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Abstrat

We study the mean �eld approximation of a reent model of asades on networks rel-

evant to the investigation of systemi risk ontrol in �nanial networks. In the model, the

hypothesis of a trend reinforement in the stohasti proess desribing the fragility of the

nodes, indues a trade-o� in the systemi risk with respet to the density of the network.

Inreasing the average link density, the network is �rst less exposed to systemi risk, while

above an intermediate value the systemi risk inreases. This result o�ers a simple explana-

tion for the emergene of instabilities in �nanial systems that get inreasingly interwoven. In

this paper, we study the dynamis of the probability density funtion of the average fragility.

This onverges to a unique stable distribution whih an be omputed numerially and an

be used to estimate the systemi risk as a funtion of the parameters of the model.

1 Introdution

1.1 Systemi Risk in Finanial Networks

A network of interdependent units whih, individually, are suseptible to fail, is potentially

exposed to multiple joint failures of a signi�ant fration of units in the system. This is the notion

that is usually assoiated with the term systemi risk. Systemi risk is partiularly important

in the ontext of infrastruture networks, suh as power grids, and in �nanial networks. These

latter should be meant in a broad sense, inluding units of di�erent types, suh as business �rms,

insurane ompanies, banks, mutual funds and other �nanial institutions that are linked by

redit relationships. For instane, if one or more �rms fail and are not able to pay bak their

debts to the bank, this a�et the balane sheet of the bank whih might try to improve its own

situation by inreasing the interest rate to the other �rms, ausing other failures among the

�rms. If �nally the bank itself fails, this a�ets negatively the banks that are linked to it by

interbank loans. This is somehow similar to failure asades in power grids where a failing power

line implies a higher load an other lines whih might bring them to fail. The size distribution of

suh failure avalanhes is one way of quantifying the systemi risk.

There is a growing body of literature in eonomis on �nanial networks, that investigates also

the issue of systemi risk. While banks-�rms redit relationships have been extensively studied
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(for an overview, see [17℄), only reent works have analysed phenomena of �nanial ontagion in

interbank redit [2, 12℄ and trade redit. The latter, is a form of redit among business �rms,

typially in a supplier-ustomer relation, whih has been less investigated despite the fat that in

some ountries it represents a signi�ant part of the short-term liabilities of the orporate setor

[9℄. In the literature on omplex networks only few works have dealt with �nanial networks,

mainly in the ontext of self-organized ritiality [1, 14℄. Most of those works suggest that when

the degree of the nodes in the network inreases the network is less exposed to systemi risk.

In some ases, the evidene that systemi failures may more rare but also more severe has been

found (see for instane [14℄).

1.2 The Fragility Model for Casades on Networks

In this paper, we onsider the model of asades on networks introdued by [6℄, in whih a lear

tradeo� emerges in the systemi risk, as a funtion of the network density. This means that up to

an intermediate level of network density there is a bene�t in reating links between units beause

they allow to diversify the risk. However, above a ertain level of density, the probability of many

joint failures inreases. This e�et depends on the presene of a sort of trend reinforing term

in the dynamis of the fragility of the nodes. The fragility is a state variable that determines

the failure of the node, when it exeeds a given threshold, as well as subsequent transfer of

some damage to the onneted nodes. The trend reinforing of the fragility orresponds to the

following idea. If the fragility of a �rm at the end of the year has redued ompared to last year,

the �rm is rated better in terms of solveny and it has easier aess to redit. Conversely, if the

fragility has inreased, the �rm faes worse onditions for redits and thus additional ost that

are likely to inrease its fragility furthermore. Notie that, through the links in the network,

this propagates also to the neighbours, sine the fragility of the �rm a�ets the fragility of the

neighbours. For instane, hedge funds leverage even small di�erenes in performane aross �rms

by 'short-selling' the stoks of the slightly worse ones and 'going long' on the slightly better ones.

Thus, even small di�erenes in the evolution of two �rms may matter a lot. Further on, e�ets

like predatory trading [10℄ may indue trend reinforing.

1.3 Outline of the Paper

In [6℄, some analytial results supporting the simulations are found, based on separating the pro-

ess of the evolution of fragility (approximated as a time-dependent Ornstein-Uhlenbek proess)

and the asade proess (where the size of an avalanhe is expressed as the �x point of an equa-

tion for the number of failures). Here, we provide an alternative analysis of the tradeo� regarding

systemi risk mentioned above. We onsider the stohasti proess de�ned by the mean �eld ap-

proximation of the fragility of the individual node. This is now a stohasti proess for a single
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variable, and it is also lear that, having redued the system to one single variable, the asading

part of the proess is exluded by onstrution. In this approximation the failure probability an

be taken as a proxy for systemi risk. In fat, the mean �eld approximation is valid when all

units behave in a similar way. We study some mathematial properties of the proess and we

provide a simple method to show the existene of a tradeo� in systemi risk as funtion of the

density of the network. The method is based on reognizing that the proess is a ombination of

a Gaussian Random Walk (RW) and a Persistent Random Walk (PRW). PRW [19℄ is a variant

of the lassi RW in whih the walker has a probability p to keep the diretion of his former

movement and 1−p to swith diretion. The proess is sometimes alled orrelated random walk.

It is approximated by the Telegraph's equation [18, 13℄ in the limit of ontinuous time and spae.

It di�ers from RW in the saling with time of the variane of the displaement of the walker. In

our model, the dynamis in time of the fragility indues a dynamis on the probability density

funtion of its values. This dynamis has an exat analytial expression and the systemi risk is

measured as the number of failures in the stable distribution of fragility. It is possible to proove

the existene, uniqueness and onvergene to a stable distribution, based on the Birko�-Jentzsh

theorem whih extends the Perron-Frobenius Theorem to in�nite dimensional vetor spaes. We

annot provide an losed-form expression of the sytemi risk as a funtion of the parameters of

the model, but we ompute the systemi risk numerially, by iterating the dynamis on the pdf.

We show in this way that the systemi risk has indeed a minimum as funtion of the network

density.

The paper is organized as follows. In Setion 2 we introdue the model. In Setion 3 we analyze

the model: �rst, we desribe the mean-�eld approximation of the dynamis and we show how it

an be desribed by using a PRW. Then in Setion 3.2 we derive the dynamis on the probability

density funtion and we prove existene and uniqueness of the stable pdf. In Setion 4 we report

the results of the numerial omputation of systemi risk. In Setion 5 we hek the robustness

of our results with respet to the type of noise that enter in the stohasti proess of the fragility

and some other slight modi�ations. In Setion 6 we summarize the results and we draw some

onlusions.

2 The model

In this setion, we desribe the network fragility model introdued in [6℄. Consider a set of n �rms

onneted in a network, eah assoiated with two state variables, the size a and the fragility ϕ.

The �rst aptures the notion of a proxy for the size of the �rm, suh as its output. The fragility

aptures the notion of �nanial fragility of the �rm. This is measured for instane in terms of

its net worth: when the net worth dereases down to zero, the �rm is not able to pay bak its

debts and goes bankrupt. So the larger the net worth, the smaller the fragility. As shown in [4℄,

3/20



Jan Lorenz, Stefano Battiston:

Systemi risk in a network fragility model analyzed with

probability density evolution of persistent random walks

in a network of �rms linked by supply-ustomer relationships, the net worth of a �rm evolves

as a stohasti proess that depends on the net worth of the neighboring �rms. The interation

with the neighbors results in an averaging term and in a trend reinforing term. Eah �rm has

a portfolio of suppliers and ustomers, whih redues the impat of the �utuations of pries

and shoks both from the suppliers and ustomers, thus resulting in the averaging term. On the

other hand, if the prodution ost inreases when the net worth of the �rm and its neighborhood

is dereasing (beause it is more ostly for the �rm to aess the redit it need for prodution),

this results in a trend reinforing term [5℄. Following [6℄ we model diretly the fragility of �rms

as a stohasti proess on�ned in the interval [0, θ], where θ is the failure threshold.

Firms are onneted in a weighted and direted graph with adjaeny matrix W ∈ R
n×n

. W is

non-negative and row-stohasti (i.e.

∑

j Wij = 1).

As a �rst step, let us look at the following equation for the evolution of the fragility of the set of

�rms

ϕ(t + 1) = Wϕ(t) = W tϕ(0) (1)

where ϕ = [ϕ1, . . . , ϕn] is the vetor of fragility values. If Wij is positive, then the fragility of

�rms j ontributes to a fration Wij to the value in the next time step of the fragility of �rm i.

In other words, the fragility of �rm i at time t + 1 is a weighted arithmeti mean of the fragility

values of the neighboring �rms. Under some onditions about onnetivity in the network, the

values of fragility of the �rms will onverge in time to a same value�namely if the matrix W has

only one essential lass of indies whih is primitive (this is shown in [16℄, suh matries are alled

regular if they are row-stohasti, as in our ase). If there are more then one essential lasses

the fragilities in these lasses onverge internally to the same value, as well as all inessential

�rms whih have onnetions exlusively to this essential lass. But there is no interplay with

fragilities in other essential or inessential lasses. If an essential lass is not primitive there is

some internal yling of fragility values. See [11, 7℄ for the results in the ontext of onditions

of �nding onsensus in a group of experts. So, for graph with high link density we ould assume

that the fragility values will onverge to the same value.

We now introdue additive stohasti shoks and trend reinforing.

ϕ(t + 1) = W (ϕ(t) + σξ(t)) + αsign(W (ϕ(t) − ϕ(t − 1))) (2)

In the equation above ξ(t) is a vetor of iid random variables, ξ1(t), . . . , ξn(t), drawn from a

distribution fξ, with expeted value zero and standard deviation one and no skewness (i.e. its

probability density funtion is symmetri). The parameter σ determines the standard deviation

of shoks and is also alled the noise level. The fragility of eah �rm reeives, as a net shok, the

weighted average of the shoks that hit the fragility of the �rms in its neighborhood. In other
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words, the �rm hedges the risk for upward shoks to its own fragility, by sharing the shoks

with other �rms. In the seond term of the equation, the sign is applied omponent-wise (for

ompleteness we de�ne φ(−1) = 0) and α is a onstant that we all the trend strength. A �xed

onstant α is added if the di�erene between the urrent average fragility in the neighborhood

and that at the previous time step is positive (i.e. if fragility has inreased) and is subtrated if

the di�erene is negative (if fragility has dereased).

As a result of the dynamis of Eq. (2), the values of fragility may very well go out of the interval

[0, θ]. Therefore, φi(t + 1) is set to zero if φi(t + 1) /∈ [0, θ] . For �rms whose fragility would

go below zero this means that their fragility annot beome lower than that. For �rms that get

above θ this means that they go bankrupt and are replaed by a new �rm with initial fragility

zero. So, Eq. (2) an be stated as

ϕ(t + 1) = 1[0,θ] (W (ϕ(t) + σξ(t)) + αsign(W (ϕ(t) − ϕ(t − 1))))

where 1[0,θ] is the (omponentwise) indiator funtion (e.g. 1[0,θ](ϕ) = 1 if ϕ ∈ [0, θ] and 0

otherwise, also known as χ[0,θ]).

In the following we will omit 1[0,θ] when we desribe dynamis beause the reset to zero when a

�rm fails is not the only reasonable hoie. We disuss some variations at the end of the paper.

In any ase throughout we assume that the the proess is somewhere reset when it gets out of

[0, θ].

In the original model in [6℄, when a �rm i goes bankrupt, some damage, proportional to the

size ai of the �rm is transferred to the fragility of neighbors. If, as result, the fragility of some

neighbors exeed the threshold θ, they, in turn, transfer a damage to their (surviving) neighbors.

This asading proess ours at a faster time sale than the dynamis above. In this paper, we

do not use at all the asading part of the model. So Eq. (2) desribes ompletely the dynamis

we study here.

3 Model analysis

Sine the dynamis depends on the relative magnitude of the parameters α, σ and θ. we an �x

θ = 1 without loss of generality. For abbreviation we de�ne the di�erene ∆ϕ(t) = ϕ(t)−ϕ(t−1).

If W is the unit matrix (i.e. there is no hedging of risk) (2) redues to

ϕi(t + 1) = ϕi(t) + σξi(t) + αsign(∆ϕi(t)) (3)

for all i.
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If �rms are onneted in a omplete graph and share their fragility shok to an equal proportion

with all other �rms, then Wij = 1
n
for all i, j. In this ase, the fragility of eah �rm, evolves as

the average φ(t) = 1
n

∑k
i=1 ϕi(t). Then, the entral limit theorem implies that

φ(t + 1) = φ(t) +
σ√
n

ξ(t) + αsign(∆φ(t)).

In general, if eah �rm is onneted, on average, to k ≤ n other �rms, one an make a mean-�eld

approximation of the dynamis of the fragility of eah �rm and write

φ(t + 1) = φ(t) +
σ√
k
ξ(t) + αsign(∆φ(t)). (4)

The parameter k is the average number of hedging partners or hedging level. In other words, the

stohasti proess on φ represents the evolution of the average fragility of the eonomy where eah

�rm has on average k hedging partners. In this approximation, inreasing the average number of

hedging partners k dereases the standard deviation of the shoks σ by a fator of

√
k. Intuitively,

one an expet that the failures beomes less frequent, beause, the smaller are shoks at eah

time step, the longer it takes to eventually hit the threshold θ. However, if the noise level σ is

very small ompared to the trend strength α, the seond term in Eq. (5) dominates. In partiular,

if the fragility was inreasing from time t − 1 to time t, then the seond term is for sure equal

to +α while the �rst is probably very small and therefore the fragility will also inrease at time

t + 1. Therefore, the noise level or equivalently, the average number of neighbors in the network,

seems to play a ruial role for the probability of a given �rm to hit the fragility threshold.

As an example, Figure 1 shows six trajetories of the stohasti proess de�ned in Eq. (5) for a

�xed value of trend strength α and dereasing value of noise level σ.

In the following, we will investigate the role of noise on the probability of failure by omputing

the pdf of φ in the limit of large t, whih represents the probability distribution of fragility in the

steady state of the proess. Suh pdf an be interpreted both as the �rm's individual probability

of having a given value of fragility and as an histogram of fragility values of an ensemble of �rms.

3.1 Dynamis of Fragility as Persistent Random Walk

Sine varying the hedging level k is equivalent to varying the noise level, in the following we

de�nitely drop k from Eq. (5) and we study the proess

φ(t + 1) = φ(t) + σξ(t) + αsign(∆φ(t)) (5)

Assuming that the boundary onditions are not e�etive during two onseutive time steps, we

an derive from (5) the expression of φ(t + 2) in terms of φ(t).

φ(t + 2) = φ(t) + σ(ξ(t + 1) + ξ(t)) + α [sign(∆φ(t)) + sign(σξ(t) + αsign(∆φ(t)))] . (6)
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Figure 1: Example of six trajetories of the stohasti proess for φ with �xed trend strength

α and dereasing noise level σ. The number of failures �rst dereases but then inreases. Sine

dereasing the noise level is equivalent to inreasing the hedging level, the �gure suggests that

there is an optimal hedging level whih minimizes the number of failures.

Obviously, the last term in the square parentheses an only take the values −2, 0 or 2, depending

on the sign of ∆φ(t) and the probability

Pr(sign(σξ(t) + αsign(∆φ(t))) = sign(∆φ(t))).

This probability is

Pr(σξ < α) =

∫ α

−∞

fσξ(x)dx =

∫ α

σ

−∞

fξ(x)dx

due to the symmetry of fξ. We de�ne q(α, σ) := Pr(σξ < α) as the probability to keep the trend.

Denoting with Fξ(x) the umulative distribution funtion (df) of ξ then it holds q(α, σ) = Fξ(
α
σ
).

We an then reformulate the proess (5) as

φ(t + 1) = φ(t) + σξ(t) + αtr(t) (7)

where φ(t + 1) is set to zero if it falls out of the interval [0, θ]. The funtion 'tr' is the disrete

stohasti proess

tr(t + 1) = η tr(t) with η =

{

1 with probability q

−1 with probability 1 − q
(8)
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with possible initial values tr(0) = {1,−1} both with probability

1
2 . Notie that tr is not a�eted

when φ hits any of the two thresholds. This implies that typially new �rms are reated with

positive trend. This hypothesis simpli�es the analysis but does not a�et the result as disussed

in Setion 5.

There are two important di�erenes between the sign-proess (5) and the trend-proess (7). The

�rst regards the behavior at the boundaries. Suppose both proesses get to 0 at time t − 1

oming from a positive value at time t − 2 and remain at 0 at time t (beause, for instane, in

the sign-proess ξ(t − 1) and ξ(t) were negative and in the tr-proess η(t − 1) and η(t) were 1).

In this ase, the term sign(∆φ(t)) in Eq. (5) is zero and therefore the sign-proess will swith

to a positive value at time t + 1 with probability

1
2 . In ontrast, the orresponding term tr(t) in

Eq. (7) an never be zero (by de�nition its range is {−1,+1} and the tr-proess will swith to a

positive value at time t+1 with probability 1− q. This means that when the noise σ is small and

therefore q is lose to 1, the tr-proess tends to stay longer at 0, ompared to the sign-proess.

The tr-proess an be easily modi�ed to better approximate the sign-proess by rede�ning what

happens at zero. We disuss possibile modi�ations and their impliations in Setion 5.

The seond di�erene between the two proesses onerns the dependenies of the draws of the

random variables. Eq. (5) implies that sign(∆φ(t)) = sign[ξ(t − 1) + αsign(∆(φ(t − 1)))] and

therefore ξ(t− 1) a�ets diretly φ(t) and indiretly also φ(t + 1) through the term sign(∆φ(t)).

In ontrast, in the tr-proess the term tr(t) evolves independently of the draws of the random

variable ξ

We now ompare the tr-proess with a proess alled persistent random walk (PRW) in the

physis literature. PRW is a variant of the lassi random walk in whih the walker has a prob-

ability q to keep the diretion and 1 − q to swith diretion. If we neglet the noise term σξ(t)

in (7) and start with φ(0) = 0, then φ evolves like a PRW on Z. The PRW obeys the telegra-

pher's equation in the ontinuous limit [3, 15, 19℄. An important property of the PRW is that it

deviates, in a transient phase, from the linear saling of the variane of the displaement with

time, < x2 >∼ t that is harateristi of the RW. Indeed, starting with all probability mass in

zero, the variane �rst inreases quadratially, < x2 >∼ t2, due to waves that start towards −∞
and +∞ (ballisti saling). After a ontinuous transition, the variane grows linearly as in the

usual RW (di�usive saling) and in the limit of large t, it evolves as q
1−q

t. Therefore, if q is lose

to 1, the variane grows still linearly for large t, although with a high di�usion oe�ient

q
1−q

.

Compared to a pure persistent random walk, our proess inludes, additionally, a ontinuous

additive noise, a sort of re�eting lower bound at zero, an absorbing bound θ (whih leads to

a rebirth of �rms with zero fragility), and the fat that the probability q of keeping the trend

depends monotonously on

α
σ
.

8/20



Jan Lorenz, Stefano Battiston:

Systemi risk in a network fragility model analyzed with

probability density evolution of persistent random walks

3.2 Dynamis on the probability density funtion of φ

In order to estimate the probability that the fragility φ hits the treshold θ, we want to know how

its pdf evolves in time, and in partiular to estimate its stable pdf if this exists.

However, it is important to notie that, at any time step t, the state of the proess (7) is

determined both by the value of φ(t) and by the value of the trend tr(t) whih evolves as the

simple two-state proess (8).

In order to study the evolution of the pdf of φ one has to study the evolution of the pdf of the

whole proess (7-8)

Sine the trend proess takes only two values, we an divide the pdf of φ(t) into two parts,

orresponding to negative trend (tr(t) = −1) and positive trend (tr(t) = +1). We de�ne the two

funtions as f−

φ(t) : [0, θ] → R≥0 and f+
φ(t) : [0, θ] → R≥0.

The pdf of the whole proess is determined by the pair of funtions (f−

φ(t), f
+
φ(t)) under the

ondition that

∫ θ

0 f−

φ(t)
(φ′) + f+

φ(t)
(φ′)dφ′ = 1.

From this pair of funtions we an derive the pdf of phi as fφ(t) = f−

φ(t) + f+
φ(t). In other words,

∫ φ′+dφ′

φ′ f−

φ(t)(φ
′)dφ′

represents the probability to have fragility in [φ, φ+dφ] and at the same time

a downward trend, tr(t) = −1. Analogous relation holds for the positive trend.

It is also possible to derive the pdf of tr as ftr(t) = (
∫

f−

φ(t),
∫

f+
φ(t)), whih is a pair of salar

values speifying the probability of having negative and positive trend and whih is therefore not

really a pdf but a probability mass funtion de�ned on {−1,+1}.
We also de�ne δα to be the Dira δ-distribution with mass shifted by α (also known as δ(· −α)),

'∗' to be the onvolution operator for funtions (de�ned for two funtions h1, h2 : R → R as

(h1 ∗ h2)(ϕ) =
∫

h1(y)h2(ϕ − y)dx), fσξ to be the pdf of the noise).

Proposition 1. Let the pdf of φ(t) be (f−

φ(t), f
+
φ(t)). If the stohasti evolution of φ evolves as

de�ned in Eq. (7), then the pdf of φ(t + 1) is (f−

φ(t+1), f
+
φ(t+1)) with

f−

φ(t+1) = g−t 1[0,θ] + (b−(t) + z−(t))δ0

f+
φ(t+1) = g+

t 1[0,θ] + (b+(t) + z+(t))δ0. (9)

The funtions g−t , g+
t are de�ned as

g−t = (qf−

φ(t) ∗ δ−α + (1 − q)f+
φ(t) ∗ δα) ∗ fσξ

g+
t = ((1 − q)f−

φ(t) ∗ δ−α + qf+
φ(t) ∗ δα) ∗ fσξ (10)

and b−(t) =
∫ +∞

θ
g−t , b+(t) =

∫ +∞

θ
g+
t are the probabilities to go above θ for φ(t) with negative

or, respetively, positive trend, and z−(t) =
∫ 0
−∞

g−t , z+(t) =
∫ 0
−∞

g+
t are the probabilities to

go below zero for φ(t) with negative or, respetively, positive trend.
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The suessive steps in the omputation of g−t and g+
t are illustrated in Figure 2 (steps 2 to 4),

while the omputation of (f−

φ(t+1), f
+
φ(t+1)) is illustrated in step 5.

Proof. First, we look at (9). Notie that the onvolution operation is ommutative and distribu-

tive with respet to the operation of addition. Thus, the order of the omputation does not

matter.

Adding the noise term +σξ(t) to φ(t) in Eq. (7), orresponds to the onvolution of the pdf of

φ(t) with the pdf of the noise fσξ.

The term αtr(t) in the same equation, implies that the part of the pdf representing the upward

trend is shifted upwards by α and that the part representing the downward trend is shifted

downwards by α. This is beause shifting a funtion along the x-axis is represented by onvolution

with a shifted delta-funtion.

If the proess is on a downward trend, it will keep that trend with probability q and swith with

probability (1 − q) . The vie-versa holds for the upward trend. Thus, a q-fration of f−

φ(t) will

remain in f−

φ(t+1), while a (1 − q)-fration of f+
φ(t) will join f−

φ(t+1). The vie-versa holds for f+
.

Finally, Eq. (10) ensures that all probability mass whih overlaps the interval [0, θ] is distributed

bak to [0, θ]. The overlapping probability mass is determined by b−(t), b+(t), z−(t), z+(t) and

aording to the boundary onditions, it is put in a δ-peek at zero, while the trend information

gets onserved.

Notie that other de�nitions for rebirth after failure an easily be modeled by hanging δ0 in Eq.

(9) to any other pdf (for example to the pdf of the uniform distribution if �rms should be reborn

with random and equally distributed fragility). Further on, also other rules for hanges of the

trend an be modeled by replaing (b−(t) + z−(t)) and (b+(t) + z+(t)) by other ombinations.

To better approximate the sign-proess, one should replae z−(t) and z+(t) by 1
2(z−(t)+ z+(t)).

This models the fat that a �rm with fragility zero for two time steps has a zero trend, and

swithes with equal probability to the upward or downward trend, regardless of the former

trend.

Given an initial pdf (f−

φ(0), f
+
φ(0)), Proposition 1 de�nes a time-disrete evolution of the probability

density funtion of the �rm's fragility.

In the following of this setion, we will use the dynamis as de�ned in (9).

Proposition 2. Consider the proess de�ned in Eq. (7), where ξ is a normally distributed random

variable with mean zero, variane one and pdf fξ, with noise level σ > 0, trend strength α ≥ 0,

failing threshold θ.

If q(α, σ) = Pr(σξ < α) < 1, then there exists a unique stable pdf (f−
∗ , f+

∗ ).
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Figure 2: Shifting, trend swithing, shok addition and redistribution of overlapping mass for

given fφ(t) = f−

φ(t) + f+
φ(t). Parameters used: θ = 1, α = σ = 0.15, the noise pdf fσξ is gaussian.

This hoie implies q ≈ 0.8413. In step 5 c− = (b−(t) + z−(t)) , c+ = (b+(t) + z+(t)).

Furthermore, any initial pdf (f−

φ(0), f
+
φ(0)) onverges, under the evolution de�ned in Proposition

1, to (f−
∗ , f+

∗ ) geometrially fast, with

∫

f−
∗ =

∫

f+
∗ = 1

2 .

Proof. We want to apply a theorem known as Birkho�-Jentzsh Theorem [8, Page 224, Theorem

3℄. It is an extension of the famous Perron-Frobenius Theorem for nonnegative matries to in�nite-

dimensional vetor spaes.

It is easy to see that, for any bounded pdf (f−

φ(t), f
+
φ(t)) the two parts of the pdf (f−

φ(t+1), f
+
φ(t+1))

are ontinuous on ]0, θ], have a δ-peak at zero and full support [0, θ]. So, after one iteration the

dynamis (9) remain in the spae of pairs of bounded ontinuous funtions with a δ-peaks at

zero.

Let us de�ne the operator P on the vetor spae of these funtions suh that it transforms

(f−

φ(t), f
+
φ(t)) into (f−

φ(t+1), f
+
φ(t+1)). This operator ful�lls the onditions of the Birko�-Jentsh

Theorem: it is in fat a uniformly positively bounded linear operator.

It is bounded beause, trivially, the integral of the pdf is always one. The linearity is also easily

heked sine all entities in the de�nition of the dynamis Eqs. (9-10) are linear.
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Now we show that it is also uniformly positive (as de�ned in [8, Page 219℄). In our ase an

eigenvalue of P must be λ = 1. As lower bound for (f−

φ(t+1), f
+
φ(t+1)) we take (e, e) with e =

(1 − q)c1(1[0,θ] + δ0) with c1 = fσξ(θ + α). This is obviously the lowest value (f−

φ(t+1), f
+
φ(t+1))

an take after one iteration beause of onvolution with fσξ. (Take e.g. (f−

φ(t), f
+
φ(t)) = (0, δθ) as

a 'worst ase'.) Further on, an upper bound exists c2(1[0,θ] + δ0) with c2 = fσξ(0). Thus, there

exists the desired streh parameter K = c2 for the Birko�-Jentsh Theorem.

The Birko�-Jentsh Theorem now states that there is a unique (f−
∗ , f+

∗ ) and that for any inital

pdf onvergene to (f−
∗ , f+

∗ ) happens by iteration of the operator P geometrially fast.

The equations

∫

f−
∗ =

∫

f+
∗ = 1

2 are obvious, beause any other distribution of mass in the parts

of the pdf would not stay onstant beause of the equal exhange of (1 − q) frations in eah

step.

This is probably not the most general form of the theorem. Other forms of fσξ than normal (even

with bounded support) also often lead to stabilization. But a proof is not that straight forward.

If we exhange the terms z−(t) and z+(t) by 1
2(z−(t) + z+(t)) to better approximate the sign-

proess, then frations of mass in the parts of the still existing unique stable pdf will not be

equal anymore.

From this setion we onlude that there is a unique attrative stable distribution for the prob-

ability density of fragility in the tr proess of Eq. 7. Moreover, the probability to fail at time t

b(t) = b−(t) + b+(t) (11)

onverges to �xed value whih we de�ne as the limit failure probability.

b∗ = lim
t→∞

b(t). (12)

4 Numerial results

Unfortunately, the unique stable pdf (f+
∗ , f−

∗ ) seems not to have a losed form, or at least not an

easy one. Therefore, we ompute it numerially. We set θ = 1 (without loss of generality) and fξ

to be Gaussian (with mean zero and variane one) and we explore the (α, σ)-parameter spae.

Eah pair of values (α, σ) orresponds to a value of q whih lies in the interval [0.5, 1]. Notie

that, assuming a di�erent pdf for the noise would imply di�erent values of q (f. Setion 5).

Figure 3 shows the �rst time steps of the pdf evolution for di�erent (α, σ) values. Here the initial

value of fragility is zero and the initial value of the trend is ±1 with equal probability. Therefore,

the initial pdf is (f+
φ(0), f

−

φ(0)) = 1
2 (δ0, δ0). The parameter hoie in the �rst row of plots in Figure
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α = 0.1, σ = 0.3, q ≈ 0.6306

0 0.5 1
0

0.5

1

1.5

2
t = 0

0 0.5 1
0

0.5

1

1.5

2
t = 1

0 0.5 1
0

0.5

1

1.5

2
t = 2

0 0.5 1
0

0.5

1

1.5

2
t = 3

0 0.5 1
0

0.5

1

1.5

2
t = 4

α = 0.2, σ = 0.15, q ≈ 0.9088

0 0.5 1
0

0.5

1

1.5

2
t = 0

0 0.5 1
0

0.5

1

1.5

2
t = 1

0 0.5 1
0

0.5

1

1.5

2
t = 2

0 0.5 1
0

0.5

1

1.5

2
t = 3

0 0.5 1
0

0.5

1

1.5

2
t = 4

α = 0.3, σ = 0.1, q ≈ 0.9987

0 0.5 1
0

0.5

1

1.5

2
t = 0

0 0.5 1
0

0.5

1

1.5

2
t = 1

0 0.5 1
0

0.5

1

1.5

2
t = 2

0 0.5 1
0

0.5

1

1.5

2
t = 3

0 0.5 1
0

0.5

1

1.5

2
t = 4

Figure 3: The �rst four time steps with initial pdf fφ(0) = f+
φ(0) +f−

φ(0) = 1
2δ0 + 1

2δ0 and di�erent

parameters, fξ is Gaussian, the q-values are omputed from α and σ.

3 orresponds to a relatively low trend strength α ompared to the noise level σ and thus to a

value of q only slightly above its minimum 0.5. The random term σξ plays the major role in the

proess and in this regime the persistent random walk behaves similar to the usual random walk.

This leads to a fast onvergene of the pdf: after only four time steps (last plot in the row), the

pdf is already lose the stable pdf (f. Figure 4). Notie that there is a signi�ant delta peak at

0 (going beyond limit of the ordinate axis in the plot) whih ollets the probability to go below

0 and the probability to go above 1.
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In the seond row of plots in Figure 3, the values of (α, σ) orrespond to values of q loser to

one. This implies that most of the mass of the probability density funtion orresponding to the

downward trend (f−
) stays lose to zero. On the other hand, the mass in f+

moves with a wave

towards the failure threshold (whih is at 1, sine the absissa represents φ and θ = 1). The

wave smoothes out due to the repeated onvolution with fσξ. Finally, in the third row of plots

in Figure 3 q is very lose to one. In this ase the wave towards the failure threshold repeats

several times until it smoothes out. Notie that in the limit σ → 0, and thus q → 1 (not shown

in the �gure), the pdf of φ will not onverge. There will be a delta peak whih moves onstantly

upwards (modulo the redistribution of its mass in zero).

Figure 4 shows instead the stable pdfs for some spei� values of α and σ. The pdf's were

omputed by iteration of Eq. (9) with initial uniform distribution on [0, θ] and disretization of

the interval [0, 1] in steps of 0.01. We proeeded until the norm of the di�erene in one time step

was smaller than an auray level of 10−6
. There were no hints that a �ner disretization would

improve the result.

The �gure shows that the stable pdf is approximatively linearly dereasing for high values of

fragility (exept for the wavy pdf's obtained with high α and low σ). The slope of the linear

derease is non-monotonously ontrolled by σ and α. It is easy to explain the slope in some

ases, although this is not the ase in general. When q is lose to 1, it is very unlikely that a

trajetory of the proess swithes diretion. A trajetories with positive trend moves steadily

along the whole range of values [0, 1], repetitively hits the threshold 1 and gets reset to 0. In

ontrast a trajetory with negative trend reahes 0 and stays there. As a result, f+
tends to a

uniform distribution in [0, 1] and f−
tends to a delta peak in 0. On the other hand, q lose to

0.5 is implied by σ muh larger than α. In this regime, φ di�uses very fast whih leads again

to a rather �at distribution for both f−
and f+

. In ontrast, for intermediate values of q (for

instane α = 0.1, σ = 0.2), the pro�le has a pronouned negative slope for high φ.

In the regime of high α and σ lose to 0, the trajetory evolves by almost disrete jumps of

magnitude lose to α. This results in a wavy stable pdf with peaks at multiples of α. But the

wavy pattern osillates around a line with �at slope, whih is onsistent with what found in the

ase of high q and sigma not too lose to 0.

We are most interested in the limit failure probability whih is our proxy for the systemi risk. It

depends on trend strength α and noise level σ. So, we omputed b∗ = b∗(α, σ) for the parameter

set α, σ ∈]0, 0.5].

Figure 6 shows that for �xed trend strength α there is an intermediate optimal σ whih leads

to minimal systemi risk. In ontrast, for a �xed noise level σ there is no intermediate minimum

when varying the trend strength α. Raising the trend strength always inreases the systemi

risk. The lines for high σ and low σ interset. This resembles the existene of the intermediate

optimum for �xed α. The left plot in Figure 6 shows also values of the probability to keep the
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Figure 4: Stable pdfs for seleted trend strength α and noise level σ values.

trend q at the intermediate minima of the limit failure probability with respet to σ, given a �xed

trend strength α. It turns out that the optimal noise level lies at a value of q roughly between

0.75 and 0.9. The value of q orresponding to the loal minimum dereases slowly with α. This

is better visible in Figure 6 where we take a bird eye's view on the (α, σ)-plane, where the level

lines of equal q appear as rays from the origin. The ordinate represents q = 0.5, the absissa

q = 1.

5 Robustness of results

We heked other pdf's for the noise besides the Gaussian and in most ases we also observe

onvergene to a unique stable pdf. Notie that onvergene is not assured in general by Propo-
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Figure 5: The limit failure probability with respet to trend strength α and standard deviation

of shoks σ. (Nonomplete lines are due to extremely long onvergene times.)

sition 1. We observed quantitative hanges in the results but not qualitative ones in the sense

that there always exists an optimal noise level for a �xed trend strength.

In our model, �rms fail when their fragility hits a threshold and are rereated with an initial

value of fragility zero and an initial trend proportional to the number of failing �rms with that

trend (so mostly with upward trend). This is a strong assumption and therefore we heked three

other senarios, in partiular to test whether the phenomena of an intermediate optimal noise

level is robust against these modi�ations.

• If a new born �rm is assigned a positive or negative trend with equal probability (instead

of proportional to the number of failing �rms of that trend) then the probability to have
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Figure 6: Contour plot for the limit failure probability s(α, σ) and ontour lines for q(α, σ) =

0.8, 0.9. The solid blak line denotes the optimal value of σ regarding a �xed α.

a positive trend

∫

f+
φ(t) onverges to a �xed number below

1
2 whih depends on q. In the

extreme ase, q = 1 it goes to zero. That would implies that the probability to fail will also

go to zero in the limit. We saw that for a �xed trend strength there is a ritial noise level

that implies suh high q that the systemi risk drops to zero when the noise level gets below.

Nevertheless, for low trend strength values (α below about 0.12) an intermediate optimal

noise level still exists until further dereasing the noise level auses the sudden drop due to

the extintion of the upward trend. One may ritiize this variation of the model beause

it does not onverge to equal proportions of positive and negative trend. But stable equal

probabilities for upward and downward trend seems quite reasonable beause judgement of

�tness is always done omparatively in an eonomy. If eonomy divides �rms in good and

bad ones this should not lead to a possible die out of one lass.

• Another suggestion against our original model ould be that �rms are not born with zero
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fragility but i.e. random and uniformly distributed in the fragility interval. This obviously

hanges the limit pdf, but at least in this example the qualitative behavior with the exis-

tene of an optimal number of hedging partners for given rend strength remains the same.

• Another idea is to renormalize the probability mass after a failure. We do this as follows:

we do not redistribute the probability mass after a failure to zero but just resale f+

proportional to its atual shape suh that it has the same total amount as before. The

same with f−
. On the level of individual �rms this means that new �rms are born with

fragilities drawn randomly from the atual distribution of fragilities with that trend. That

means if the distribution of fragilities is double peaked new �rms are most likely to appear

with fragilities around that two peaks. This dynamis imply that a given peak struture

gets ampli�ed by the evolution of new �rms. In fat this dynami fragility distribution for

new �rms leads to an ampli�ation of mass in high fragility intervals. That means that

with high probability new �rms are born with high fragility (whih seems reasoable). In

the limit these regimes are haraterized by virtually all �rms with positve trend failing

eah year. That means that dereasing the noise level (whih inreases q) is even more

dangerous. Nevertheless, there still exists an intermediate optimal noise level for a given

trend strength to minimize the systemi risk.

6 Conlusions

We have presented a simple model for the stohasti evolution of the fragility of units in a network.

The model applies in partiular to networks of �rms onneted via �nanial relationships. The

basi ingredients of the model onsist in a mehanism of risk sharing that leads to derease

the �utuation of the fragility and in a mehanism of reinforing feedbak on the fragility from

the trend in the immediate past of the fragility of the �rm itself and its neighbors. Under this

assumptions, the number of bankrupties in the system is minimized for an intermediate density

of links in the network e.g. for an intermediate number of hedging partners. The result is of

interest from the point of view of poliy design for the ontrol of systemi risk.

The e�et depends strongly on a dynamis divisions of �rms into two lasses: the good evolving

(with dereasing fragility) and the bad evolving �rms (with inreasing fragility). One might

question that this hard ut between the two lasses exists. But we argue that atually, slight

di�erenes in performane are exaty what investors like hedge funds searh for when they try

to pro�t from investments indepently of the eonomi trend. So, even very slight di�erenes may

matter a lot for reinforing trends. Further on, these kind of investment strategies have beome

more popular.
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With respet to the original model, the analysis presented here neglets the proess of asades of

failures and therefore underestimates the number of joint failures. However, its advantage is that

the evolution of the probability distribution of failures an be expressed analitially and that the

stable distribution (whih we prove to exist and be unique) an be omputed numerially.

The impat of heterogeneity in the topology of the network is not studied at this stage. Further-

more, the hedging network is not dynami. This implies for instane that �rms do not have the

possibility to interrupt hedging relations with partner who do not perform well. This assumption

is ertainly not very realisti on a time sale of years. However, it is also true that many partner-

ship or insurane ontrats annot be modi�ed in a very short time. Furthermore, in future work

the impat of heterogeneous trend strength, noise level and failing threshold should be studied.
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