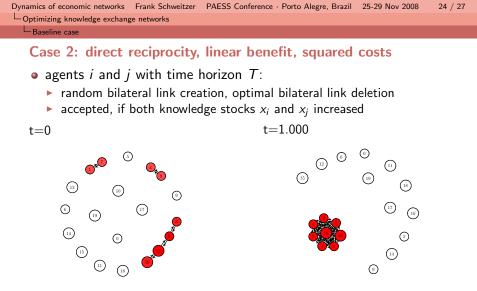
- emergence of a core of *cooperative* firms, and a *parasitic* pheriphery
- considerable crashes and recovery

average degree

• considerable crashes and recovery


Eidgenössische Technische Hachschule Zürich Swiss Federal Institute of Technology Zurich

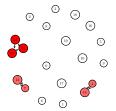
Dynamics of economic networks Frank Schweitzer PAESS Conference · Porto Alegre, Brazil 25-29 Nov 2008 23 / 27

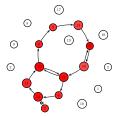

Baseline case

Case 1: indirect Reciprocity, linear benefit, squared costs

- agent *i* with time horizon *T*:
 - random unilateral link creation, optimal unilateral link deletion
 - accepted, if knowledge stock x_i increased

initial links break down in favour of few bilateral cooperationsfree-riders get isolated


- initially connected agents evolve towards fully connected network
 initially isolated agents have nothing to contribute
- initially isolated agents have nothing to contribute


Dynamics of economic networks Frank Schweitzer PAESS Conference · Porto Alegre, Brazil 25-29 Nov 2008 25 / 27 Optimizing knowledge exchange networks

Baseline case

Case 3: ind. reciprocity, weighted linear benefit, squared costs

$$\frac{dx_i}{dt} = -dx_i + b\sum_{i=1}^n a_{ji}x_j + b_{ext}\sum_{i=1}^n w_{ji}x_j - c\sum_{i=1}^n a_{ij}x_i^2$$
• externalities: higher weights to
• links providing shorter paths (Jackson, Watts 2002)
• links contributing to cycles \Rightarrow feedback on technology
t=500
t=500

cyclic externalities support emergence of indirect reciprocity

issische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Conclusions

- important aspect of economic networks: link and node dynamics
- example 1: formation of local cultures (~ social norm)
 - common behavior reduces costs of interaction (friction, risk of failure)
 - \blacktriangleright in-group evolves \rightarrow modifies firms behavior \rightarrow feeds back to interaction, economic network
 - decreasing c does not increase probability of (full) consensus
- example 2: innovation networks
 - ► linear/nonlinear cost functions ⇒ limits for connected networks
 - multiple equilibria: many stable, but inefficient equilibrium networks
 - different agent strategies for link creation/removal
 - ▶ if severance costs grow, agents stick to their suboptimal solutions
 - both analytical results and computer simulations

This research overview is based on the publications:

- P. Groeber, F. Schweitzer, K. Press: How groups can foster consensus: The case of local cultures, J. Artificial Societies and Social Simulations (2008, submitted)
- M. Koenig, S. Battiston, M. Napoletano, F. Schweitzer: The efficiency and evolution of R&D networks, *J. Economic Dynamics and Control* (2008, submitted)
- M. D. König, S. Battiston, M. Napoletano, F. Schweitzer: On Algebraic Graph Theory and the Dynamics of Innovation Networks, *Networks and Heterogeneous Media* Vol. 3, Num. 2, June 2008, http://arxiv.org/abs/0712.2752
- M. D. König, S. Battiston, F. Schweitzer: Modeling Evolving Innovation Networks, in: *Innovation Networks - New Approaches in Modeling and Analyzing* (Eds. A. Pyka, A. Scharnhorst), Heidelberg: Springer (2008, forthcoming), http://arxiv.org/abs/0712.2779
- further publications: http://www.sg.ethz.ch/publications/