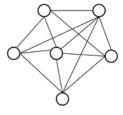

Statistical inference for letter network of Reformation


Ramona Roller

Collaborators: Prof. Frank Schweitzer

The problem: unobserved data

- Studying system involves unobserved data
- Resulting network is biased
- Network reconstruction is hard, unsolved problem
- Intermediate step: inference

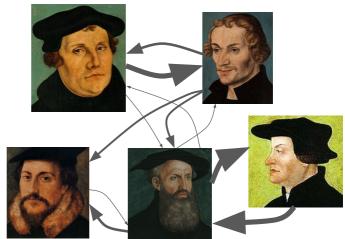
→ Which factors drive the network?

Chair of Systems Design | www.sg.ethz.ch | Ramona Roller 11/09/2019

The European Reformation (1517-1648)

- Transformative movement
 - Division of Catholic Church
 - Major changes in the socio-political system
- Letters were the main means of communication.
- Use them to study the social system in 16th century Europe

Martin Luther's posting of his 95 theses to the church in Wittenberg (1517)


Chair of Systems Design | www.sg.ethz.ch | Ramona Roller EUSN Zurich | 11/09/2019 | 3 / 12

ETH zürich

The letter correspondence network of reformers

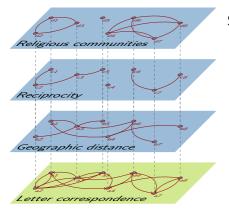
- **Data**: 20,000 letters, 3,000 people, sending- and (receiving) dates + locations, 1510 - 1575
- **Network**: directed multi-edge network of interactions

nodes: reformers edges: letters

Schematic representation of a sample from the letter correspondence network

Back to the problem

- Which factors drive the network?
- Use ERGM?
 - **Problem**: Only for binary edges
- Use regression?
 - $\mathbf{y} = \beta_0 + \beta_1 \mathbf{x}_1 + \dots + \beta_p \mathbf{x}_p + \varepsilon$
 - E.g. **y**: number of letters per reformer pair, x_i : social relations, age, etc.
 - **Problem 1**: Networks do not meet independence assumption
 - Problem 2: GLMs do not fix number of edges

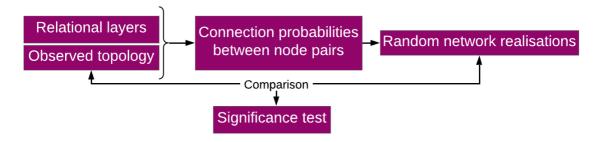

→ Network regression:

infer interactions (letter connections) from relations

The role of geographic distance on letter correspondence

Research question

How does **geographic distance** affect the letter correspondence, i.e. the network topology?

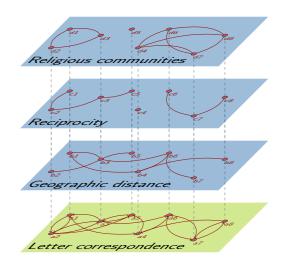


Social relations (R) between sender and receivers to be tested:

- Geographic distance (tested): Long distances: letters are convenient but costly; Short distances: letters are inconvenient but cheap
- Reciprocity (control): Social norm of rewarding kind actions
- Religious communities (control): Support for same/different religious denominations E.g. Lutherans, Reformed, Calvinists, Baptists, etc.

Network regression casiraghi, 2017; Casiraghi et al., 2016

Statistical model based on generalised hypergeometric network ensembles (gHypE)


Chair of Systems Design | www.sg.ethz.ch | Ramona Roller EUSN Zurich | 11/09/2019 | 7 / 12

Network regression output

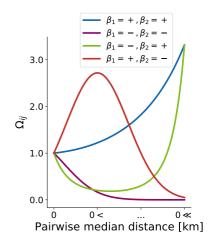
- Regression coefficients β_k
 - Quantify importance of relational layers
- Propensity matrix Ω
 - $\Omega := \prod_{k=1}^K \mathsf{R}_k^{\beta_k}$

where each relational layer corresponds to one R_k

Odds ratio Ω_{ii}/Ω_{mn} : How much more likely are nodes i and i to be connected compared to nodes m and n?

Predictor construction

Geographic distance


- **cost** (distance ↑, #letters ↓); **convenience** (distance **†**, #letters **†**)
- $\mathbf{R}_{ii}^{(1)} = e^{dist_{ij}}, \ \mathbf{R}_{ii}^{(2)} = e^{dist_{ij}^2}$
- $\Omega = R^{(1)\beta_1} * R^{(2)\beta_2}$: Covers all possible combinations of cost and convenience

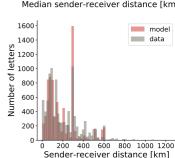
Reciprocity

- $R^{(3)} = A^T$ (change statistic Snijders, 2006)
- $R_{ii}^{(3)}$: number of letters *i* would have to send to *j* in order to answer each letter of j to i

Religious communities

- Assume homophily
- Same: $R_{ij}^{(4)} = 10$, different: $R_{ii}^{(4)} = 1$


- Only convenience
- Only cost
- Either cost or convenience
- Cost and convenience in balance


Results: reduced model $\Omega_{ij} = (e^{dist_{ij}})^{\beta_1} * (e^{dist_{ij}^2})^{\beta_2}$

reduced		
7.885 (0.159)***		
$-17.918 (0.405)^{***}$		
43427.830		
0.009		

[•] Optimal intermediate distance: At 168km people are most likely to send letters.

Odds ratio:
$$\Omega_{168km}/\Omega_{0km}=1.29$$
, $\Omega_{168km}/\Omega_{1000km}=28809$

Results: full model

	reduced	full
Distance		
Linear distance	7.885 (0.159)***	$-3.354 (0.176)^{***}$
Quadratic distance	$-17.918 (0.405)^{***}$	5.032 (0.388)***
Controls		
Reciprocity		0.461 (0.004)***
Religious homophily		0.276 (0.016)***
AIC	43427.307	33989.210
$McFadden pseudo - R^2$	0.009	0.224
***n < 0.001 **n < 0.01 *n <	0.05	

^{***}p < 0.001, **p < 0.01, *p < 0.05

The **full model** is **better** than the reduced as the smaller AIC shows.

The **sign flip** of the distance predictors shows that the controls are essential.

Chair of Systems Design | www.sg.ethz.ch | Ramona Roller EUSN Zurich | 11/09/2019 | 11 / 12

Summary

• Insights on the letter correspondence network of reformers

 People are likely to write letters if they live close to or far away from each other

Benefits of network regression

- Multi-edges, interdependence, fixed edge count
- Can deal with missing data ($R_{ij} = 1 \Rightarrow \beta$ has no effect)
- Construction of predictors is not restricted: Use any kind of quantifyable relation, test hypotheses.

Outlook

- Address instability of model
- Tailor predictor selection towards specific theories of historical research
- Use ensemble approach for edge reconstruction (goodness-of-fit needed)

Take home message

Network regressior

Relations explain interaction

Chair of Systems Design \mid www.sg.ethz.ch \mid Ramona Roller EUSN Zurich \mid 11/09/2019 \mid 12/1

Network regression

gHypE depends on four $N \times N$ matrices

- Adjacency matrix A: given
- Combinatorial effects matrix ≡: covered by configuration model
- **Propensity matrix** Ω : to be computed from predictor matrices R's

$$\mathbf{\Omega}\coloneqq\prod_{k=1}^{K}\mathsf{R}_{k}^{eta_{k}}$$

- Odds ratio Ω_{ij}/Ω_{mn} : How much more likely are nodes i and j to be connected compared to nodes m and n?
- Each predictor matrix R_k encodes one relational network layer
- ullet R_{ij} can quantify the relation directly or encode some specific assumptions
- The larger R_{ij} the larger the propensity to be connected of node pair ij
- β_k are the estimated regression coefficients quantifying the importance of one layer

Chair of Systems Design | www.sg.ethz.ch | Ramona Roller EUSN Zurich | 11/09/2019 | 13 / 12

Collinearity causes sign flip

	Reciprocity	Religion
Distance		
Linear distance	$-3.758 (0.172)^{***}$	8.283 (0.164)***
Quadratic distance	5.584 (0.381)***	$-18.552 (0.410)^{***}$
Controls		
Reciprocity	0.457 (0.004)***	
Religious homophily		0.219 (0.016)***
AIC	34229.532	43271.460
McFadden $pseudo - R^2$	0.219	0.012

^{***} p < 0.001, ** p < 0.01, * p < 0.05

• Corr(linear distance, religion) = -0.022

• Corr(linear distance, reciprocity) = 0.265

- Corr(quadratic distance, religion) = -0.021
- Corr(quadratic distance, reciprocity) = 0.268

Corr(reciprocity, religion) = -0.002