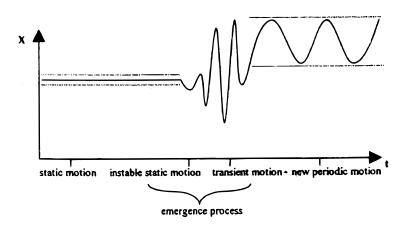
Frank Schweitzer

fschweitzer@ethz.ch

Emergent Properties

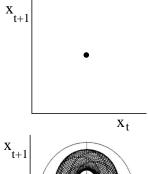
Emergence

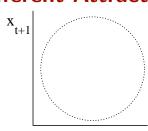

- common understanding: new properties appear on the systems level
- different interpretations
 - mathematics: small (quasi continuous) changes in x result in large (discontinuous) changes in $X \Rightarrow$ non-reductionistic, irreducible

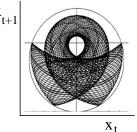
From: P. Eisenhardt, D. Kurth, H. Stiehl: Wie Neues entsteht, Reinbek 1995

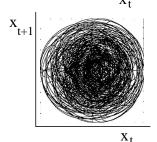
- role of control parameter $A \Rightarrow$ induced transition
 - ★ same dynamics, but emergence of new attractors
 - adaptation to changing conditions, rather than novelty

Swiss Federal Institute of Technology Zurich




From: W. Völcker, Mimeo 1999


Emergent Properties


Emergence of new attractors

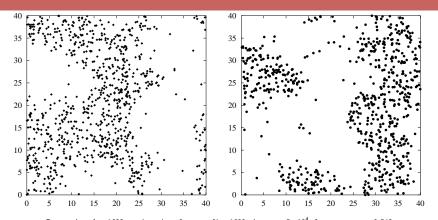
Same Dynamics – Different Attractors

Emergence from collective interaction

- Physics/Biology: emergence as collective phenomenon, resulting from interaction
- Self-organization in distributed systems:
 - based on the non-linear coupling of "individual" actions
 - feedback mechanism: self-consistent "field" indirect communication, exchange of information
 - non-equilibrium system: activity requires energy
 - self-organization: emergence of new solutions

Simulation

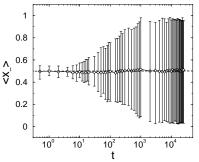
Emergence of coordinated decisions


Emergent Properties

Emergence of coordinated decisions

- N agents: position $\mathbf{r}_i \in \mathbb{R}^2$, "opinion" $\theta_i \in \{-1, +1\}$
- binary choice: to change or to keep "opinion" θ_i

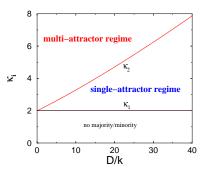
$$w(-\theta_i|\theta_i) = \eta \exp\left\{-\frac{h_{\theta}(\mathbf{r}_i, t) - h_{-\theta}(\mathbf{r}_i, t)}{T}\right\}$$


- "herding behavior" \Rightarrow depends on information $h_{\theta}(\mathbf{r}_i, t)$ about decisions of other agents
- \triangleright η : defines time scale
- T: "social temperature" measures randomness of social interaction
 - $T \rightarrow 0$: deterministic behavior

System size: A = 1600, total number of agents: N = 1600, time: $\textit{t} = 5 \cdot 10^4$, frequency: $\textit{x}_+ = 0.543$

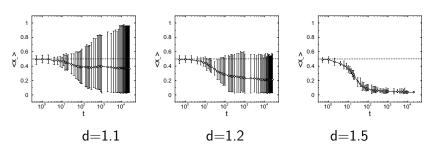
Results: (closer inspection)

• single-attractor regime: fixed minority/majority relation multi-attractor regime: variety of spatial patterns almost every minority/majority relation may be established

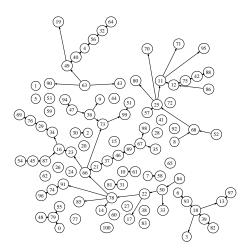

• dependence on information dissemination (D), memory (k), agent density (N/A) ??

28-29 November 2005

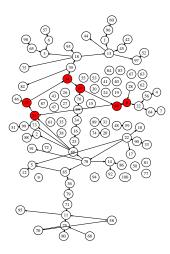
Analytical Investigations


- impact of information $\kappa = 2\nu/T$: relation between net information density $\nu = \bar{n} \, s/k$ and efficiency $\sim 1/T$
- existence of two bifurcations:

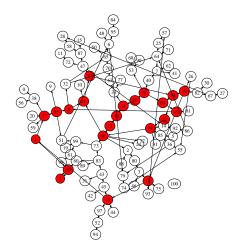
$$\kappa > \kappa_1 = 2$$
: minority/majority $\kappa > \kappa_2(D/k)$: multi-attractor regime


Communication on different time scales

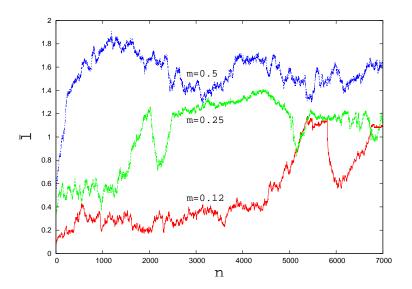
vary:
$$d = D_{+1}/D_{-1}$$


• subpopulation with the more efficient communication becomes "always" the majority

- network model of connected agents (directed links)
- two time scales:
 agent dynamics (fast), network dynamics (slow)
- Questions:
 - Under which conditions do agents survive?
 - ▶ Which structures of networks emerge?
 - What happens if selection pressure is increased?
- Results of computer simulations:
 - Emergence of a core of *cooperative* agents, and a *parasitic* pheriphery, considerable crashes and recovery


t = 800

Emergent Properties


t = 973

Emergent Properties

t = 1290

Emergent Properties

