

Continuous Opinion Dynamics

Jan Lorenz

Chair of Systems Design

May 26, 2008

Chair of Systems Design http://www.sg.ethz.ch/ <ロ> <部> <き> <き> <き> <</p>

3

Continuous Opinion Dynamics	Jan Lorenz	ISI Torino	May 26, 2008	2 / 16
Introduction				

2 Continuous opinion dynamics under bounded confidence

3 Continuous opinion dynamics and movie ratings

4 Conclusion

Continuous Opinion Dynamics	Jan Lorenz	ISI Torino	May 26, 2008	3 / 16
Introduction				

Continuous opinions

Prices, budgets

• Estimations: How many noodles?

• Political continuum: left-right

Source: sotomo.geo.unizh.ch, smartvote.ch . .

Ratings and grades

Source: IMDb.com

Eidgenössische Technische Hachschule Zürich Swiss Federal Institute of Technology Zurich

Continuous Opinion Dynamics	Jan Lorenz	ISI Torino	May 26, 2008	4 / 16
Introduction				

Dynamics

- Agents may change opinion by **averaging** the opinions of others because of
 - informational reasons (in questions of fact finding)
 - compromising (in questions of negotiation)
 - normative reasons (in questions of taste)

 \implies Agents adjust towards opinions of others

- Mathematics of averaging agents
 - Opinions stabilise if¹
 - ★ agents have self-confidence
 - ★ confidence is mutual
 - ★ both properties do not fade away
 - Huge ammount of literature on finding consensus
 - * Important in coordination (swarming) of mobile autonomous agents
 - * Related to synchornisation

イロト 不得 トイヨト イヨト 二日

¹Lorenz, Physica A, 2005

Continuous Opinion Dynamics	Jan Lorenz	ISI Torino	May 26, 2008	5 / 16
Continuous opinion dynamics under	bounded confidence			

Outline

2 Continuous opinion dynamics under bounded confidence

3 Continuous opinion dynamics and movie ratings

4 Conclusion

Continuous Opinion Dynamics	Jan Lorenz	ISI Torino	May 26, 2008	6 / 16
Continuous opinion dynamics under	bounded confidence			

Bounded confidence models²

 2 Krause, 1997; Deffuant et al, 2000; Hegselmann-Krause, 2002; Weisbuch et al, 2002 \mathbb{P} + $+ \mathbb{P}$ + $+ \mathbb{P}$ + $- \mathbb{P}$ - $- \mathbb{P}$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Bifurcation diagrams³

HK and DW model: bifurcation diagram

sische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

http://www.sg.ethz.ch/

Continuous Opinion Dynamics	Jan Lorenz	ISI Torino	May 26, 2008	8 / 16
Continuous opinion dynamics under	bounded confidence			

Heterogeneous bounds of confidence⁴

0.8 opinion space 0.6 - 0.22 0.4 0.2 = 0.11 ĭο. 20000 40000 60000 80000 100000 ε = 0.11 (500 agents), 0.22 (500 agents) 0.8 opinion space 0.6 0.4 0.2 n 10000 20000 30000 40000

ε = 0.11 (500 agents), 0.22 (500 agents)

・ロン ・回 と ・ ヨン ・ ヨン

⁴Lorenz, arXiv, 2008

Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

Continuous Opinion Dynamics	Jan Lorenz	ISI Torino	May 26, 2008	9 / 16
Continuous opinion dynamics and m	ovie ratings			

Outline

2 Continuous opinion dynamics under bounded confidence

Ontinuous opinion dynamics and movie ratings

4 Conclusion

Continuous Opinion Dynamics	Jan Lorenz	ISI Torino	May 26, 2008	10 / 16
Continuous opinion dynamics and movie r	atings			

Opinion dynamics about movie quality

- On IMDb.com 1,086 movies got more than 20,000 votes (1=awful,...,10=excellent)
- <u>Probabilistic view</u>: Cinemagoer's initial opinion is a random variable
- Mini social theory: Final opinion is the average of opinions of peers.

Votes	Percentage	Rating
981	17.9%	6 10
562	10.3%	9
898	16.4%	8
1,014	18.5	% 7
720	13.1%	6
418	7.6%	5
258	4.7%	4
181	3.3%	3
133	■ 2.4%	2
311	5.7%	1

- Probabilistic theory: Aggregate distribution should be close to a Levy skew α -stable distributions distribution.
 - has characteristic function

$$\varphi(t;\alpha,\beta,\gamma,\mu) = \exp\left[\mu - |\sigma t|^{\alpha} \left(1 - i\beta \operatorname{sign}(t) \tan(\frac{\pi \alpha}{2})\right.\right]$$

▶ $\alpha \in]0,2]$, , $\beta[-1,1]$, $\gamma \in [0,\infty[$, and $\mu \in]-\infty,\infty[$

Continuous Opinion Dynamics	Jan Lorenz	ISI Torino	May 26, 2008	11 / 16
Continuous opinion dynamics and movie r	atings			

Confined and discretized stable distribution

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Continuous Opinion Dynamics	Jan Lorenz	ISI Torino	May 26, 2008	12 / 16
Continuous opinion dynamics and movie ratings				

Confined and discretized stable distribution

Chair of Systems Design http://www.sg.ethz.ch/

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Continuous Opinion Dynamics	Jan Lorenz	ISI Torino	May 26, 2008	13 / 16
Continuous opinion dynamics and movie ra	atings			

One parameter fit

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Continuous Opinion Dynamics	Jan Lorenz	ISI Torino	May 26, 2008	14 / 16
Conclusion				

2 Continuous opinion dynamics under bounded confidence

Continuous opinion dynamics and movie ratings

Continuous Opinion Dynamics	Jan Lorenz	ISI Torino	May 26, 2008	15 / 16
Conclusion				

Conclusion

- Continuous opinion dynamics is different from discrete opinion dynamics
- Averaging dynamics
 - and bounded confidence: Gives a hint on the formation of political parties without a priori definition of parties
 - could explain the 'Gaussian-like' shapes of movie rating histograms, but initial distributions must have fat tails

Continuous Opinion Dynamics	Jan Lorenz	ISI Torino	May 26, 2008	16 / 16
Conclusion				

References

Jan Lorenz. 2007, Repeated Averaging and Bounded Confidence. Modeling, Analysis and Simulation of Continuous Opinion Dynamics. *Ph.D. Thesis*

Jan Lorenz. 2007, Continuous Opinion Dynamics under Bounded Confidence: A Survey. International Journal of Modern Physics C 18(12).

Jan Lorenz. 2008 Heterogeneous bounds of confidence: Meet, Discuss and Find Consensus! *submitted* arxiv.org/abs/0801.1399.

Jan Lorenz. 2008 Universality of movie rating distributions arxiv.org/abs/0806.2305.

Advertisment

Open Positions for PostDocs and PhD Students at the Chair of Systems Design at ETH. More on www.sg.ethz.ch or *ask me*.

イロト 不得 とくき とくき とうき