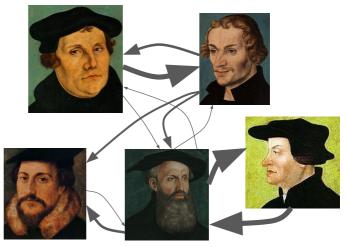


Network regression reveals factors driving the letter correspondence of 16th century reformers

**Ramona Roller** 

Collaborators: Prof. Frank Schweitzer

## The European Reformation (1517-1648)

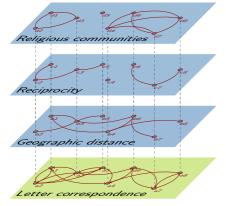

- Transformative movement of society in early modern Europe
  - Division of Catholic Church
  - Major changes in the socio-political system
- Letters were the main means of communication.
- Use them to study the social system in 16th century Europe



Martin Luther's posting of his 95 theses to the church in Wittenberg (1517)

## The letter correspondence network of reformers

- Data: 20,000 letters, 3,000 people, sending- and (receiving) dates + locations, 1510 - 1575
- **Network**: directed multi-edge network of interactions
  - nodes: reformers
  - edges: letters




Schematic representation of a sample from the letter correspondence network

## The role of geographic distance on letter correspondence

Research question

How do social relations affect the letter correspondence, i.e. the network topology?



Social relations  $(\mathbf{R})$  between sender and receivers to be tested:

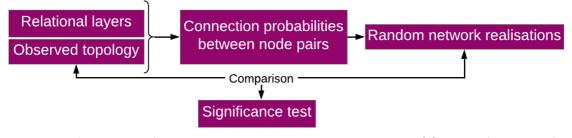
• Geographic distance (tested):

Long distances: letters are convenient but costly; Short distances: letters are inconvenient but cheap

• Reciprocity (control):

Social norm of rewarding kind actions

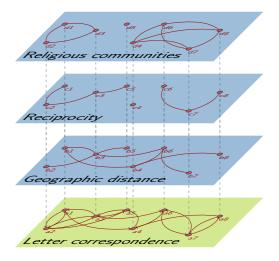
 Religious communities (control): Support for same/different religious denominations E.g. Lutherans, Reformed, Calvinists, Baptists, etc.


## **Regression approach**

Linear regression

- $\mathbf{y} = \beta_0 + \beta_1 \mathbf{x}_1 + \ldots + \beta_p \mathbf{x}_p + \varepsilon$
- E.g. y: number of letters per reformer, x<sub>i</sub>: religious denomination, age, etc.
- Problem: Networks do not meet independence assumption

### Network regression (Casiraghi, 2017; Casiraghi et al., 2016)


• Statistical model based on generalised hypergeometric network ensembles (gHypE)



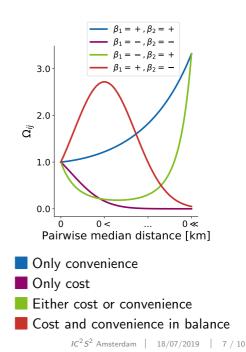
## Network regression output

- Regression coefficients  $\beta_k$ 
  - Quantify importance of relational layers
- Propensity matrix  $\Omega$ 
  - Odds ratio Ω<sub>ij</sub>/Ω<sub>mn</sub>: How much more likely are nodes *i* and *j* to be connected compared to nodes *m* and *n*?
  - $\mathbf{\Omega} := \prod_{k=1}^{K} \mathbf{R}_{k}^{\beta_{k}}$

where each relational layer corresponds to one  $R_k$ 



## **Predictor construction**


- Geographic distance
  - cost (distance 1, #letters 1);
     convenience (distance 1, #letters 1);
  - $\mathbf{R}_{ij}^{(1)} = e^{dist_{ij}}, \ \mathbf{R}_{ij}^{(2)} = e^{dist_{ij}^2}$
  - Ω = R<sup>(1)β<sub>1</sub></sup> \* R<sup>(2)β<sub>2</sub></sup>: Covers all possible combinations of cost and convenience

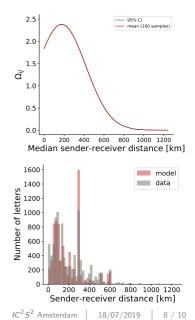
## Reciprocity

- $\mathbf{R}^{(3)} = \mathbf{A}^{\mathcal{T}}$  (change statistic Snijders, 2006 )
- R<sup>(3)</sup><sub>ij</sub>: number of letters i would have to send to j in order to answer each letter of j to i

## 8 Religious communities

- Assume homophily
- Same:  $\mathbf{R}_{ij}^{(4)} = 10$ , different:  $\mathbf{R}_{ij}^{(4)} = 1$  Casiraghi, 2017 Chair of Systems Design www.sg.ethz.ch Ramona Roller




## Results: reduced model $\Omega_{ij} = (e^{dist_{ij}})^{\beta_1} * (e^{dist_{ij}^2})^{\beta_2}$

|                                         | reduced                 |
|-----------------------------------------|-------------------------|
| Distance                                |                         |
| Linear distance                         | $7.885~(0.159)^{***}$   |
| Quadratic distance                      | $-17.918 (0.405)^{***}$ |
| AIC                                     | 43427.830               |
| McFadden <i>pseudo</i> – R <sup>2</sup> | 0.009                   |
| *** - < 0.001 ** - < 0.01 * - <         | 0.05                    |

\*\*\*p < 0.001, \*\*p < 0.01, \*p < 0.05

# • Optimal intermediate distance: At 168km people are most likely to send letters.

**Odds ratio**:  $\Omega_{168km}/\Omega_{0km} = 1.29$ ,  $\Omega_{168km}/\Omega_{1000km} = 28809$ 



## **Results: full model**

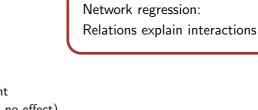
| reduced                  | full                                                |
|--------------------------|-----------------------------------------------------|
|                          |                                                     |
| 7.885 (0.159)***         | -3.354 (0.176)***                                   |
| $-17.918\ (0.405)^{***}$ | 5.032 (0.388)***                                    |
|                          |                                                     |
|                          | 0.461 (0.004)***                                    |
|                          | $0.276 (0.016)^{***}$                               |
| 43427.307                | 33989.210                                           |
| 0.009                    | 0.224                                               |
|                          | 7.885 (0.159)***<br>-17.918 (0.405)***<br>43427.307 |

\*\*\*\*p < 0.001, \*\*p < 0.01, \*p < 0.05

The full model is better than the reduced as the smaller AIC shows.
The sign flip of the distance predictors shows that the controls are essential.

## Summary

### **1** Insights on the letter correspondence network of reformers


- People are likely to write letters if they ...
  - live close to or far away from each other
  - have high reciprocity
  - support the same religious denomination
- Tested for possible cost-convenience relations

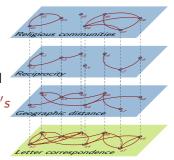
### **2** Benefits of network regression

- Takes interdependence of samples into account
- Can deal with missing data ( $\mathbf{R}_{ij} = 1 \Rightarrow \beta$  has no effect)
- Construction of predictors is not restricted: Use any kind of quantifyable relation, test hypotheses.

### \delta Outlook

- Tailor predictor selection towards specific theories of historical research
- Include node attributes as explanatory variables




Take home message

## **Network regression**

gHypE depends on four  $N \times N$  matrices

- Adjacency matrix A: given
- **Combinatorial effects matrix =**: covered by configuration model
- Propensity matrix  $\Omega$ : to be computed from predictor matrices  $\mathsf{R}'s$

$$\mathbf{\Omega}\coloneqq\prod_{k=1}^{K}\mathsf{R}_{k}^{eta_{k}}$$



- Odds ratio Ω<sub>ij</sub>/Ω<sub>mn</sub>: How much more likely are nodes i and j to be connected compared to nodes m and n?
- Each predictor matrix R<sub>k</sub> encodes one relational network layer
- **R**<sub>ij</sub> can quantify the relation directly or encode some specific assumptions
- The larger R<sub>ij</sub> the larger the propensity to be connected of node pair ij
- $\beta_k$  are the estimated regression coefficients quantifying the importance of one layer

## Collinearity causes sign flip

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reciprocity             | Religion                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------|
| Distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                              |
| Linear distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $-3.758\ (0.172)^{***}$ | 8.283 (0.164)***                                             |
| Quadratic distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $5.584 \ (0.381)^{***}$ | $-18.552 \ (0.410)^{***}$                                    |
| Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                                              |
| Reciprocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.457 \ (0.004)^{***}$ |                                                              |
| Religious homophily                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | $0.219 (0.016)^{***}$                                        |
| AIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34229.532               | 43271.460                                                    |
| McFadden <i>pseudo</i> – R <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.219                   | 0.012                                                        |
| *** $p < 0.001$ , ** $p < 0.01$ , * $p < 0.01$ , | 0.05 • Corr(line        | ar distance, religion) = $\cdot$                             |
| • Corr(linear distance, reciprocity) = 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 265 • Corr(qua          | dratic distance, religion)                                   |
| • Corr(quadratic distance, reciprocity) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 0.268 • Corr(reci     | procity, religion) = -0.00                                   |
| Chair of Systems Design   www.sg.ethz.ch   Ramona Roller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | <i>IC</i> <sup>2</sup> <i>S</i> <sup>2</sup> Amsterdam   18/ |