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Collective Dynamics of Companies

A Complex Systems Perspective

Part 1: Models of Company Growth
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Motivation

Physics Today, September 2005, pp. 37-42
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Motivation

Historical remarks

Some historical notes
involvement of physicists in economics/social sciences
I Daniel Bernoulli: “utility” (1738)
I Pierre-Simon Laplace: statistics of dead (1812)
I Adolphe Quetelet (1796-1874) (“body mass index”)

F introduced the term “social physics” (1835)

economist Vilfredo Pareto: “scaling laws” y ∼ x−α (1897)

...

“econophysics”
I coined by H.E. Stanley (1995) at Workshop in Kolcata, India
I today: several hundred physicists involved (banks, insurance, ...)
I driving force: high-frequency data of transactions ⇒ giant laboratory
more recent: “sociophysics” (2000)
I universality in social systems
I simple opinion dynamics

big criticism: impact in economics, social science?
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Two perspectives

Complex systems perspective

Complex Systems

, , ,- - --,, -
-,Micro Level

⇔ , , ,- - --,, -
-,Macro Level

How are the properties of the elements and their interactions
(“microscopic” level) related to the dynamics and the properties of
the whole system (“macroscopic” level)?

approach: agent-based models
I agent: “particle” with “intermediate” internal complexity
I collective phenomena in multi-agent systems
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Two perspectives

Complex systems perspective

Two ways to influence complex systems:

Top−Down

Bottom−Up

centralized control

selforganization

decentralized
problem solving

hierarchical planning

bottom up: change interactions
I examples: incentives, communication, learning, ...
top down: design boundary conditions
I examples: taxes, laws, ....

Chair of Systems Design
http://www.sg.ethz.ch/

Dynamics of companies I Frank Schweitzer Summer School · Ambleside, UK 29/08 -08/09 2008 6 / 41

Two perspectives

Systems dynamics perspective

Systems Dynamics Perspective: Top-Down
The system of an open economy with state activity

Y: Yield (Gross Domestic Product), C: Consumption, I: Investments,
G: Government Expenditure, Ex: Export, Im: Import
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Two perspectives

Systems dynamics perspective

Hierarchical Systems

systems comprise subsystems
(parts)

systems can be part of other
(super)systems

examples: human society
(individual – family – tribe –
nation), ecosystem, nuclear
plant, airport, ...
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Two perspectives

Systems dynamics perspective

Example: The system of an industry (with firms as subsystems) vs
the system of a firm
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Two perspectives

Systems dynamics perspective

The system of a firm
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Two perspectives

Bottom up approach

Complex systems perspective: Bottom-up

focus: collective effects
I ensembles of companies: i = 1, ...,N
I simple characterization: company “size” xi (t)

F income, output, employees, ...

focus: dynamics
dxi

dt
= Fi (?)

I aggregated outcome for different assumptions for Fi

schedule:

I. growth of companies ⇒ size distribution
II. interaction of companies ⇒ network structure
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Two perspectives

Random growth

Most simple assumption: Random growth

growth rate: dxi/dt = Fi

Fi (t) is a random force:

I 〈Fi (t)〉 = 0
I 〈Fi (t)Fi (t ′)〉 = Sδijδ(t − t ′)

xi (t + ∆t) = xi (t) +
√

S∆t ξi

I growth as random walk????
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Two perspectives

Random growth

Louis Bachelier: Théorie de la spéculation (1900)
I PhD Thesis (supervisor Henri Poincaré)

random walk of asset prices

developed the mathematics of Brownian motion
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Two perspectives

Random growth

Normalized log-returns rτ (t) = log {p(t + τ)/p(t)} of 1.000 US companies (1994-1995), τ=5 min
(Plerou et.al., 1999)

short term (τ < month) fluctuations are non-gaussian
I power law f (r) ∼ 〈r〉−α, α ≈3

“volatility clustering”: positive correlations ...
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Two perspectives

Random growth

Conclusions for modeling

surprising regularities on the aggregated level (distribution)

simple random models neglect ’fat tails’ (extreme events)
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Law of proportionate growth

Gibrat’s approach

Gibrat dynamics of firm growth

ẋi = Fi = f (xi ) + ... = bi xi

I no interactions between firms
I bi (t): independent of i , no temporal correlations (random noise)
⇒ multiplicative stochastic process

“Law of proportionate growth” (Gibrat, 1930)

xi (t + ∆t) = xi (t)
[
1 + bi (t)

]
growth “rates”: g(t) = x(t + 1)/x(t), t � ∆t, ln(1 + b) ≈ b

ln g(t) =
t∑

n=1

b(n)

⇒ random walk for ln g(t) ⇒ log-normal distribution for xi (t)
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Law of proportionate growth

Gibrat’s approach

Normal vs log-normal distribution

normal distribution P(z) for z = ln x

f (z) =
1√
2π

exp

{−z2

2

}
log-normal distribution P(x) for x (µ = 0, σ = 1)

f (x) =
1√
2π

1

x
exp

{−(ln x)2

2

}
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Law of proportionate growth

Empirical evidence

Empirical Evidence?

log-normal distribution of company sizes

P(x) =
1√

2π σ x
exp

[
(− ln x − µ)2

2σ2

]

Empirical distribution of company sizes (1974-1993) (Amaral et al, 1997)

Chair of Systems Design
http://www.sg.ethz.ch/

Dynamics of companies I Frank Schweitzer Summer School · Ambleside, UK 29/08 -08/09 2008 18 / 41

Law of proportionate growth

Empirical evidence

Empirical distribution of growth rates
⇒ depend on size → tent-shape, exponential distribution

(Amaral et al, 1997)
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Law of proportionate growth

Empirical evidence

Possible Explanation

correlations in the growth rates
company is attracted to an “optimal size”

xt+∆t

xt
=

{
keεt , xt < x∗
1
k eεt , xt > x∗,

result:

P(r1|x0) =
1√

2σ1(x0)
exp

[
−
√

2 |r1 − r̄1(x0)|
σ1(x0)

]
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Law of proportionate growth

Empirical evidence

Empirical distribution of standard deviation of growth rates
⇒ depend on size, power-law distribution σ1(x0) ∼ x−β0

L.A. Amaral, S. Buldyrev, S. Havlin, P. Maass, M. A. Salinger, H. E. Stanley, M. H. Stanley: Scaling behaviour in
economics: the problem of quantifying company growth, Physica A 244 (1997) 1-24
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Law of proportionate growth

Empirical evidence

Possible Explanation

growth depends on properties of management hierarchies
n levels, z mean branching ratio, decisions on higher level are
followed with prob π

β =

{ − ln(π)/ ln(z) if π > z−1/2

1/2 if π < z−1/2

result:

I σ1(x0) ∼ x−β
0 ; β < 0.5

I β decreases in time ⇔ companies better coordinated
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Power laws

Empirical evidence

Zipf Distribution of Firm Sizes

alternative candidate, different names: Pareto, Zipf, power law, ...

P(x , b, a) = abµx−(1+µ)

I log-log plot shows a straight line with descent α = −(1 + k)

Axtell, R.: Zipf Distribution of U.S. Firm Sizes. Science, 293 (1997) 1818–1820
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Power laws

Stylized facts

Stylized facts about firm size

firm sizes follow a skewed distribution P(x)
nature of P(x) depends on economic sectors, aggregation level, etc
log-normal or power law distributions good candidates

Stylized facts about firm growth

growth rates follow a Laplacian distribution
variance of growth rates decreases with firm size (and age)

Conclusions for modeling

surprising regularities on the aggregated level (distribution)
multiplicative stochastic processes as candidate framework
additional ingredients needed
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Power laws

Additive growth

From log-normal to power-law distributions

mathematical idea: add more noise! (Kesten ’73)

x(t + 1) = x(t)
[
1 + b(t)

]
+ a(t)

I b, a positive, independent random variables
I a(t): prevents firm from bankruptcy

F reasons: internal (inhouse production), external (subsidies)
F dynamics: “effective repulsion” from zero
F assumption here: a = const. > 0

some economic interpretation: b(t) = r(t)q(t)
I firm invests a portion q(t) of its net asset in its growth
I r(t): stochastic return on investment (RoI) (r(t) > −1)
I choose q(t) dependent on predicted RoI
I assumption here: q(t) = q0 = const.

Question: What is the most probable size xmp asymptotically?
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Power laws

Additive growth

Framework of multiplicative processes

individual process with η(t) as stochastic variable

∆x(t) = η(t)G [x(t)] + F [x(t)]

stationary probability distribution

Ps(x) =
1

G 2(x)
exp

(
2

D

∫ x F (x ′)
G 2(x ′)

dx ′
)

our example: F (x) = a, G (x) = x
D =

〈
(log (1 + b))2

〉− 〈log (1 + b)〉2, µ = −2 〈log (1 + b)〉 /D

Ps(x) ∝ x−2 exp(−2a/Dx)

for large x : Ps(x) ∝ x−(1+µ) with µ = 1

Richmond, P.: Power Law Distributions and Dynamic Behaviour of Stock Markets. The European Physical
Journal B 20(4) (2001) 523–526.
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Power laws

Additive growth
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Simulation
Ps(x)

µ=1

assumption: binary stochastic return distribution r(t) = B{−1, 1}

for 〈r〉 = 0, 〈log(1 + b)〉 ≈ 0 and small values of q0:

xmp ≈ a

q2
0 〈r 2〉

I
〈
r 2
〉

= 1 for B(−1, 1),
〈
r 2
〉

= 1/3 for U(−1, 1),
〈
r 2
〉

= σ2 for N(0, σ)

J. E. Navarro, R. Cantero, J. Rodrigues, F. Schweitzer: Investments in Random Environments, Physica A 387
(2008) 2035-2046
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Power laws

Additive growth

econonomy with N non-interacting firms

xi (t + 1) = xi (t)
[
1 + r(t)qi0

]
+ a

I every firm is forced to ’grow’ → investment qi0
I bancrupcy prevented (→ a) ⇒ constant number of firms
I overall economy is growing (on intermediate time scales)
I dilemma: invest less – get more: ximp ∝ q−2

i0
I chances for larger size do not increase with q0: P ∝ x−(1+µ)

(note: µ does not change with q0)

Conclusions for modeling

random growth assumptions work well ⇒ b(t), a(t)

bridging between log-normal and power law behavior

’problematic’ relation between growth and investment

Chair of Systems Design
http://www.sg.ethz.ch/

Dynamics of companies I Frank Schweitzer Summer School · Ambleside, UK 29/08 -08/09 2008 28 / 41

Competition

Constant resources

Proportionate growth with constant resources

firms competing for ressources (customers, material, ...)

dxi (t)

dt
= f (xi ) = αixi (t)

yi = xi/
∑

xi : relative market share of firm i ,
∑N

i yi = 1
growth rate of market share i : αi = Ei − k
I Ei : quality (fitness) of product produced by firm i
I k : ’dissipation’ rate (constant for all firms)

conservation of market requires:
N∑

i=1

dyi

dt
= 0 ; k =

∑
i Ei yi (t)∑

i yi (t)
= 〈Ei (t)〉

result: Fisher-Eigen dynamics (“the winner takes it all”)

dyi

dt
= yi

[
Ei − 〈Ei (t)〉

]
〈Ei (t)〉 =

∑
i Ei yi∑

i yi
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Competition

Constant resources

Simple competition scenario

derivation ingredients:
I (i) positive feedback: all firms grow, albeit at different rate
I (ii) conservation law: limited resource (market)

indirect (weak) competition: through relative market share
I market share grows only if Ei above average 〈E 〉
I 〈E (t)〉 increases over time → more and more firms loose
I “survival of the fittest”

problems:
I Ei is fixed (winner can be predicted), what if Ei (t)?
I what is the economic meaning of Ei?
I is the outcome realistic? ⇒ distribution of market shares
I is the outcome desirable? (competitors as resources of innovations)
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Competition

Economic explanations for fitness

What it the economic meaning of ’fitness’?
explanation linked to economic theory⇒ Karl Marx: Capital (1867)
I aim: explain the objective ’laws of motion’ of the capitalist system
I reveals the causes and dynamics of the accumulation of capital, the

growth of wage labour, the concentration of capital, competition, the
tendency of the rate of profit to decline, ...

idea: i firms produce same good, sell it on the same market
I dai : quantity per time interval produced by firm i
I ωi : ’value’ (effort, expressed in working time), 1/ωi : efficiency
I zi = dai/dt: production velocity

(i) conservation law ⇔ law of exchange-value∑
i

ωidai = p
∑

i

dai⇒ p = 〈ω〉 =

∑
ωizi∑
zi

I exchange process (market): sets price for sum of ’values’

This explanation follows the work of R. Feistel (1977). For more details see: W. Ebeling, R. Feistel, Physik der
Selbstorganisation und Evolution, Berlin: Akademie-Verlag (1982), or: F. Schweitzer, G. Silverberg: Konkurrenz,
Selektion und Innovation in ökonomischen Systemen, in: Irreversible Prozesse und Selbstorganisation (Hrsg. Th.
Pöschel, H. Malchow, L. Schimansky-Geier), Berlin, Logos-Verlag (2006) pp. 361-373
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Competition

Economic explanations for fitness

(ii) positive feedback on growth

firms receive p dai ⇒ pay production costs κidai , profits mi remain
I κi : costs for labour (variable capital) and machinery (constant capital)

〈ω〉 dai = κidai + mi ⇒ mi = dai (〈ω〉 − κi )

fraction αi of profit used to extend production (at constant costs)
I linear effect on production velocity

dzi

dt
= αi

dmi

dt
= αizi (〈ω〉 − κi )

relative market shares yi = zi/
∑

zi ,
dyi
dt = 1P

j zj

dzi
dt − zi

dyi

dt
= yi

[
〈ω〉 (αi − 〈α〉

)
+ 〈ακ〉 − αiκi

]
for αi = α (same fraction of profit reinvested in growth)

dyi

dt
= αyi

[
〈κ〉 − κi

]
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Competition

Economic explanations for fitness

Conclusions for modeling

competition scenario for free-market capitalism

cost κi (labor, machinery) plays role of fitness value

economic insights into growth: p = 〈ω〉 > κi

ways to increase competitiveness (κi (t)):
I decrease labour costs (globalization)
I increase efficiency (1/ωi )
I nonlinear effects: dai/dzi < 0: hyperselection

increasing efficiency reduces price → new pressure on κi

I viscious cycle
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Inequality

Measuring market concentration

Distribution of market shares

market share of a firm: yi (t) = xi (t)/
∑N

j=1 xj(t)
I xi can be firm ’size’, but also ’market valuation’ (number of stocks

times stock price),

’concentrated’ industry: uneven distribution of market shares

I monopoly: highly concentrated industries likely to induce big firms to
exploit market power at the expense of consumers

graphical representation of inequality (size, wealth): Lorenz curve

I developed by Max O. Lorenz in 1905 for income distributions
I applies to a set of ordered elements x1 < x2 < x3 < . . . < xn

I relation between two cumulative properties:

F x-axis: cumulative proportions of ordered elements
F y-axis: cumulative proportions of their size

I Example: 5% of all firms control 60% of market valuation
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Inequality

Measuring market concentration

Example: UK-operating companies (1885-1950)

I data: market valuation (different time periods, different sectors)
I shows increasing market concentration over time for pre-war period

Hart, P. E. and Prais, S.: The analysis of business concentration: A statistical approach. Journal of the Royal
Statistical Society, 119(2) (1956) 150–191
Size classes constructed in geometric progression, with the upper interval limit equals 2 times the lower interval limit
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Inequality

Measuring market concentration

Symmetrical Lorenz curves

I unequality, yet symmetry –
top 5% of firms constitute 20% of total market valuation, then bottom
20% of firms account for 5% of total market valuation

I symmetrical Lorenz curve ⇒ underlying distribution is log-normal

Lorenz curve and Gini coefficient

I straight diagonal line (line of equality) ⇒ all elements of same size
I Gini coefficient ⇒ (area below Lorenz curve)/(area below line of

equality)

g =
2
∑N

i iyi

n
∑N

i yi

− n + 1

n
; yi ≤ yi+1

I g = 0: all elements are equal, g → 1: increasing inequality
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Inequality

Measuring market concentration

(left) Lorenz curves for different industries
(right) Gini coefficients g for different σ2 of the log-normal distribution
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Inequality

Measuring market concentration

Conclusions for modeling

inequality in relative market shares persists
I slight increase over time

symmetric Lorenz curve indicates log-normal size distribution

why don’t we observe a ’winner-takes-all’ scenario?
I entry/exit dynamics: number of firms change over time
I firms have to cooperate to survive ẋi = f (xj , xk)
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Further modifications

Entry dynamics

Entry/Exit Dynamics of Firms

number of firms is not constant
I new firms enter the market
I existing firms disappear (bankruptcy, merger)

simple entry model (Herbert Simon et al., 1955, ’58, ’64, ’67)
I existing firms grow proportional to size
I new firms are born into smallest size class at constant rate

result: Yule-Simon Distribution (instead of log-normal)

P(x) = ρB(x , ρ+ 1) =
ρ Γ(ρ+ 1)

(x + ρ)ρ+1

I discrete probability distribution: x = 1, 2, 3, ... ⇒ rank, or “size”
I B(x , ρ): Beta function, Γ(ρ): Gamma function
I ρ⇒ G/(G − g), where G is net growth in assets of all firms and g is

the growth part of the new firms
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Further modifications

Yule-Simon distribution

Yule-Simon distribution for different values of ρ
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Further modifications

Yule-Simon distribution

Result:

for large x :

P(x) ≈ ρ Γ(ρ+ 1)

xρ+1
∝ 1

xρ+1

I distribution follows Zipf’s Law: P(x) ∝ x−ρ−1 ⇒ power law

α = g/G = 0.1: new firms account for 10% of growth in assets ⇒
ρ = 1/(1− α) = 1.1
I assumption: α is constant over time

empirical result: UK: ρ=1.11, US: ρ=1.23
I 9.9% (UK) and 18.7 % (US) of growth in assets accounted by new

firms

Simon, H. A. and Bonini, C. P.: The size distribution of business firms. The American Economic Review 48(4)
(1958) 607–617.
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Further modifications

Yule-Simon distribution

Conclusions for modeling

different data suggest different forms of skewed distributions

Gibrat’s dynamics of proportionate growth is a robust framework
I predicts log-normal distribution of firm sizes

modifications in different directions
I additional growth (fix, stochastic) ⇒ power laws
I entry dynamics ⇒ Yule-Simon distribution
I correlations between growth rates in different years
⇒ Yule-Simon distribution

what is not included? ⇒ (direct) interaction of firms
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