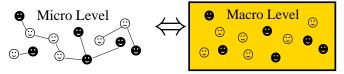


Network Models of Cooperation

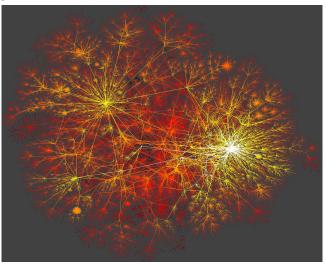
Frank Schweitzer

fschweitzer@ethz.ch


- I. Network model of coalition formation
- II. Network model of growth through cooperation

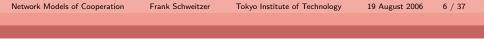
Challenge

• 21st-Century Center of Excellence Program: Creation of agent-based social systems sciences


- bottom-up approach of formation/design of institutions
- key question for the theory of complex systems:

The micro-macro link:

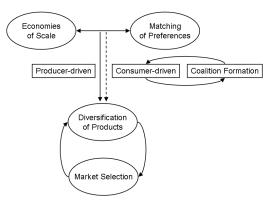
How are the properties of the elements and their interactions ("microscopic" level) related to the dynamics and the properties of the whole system ("macroscopic" level)?


Complex Networks

Structural versus relational features:

- nodes \Rightarrow agents
 - non-linear local eigendynamics
- links \Rightarrow interaction:
 - ► internet ⇒ structural features → WHAT? degree distributions, clustering coefficients, ...
 - ► social systems ⇒ relational features → WHY? quality of relations: support, friendship
- global quantities/qualities emerge from *self-organization* (no central control)
 - internet: robustness
 - social system: cooperation, welfare

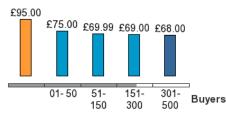
I. Network model of coalition formation


Coalition formation

- Internet: opportunity to form *spontaneous*, *location-independent communities*
 - emergence of services based on social networking
- Application: electronic markets
 - "Buying clubs" for e-commerce have been around for several years, but the concept itself has not really become popular.
 - ► advantage: economies of scale increase in quantity → decrease in cost-per-item
 - Tsvetovat & Sycara (2000): formation of groups of buyers to obtain volume discounts from sellers

Coalition Formation:

 alternative to achieve trade-off between economies of scale and matching of preferences:



Examples

- buying clubs for food: few self-organised groups
- o co-buying web sites such as www.letsbuyit.com:

Current Price: £69.00

End date: 17/03/2006 Number of buyers: 231

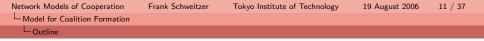
- I will buy at the current price £69.00
- Buy at the closing price
- Buy at the best price

Purchase

- Average retail price
 - Best Price
- Number of buyers

Network Models of Cooperation	Frank Schweitzer	Tokyo Institute of Technology	19 August 2006	10 / 37
Coalition formation				
Drawbacks and Incentives				

Drawbacks and Incentives


- "more buyers, lower cost" principle based on limited selection of products ⇒ buyers have to *compromise*
- "buying clubs": waiting time and risk of not concluding a deal (additional overhead)

Buyers

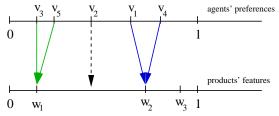
- volume discount
- customised items: match of preferences
- sharing of search cost
- "bundle search"

Sellers

- better predictability of sales volumes
- customized items: increase of sales
- reduction of transaction costs

Model for Coalition Formation

- agent-based model \Rightarrow buyers *B* and sellers *S* (represented by their products)
- focus: dynamics of *creation*, *evolution*, and *breakup* of coalitions of buyers
- emphasis on:
 - ▶ effect of *heterogeneity* of agents' preferences ⇔ *size*, *number* and *lifetime* of coalitions
 - existence of *stationary* and *non-stationary regimes* (stable and unstable coalitions), *transition* from one regime to the other


Network Models of Cooperation	Frank Schweitzer	Tokyo Institute of Technology	19 August 2006	12 / 37
Model for Coalition Formation				
Outline				

Heterogeneity:

- products *j*: vector of *features* [*w*_{*j*,1}, ..., *w*_{*j*,*k*}]
- buyers *i*: *preferences* for product features \Rightarrow [$v_{i,1}, ..., v_{i,k}$]

Example:

- buyer $i \rightarrow v_i$, seller/product $j \rightarrow w_j$, distributions $\mathcal{F}(v)$, $\mathcal{G}(w)$
- each agent buys only one product
 - different buying modes: individually, in coalitions, new demand

Network Models of Cooperation	Frank Schweitzer	Tokyo Institute of Technology	19 August 2006	13 / 37
Model for Coalition Formation				
Agent's Utility				

Utility

- agents: *rational* and *self-interested* → maximise their private utility over time
- benefit of agent *i* from purchase of product *j* depends on:
 - ▶ distance between features w_j and preferences v_i : $\Delta_{ij} = |w_j v_i|$
 - ▶ price of product *j*, which depends on quantity sold: $p_j = P/N_j^\beta$ (price elasticity: $\beta = 0.5$)
- agent's utility: compromise between cheap price and match of preferences

$$U_i = \frac{1}{p_j} [1 - |w_j - v_i|]$$

indirect cost for joining a coalition ⇒ commitment unsuccessful coalition: U_i = 0 (risk of failure)

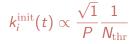
Network Models of Cooperation	Frank Schweitzer	Tokyo Institute of Technology	19 August 2006	14 / 37
Model for Coalition Formation				
Agent's Actions and Decisions				

Agent's actions and decisions

- purchase product j individually
 - advantage: get product immediately
 - disadvantage: pay higher price $p_i = P$

 $k_i^{
m ind}(t) \propto rac{1}{P}ig[1-\Delta_{ij}ig]$

2 join existing coalition j with a set of other buyers N_j


- advantage: pay lower price $p_i = P/\sqrt{N_j}$
- ► disadvantage: (i) waiting time until coalition has reached critical size N_j ≥ N_{thr}, (ii) risk of coalition failure

$$k_i^{
m coal}(t) \propto rac{\sqrt{N_j}}{P} rac{N_j}{N_{
m thr}} ig[1-\Delta_{ij}ig]$$

Network Models of Cooperation	Frank Schweitzer	Tokyo Institute of Technology	19 August 2006	15 / 37
Model for Coalition Formation				
Agent's Actions and Decisions	5			

Initiate new coalition k and wait for other buyers to join

- ▶ advantage: get product *k* according to preferences: $\Delta_{ik} = 0$
- ▶ disadvantage: (i) risk of coalition failure: N_k(t₀) = 1 ≪ N_{thr},
 (ii) waiting time until coalition has reached critical size

postpone decision

- advantage: no commitment, open for future possibilities
- disadvantage: (i) wait for product, (ii) uncertainty of future

 $k_i^{ ext{wait}}(t) \propto \exp\left(-lpha t
ight)$

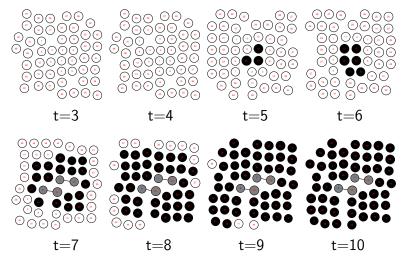
Network Models of Cooperation	Frank Schweitzer	Tokyo Institute of Technology	19 August 2006	16 / 37
Model for Coalition Formation				
Agent's Actions and Decisions				

Stochastic decision dynamics

- each possible action has a certain weight k_i
- decision: stochastic draw among the weighted possibilities
 - path dependence: symmetry break
 - ▶ positive feedback: decision affects weights *k_j* of other agents
 - \blacktriangleright consequences for utility at $t \to t_{end} \Rightarrow$ affects strategy in repeated games

Network Models of Cooperation	Frank Schweitzer	Tokyo Institute of Technology	19 August 2006	17 / 37
Model for Coalition Formation				
Scenarios of Coalition Formati	on			

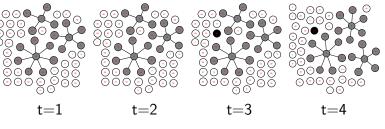
Scenarios of coalition formation

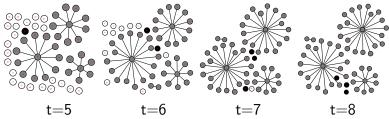

- individual purchasing behaviour, i.e., no buyer-seller network exists among the agents,
- If formation of several heterogenous coalitions, i.e., a number of buyer-seller networks which are not connected,
- condensation to a single giant coalition, i.e., a buyer-seller network involving all agents.

The transition between these scenarios is governed by

- $\bullet\,$ heterogeneity of agents' preferences, $\eta\,$
- threshold for successful coalitions, $N_{\rm thr}$

Network Models of Cooperation	Frank Schweitzer	Tokyo Institute of Technology	19 August 2006	18 / 37	
└─ Model for Coalition Formation					
Scenarios of Coalition Format	ion				

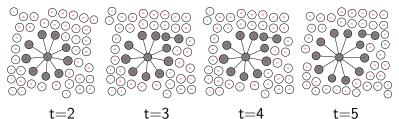

Individual purchasing ($N_{\rm thr} = 50$)

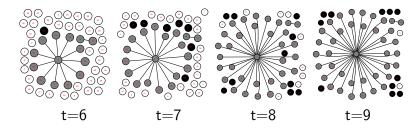


Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Network Models of Cooperation	Frank Schweitzer	Tokyo Institute of Technology	19 August 2006	19 / 37	
Model for Coalition Formation					
Scenarios of Coalition Formati	ion				

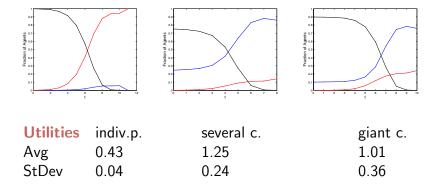
Several heterogeneous coalitions ($\varepsilon = 0.04$, $N_{thr} = 5$)



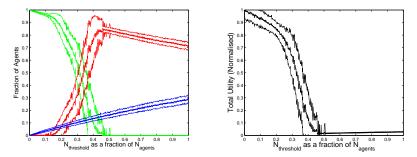


Network Models of Cooperation	Frank Schweitzer	Tokyo Institute of Technology	19 August 2006	20 / 37
Model for Coalition Formation				
Scenarios of Coalition Format	ion			

Single giant coalition ($\varepsilon = 0.05$, $N_{thr} = 20$)



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich


Network Models of Cooperation	Frank Schweitzer	Tokyo Institute of Technology	19 August 2006	21 / 37
Model for Coalition Formation				
Scenarios of Coalition Formati	on			

Fraction of agents in coalitions vs. time

Network Models of Cooperation	Frank Schweitzer	Tokyo Institute of Technology	19 August 2006	22 / 37
Model for Coalition Formation				
Scenarios of Coalition Format	ion			

Influence of coalition threshold $N_{\rm thr}$

Extensions

- buyer's dynamics
 - different preferences (multidimensional case)
 - incomplete, bounded in time information about products
 - \blacktriangleright buy different products with limited budget \rightarrow competition
- seller's dynamics
 - products with different features (multidimensional case)
 - offer more than one product
 - \blacktriangleright limited production ressources \rightarrow competition
- repeated games
 - buyers: memory about the failure/success of coalitions
 - sellers: memory about agents \Rightarrow loyalty reward
 - stationary/non-stationary coalitions

Network Models of Cooperation	Frank Schweitzer	Tokyo Institute of Technology	19 August 2006	24 / 37		
-Network model of growth through cooperation						

II. Network model of growth through cooperation

Growth through Network Effects

•
$$\dot{x}_i = \mathcal{F}_i = f(x_j, x_k) + \dots$$

 $\frac{dx_i}{dt} = \sum_{j=1}^N c_{ij} x_j - \Phi x_i$

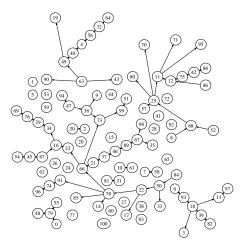
c_{ij} ∈ {0,1} ⇒ represents a directed network
 j catalyzes the growth of *i*, link probability *p i* is connected to *m* = *p*(*N* − 1) other agents (on average)

• two time scales:

agent growth (fast), network dynamics (slow)

 assumption: extremal dynamics ⇒ minimum performance threshold

Network Models of Cooperation	Frank Schweitzer	Tokyo Institute of Technology	19 August 2006	26 / 37	
-Network model of growth through cooperation					


• Questions:

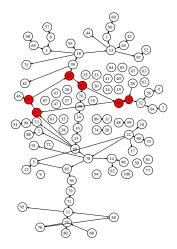
- Under which conditions do agents survive?
- Which structures of cooperation networks emerge?
- What happens if selection pressure is increased?

• Results of computer simulations:

Emergence of a core of *cooperative* agents, and a *parasitic* pheriphery, considerable crashes and recovery

Network Models of Cooperation	Frank Schweitzer	Tokyo Institute of Technology	19 August 2006	27 / 37
└─ Network model of growth throug	h cooperation			
Results of computer simulation	ıs			

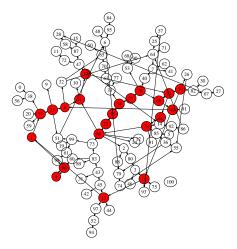
t=800



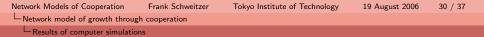
Network	Models	of	Cooperation	
---------	--------	----	-------------	--

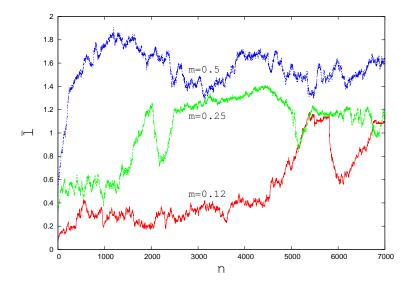
Frank Schweitzer

-Network model of growth through cooperation


Results of computer simulations

t=973



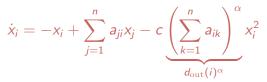

Network Models of Cooperation	Frank Schweitzer	Tokyo Institute of Technology	19 August 2006	29 / 37
└─ Network model of growth throug	h cooperation			
Results of computer simulation	ıs			

t=1290

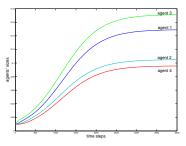
ETH
Eidgenössische Technische Hochschule Züri
Swiss Federal Institute of Technology Zurich

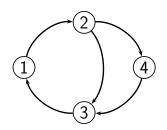
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Network Models of Cooperation	Frank Schweitzer	Tokyo Institute of Technology	19 August 2006	31 / 37
Network model of growth through	n cooperation			
Advanced Growth Model				


Advanced Growth Model

Extension of the basic model:


- agents take decisions with whom to interact (higher level of intelligence) without strategic interaction
- decisions are bounded rational
 - goal is to grow in size
 - Iocally bounded (no complete information on the system)
 - temporarily bounded (finite time horizon)
- opportunity costs for interaction
- growth (through interaction) reaches saturation


Network Models of Cooperation	Frank Schweitzer	Tokyo Institute of Technology	19 August 2006	32 / 37
Network model of growth through	n cooperation			
Advanced Growth Model				

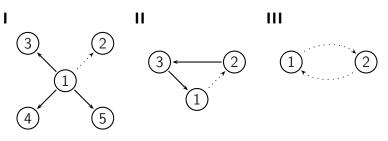
We consider a set of agents each having size x_i .



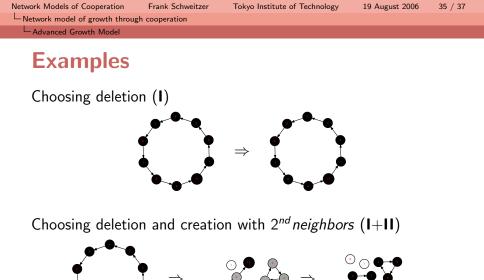
Example:

Network Dynamics

Increasing Levels of Intelligence

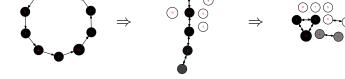

- 1 Least fit addition/removal of links¹
- 2 Reactive acceptation/refusal of link changes
- **3** Choosing which link to add/remove²
- 4 Strategic interaction in game theoretic models³

 ¹S. Jain and S. Krishna (1998) Autocatalytic Sets and the Growth of Complexity in an Evolutionary Model *Phys. Rev. Lett. 81: 5684-5687* ²S. Bornholdt and H. Ebel. (2002). Evolutionary Games and the Emergence of Complex Networks *cond-mat/0211666* ³V. Bala and S. Goyal. (2000). A Noncooperative Model of Network Formation *Econometrica 68, 5: 1181-1230*

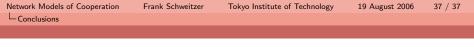

Network Models of Cooperation	Frank Schweitzer	Tokyo Institute of Technology	19 August 2006	34 / 37
Network model of growth through	n cooperation			
Advanced Growth Model				

• link update mechanisms

- I choosing a link for deletion (finite time horizon)
- Il choosing a second neighbor for link creation (finite time horizon)
- III mutual creation
- mutual links created \Leftrightarrow both agents strictly benefit
- unilateral deletions \Leftrightarrow source-agent strictly benefits



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich


Observations:

I mere link deletion would preserve C_{10}

|+|| link deletion & creation of links with 2^{nd} neighbor destroys C_{10}

|+||| link deletion & mutual link creation destroys C_{10}

Cooperation of a few can lead to destruction of cooperation of many.

Conclusions

- two models of network formation in social systems
 - ► coalition formation ⇒ social network of agents to reach common goal
 - ▶ growth dynamics ⇒ support network of agents to increase welfare (cooperation)
- local agent dynamics
 - driven by utility maximization
 - affects network/interaction structure: creation/removal of links
- "economic" conditions for emergence/stability of networks
 - coalitions: get customized products at a lower price
 - growth model: joining cooperating network prevents fall-out
- agent based modeling framework: testbed for interaction rules, critical constellations (costs)