Impact of Trust on the Performance of a Recommendation System in a Social Network

Frank E. Walter, Stefano Battiston, and Frank Schweitzer

{fewalter,sbattiston,fschweitzer}@ethz.ch

ECCS 06, Oxford, UK

- Simplified Model
- Analysis and Results

6 Conclusions

Motivation

- Greater and greater importance of the Internet in everyone's life
- People have to cope with an information overload
- Many *social mechanisms* that people rely on in the real world do not have an appropriate *digital mapping*
- Emergence of Internet services based on *social networking*

Both from a theoretical and a practical perspective, formal and quantitative approaches are necessary

Recommendation Systems

Recommendation systems: means to cope with information overload through filtering

- *majority rules*: based on frequency of recommendations, thus not personalised for agents
- similarity-based: low effort, but passive and no active tuning

A social network can be leveraged for reduced effort *and* tuning of the recommendation system at the same time!

- use an agent's social network to reach distributed knowledge
- incorporate trust to filter reachable knowledge

"Trust": appropriateness and reliability of former recommendations \rightarrow *trust-based*: high effort, not passive but active tuning

Trust-Based Networks

Recommendation systems in trust-based networks outperform majority-based recommendation systems within a range of:

- network density.
 - ► if the network is not dense enough, agents receive replies with recommendations on only a fraction of the items they query about
- preference heterogeneity:
 - if agents are very homogeneous, there is no need for filtering, almost any recommendation will be appropriate
 - if agents are too heterogenous, they cannot find other agents that act as suitable filters

Model Outline

- Scenario: agents select products based on recommendations
 - ► N_a agents connected in a social network
 - N_p products classified in N_c categories
- Agents:
 - Rational and self-interested agents
 - ▶ Agent preference values for products: $f_{a,p} \in [-1,1]$
 - ▶ Each agent knows its own preference values for *m* of categories
 - Product selection based on trusted recommendations
 - Trust T_{a_i,a_i} from a_i to a_j is updated over time
 - Utility of the agents: $U_{a,p} = F(f_{a,p}, cost)$

• Performance of the system: $\Phi = \left\langle \frac{1}{N_a} \sum_{a_i} U_{a_i} \right\rangle_{time}$

Trust on a Recommendation System	Frank Schweitzer	ECCS 06, Oxford	August 25-29, 2006	7 / 19
General Model				

Illustration

Temporal Structure

At each time step *t*:

- Each agent *a* purchases one item from a randomly chosen category *l* of products
- Agent *a* sends a query to the network to inquire about the preferences of other agents on that category
- Based on the responses, *a* makes its choice, and realizes a value of utility
- Based on the utility, *a* updates the value of trust towards the neighbour who transmitted the recommendation chosen

Queries, Search, and Responses (1)

A query consists of:

- id of querying agent a_q
- id of category *c* requested

Search on the network (essentially a non-exhaustive BFS):

- a_q sends query to all its first neighbours
- a_k receives query and either replies or passes it on
- eventually, agent a_q receives a set of responses

Queries, Search, and Responses (2)

A response consists of:

- id of recommended product p
- preference from recommender $f_{a_r,p}$
- product of trust values along the path involved:

$$\tau_{a_q,a_r} = \prod_{(a_k,a_l) \in \text{ path}(a_q,a_r)} T_{a_k,a_l}$$

• id of neighbour a_n who transmitted the recommendation

Decision Making

- The querying agent a_q chooses from a set of k responses obtained from the network: {f_{ar,p}, τ_{aq,ar}}, r = 1,..., k
- The probability of selecting recommendation *r* is given by a *logit function* of the products of value and trust:

$$P_{a_q,p_r} = \frac{\exp(\beta \tau_{a_q,a_r} f_{a_r,p_r})}{\sum_r \exp(\beta \tau_{a_q,a_r} f_{a_r,p_r})}$$

where β measures the $\textit{risk}\ \textit{aversion}$ of agents

• Note that agents only know the identity of a_n , i.e. the neighbour that the recommendation came through

Trust on a Recommendation System	Frank Schweitzer	ECCS 06, Oxford	August 25-29, 2006	12 / 19
General Model				

Dynamics of Trust

- Range: $T_{a_i,a_j}(t) \in [0,1]$; thus $au_{a_q,a_r} \in [0,1]$
- Initialisation: $T_{a_i,a_j}(t=0) = 0.5$
- Update: only towards neighbours *a_j* of agent *a_i* and only in the following two cases:
 - **(**) a_i has chosen an item directly recommended by a_j
 - 2 a_i chooses a recommendation which came through a_j

$$\begin{array}{lcl} r_{a_{i},a_{j},p} & = & (1 - |f_{a_{i},p} - f_{a_{j},p}|) \\ \tilde{T}_{a_{i},a_{j}} & = & \gamma \tilde{T}_{a_{i},a_{j}} + r_{a_{i},a_{j},p} \\ T_{a_{i},a_{j}} & = & \frac{1}{2}(1 + \tanh(\beta \tilde{T}_{a_{i},a_{j}})) \in [0,1] \end{array}$$

where $\gamma \in [0,1]$ is a parameter controlling the memory size

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Special Case

- Discrete preferences from the set $\{-1,+1\}$
- Each agent has one profile from a set of k distinct profiles
- The sum of preferences over a profile is equal to 0
- The social network is a random graph with a certain density
- There are N_p products in N_c categories

Analytical Approximation

Outline: the expected preference from a choice is

$$E(f_{a_q,p_r}) = \sum_{p_r} f_{a_q,p_r} P_{a_q,p_r} = \frac{\sum_{p_r} f_{a_q,p_r} \exp(\beta \tau_{a_q,a_r})}{\sum_{p_r} \exp(\beta \tau_{a_q,a_r})}$$

- Probabilistic Term = (probability of choosing recommendation from an agent with a given similarity) multiplied by (probability that the similarity value occurs among a_q and a_r)
- The expected utility of the system can be predicted as function of the density of the network and the distribution of the profiles of preferences among the agents!

Trust on a Recommendation System	Frank Schweitzer	ECCS 06, Oxford	August 25-29, 2006	15 / 19
Analysis and Results				

Results

- Trust causes a performance gain above a critical density
- Performance gain decreases with increasing homogeneity

Evolving Network of Trust (1)

Initial stage: random network of agents, each having one of two possible profiles

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Analysis and Results

Evolving Network of Trust (2)

Some time steps have passed: links between agents of different profiles become weaker, between agents of the same profiles stronger

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Conclusions

- Recommendation systems in trust-based networks
 - outperform majority-based recommendation systems within a range of network density and preference heterogeneity
 - provide active *tuning* as opposed to passive other approaches
- In a special case, the expected performance can be *approximated analytically* by a mean-field approach
- Possible extensions:
 - different underlying network structures and evolving network
 - analysis of robustness against selfish and malicious agents
 - different trust adjustment mechanisms from the literature

Additional Resources

Exystence Topical Workshop **Trust-Based Networks and Robustness in Organisations** ETH Zurich, 13-17 March 2006 *Frank Schweitzer, Stefano Battiston, Nigel Gilbert*

Workshop programme and presentations available from: http://intern.sg.ethz.ch/events/TW_Trust/