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Abstract—Efficient bug triaging procedures are an important
precondition for successful collaborative software engineering
projects. Triaging bugs can become a laborious task particularly
in open source software (OSS) projects with a large base of
comparably inexperienced part-time contributors. In this paper,
we propose an efficient and practical method to identify valid
bug reports which a) refer to an actual software bug, b)
are not duplicates and c) contain enough information to be
processed right away. Our classification is based on nine measures
to quantify the social embeddedness of bug reporters in the
collaboration network. We demonstrate its applicability in a case
study, using a comprehensive data set of more than 700, 000 bug
reports obtained from the BUGZILLA installation of four major
OSS communities, for a period of more than ten years. For those
projects that exhibit the lowest fraction of valid bug reports, we
find that the bug reporters’ position in the collaboration network
is a strong indicator for the quality of bug reports. Based on
this finding, we develop an automated classification scheme that
can easily be integrated into bug tracking platforms and analyze
its performance in the considered OSS communities. A support
vector machine (SVM) to identify valid bug reports based on
the nine measures yields a precision of up to 90.3% with an
associated recall of 38.9%. With this, we significantly improve the
results obtained in previous case studies for an automated early
identification of bugs that are eventually fixed. Furthermore, our
study highlights the potential of using quantitative measures of
social organization in collaborative software engineering. It also
opens a broad perspective for the integration of social network
analysis in the design of support infrastructures.

I. INTRODUCTION

Triaging and processing bug reports is an important task in
collaborative software engineering which can crucially affect
product quality, project reputation, user motivation and thus
the long-term success of a project. Practical experience from
large open source software (OSS) projects confirms that –
particularly in projects with large numbers of comparably
inexperienced part-time contributors– the process of triaging,
categorizing and prioritizing bug reports can become a labori-
ous and difficult task that consumes considerable resources.
Both the importance and complexity of this problem can
be illustrated by a simple example: Out of the more than
64, 000 bug reports that have been resolved by the community
of the MOZILLA FIREFOX project, more than 50, 000 (or
≈ 78%) of these reports have eventually been identified either
as duplicates of known bugs, invalid reports that refer to a
user error rather than a software issue or incomplete reports
which lack basic information required to reproduce the alleged
bug. The magnitude of this problem in large-scale projects

calls for (semi-)automated techniques that assist bug handling
communities in the triaging and prioritization of bug reports.
The provision of methods which are able to automatically
identify valid bug reports with high precision can have huge
implications for practitioners of distributed software engi-
neering: Being able to filter, assign and prioritize those bug
reports that likely result in a bug fix can significantly improve
the responsiveness of support communities. Furthermore, a
temporary deferral of those bug reports that are likely to be
duplicates, invalid or incomplete to a moderation queue can
considerably alleviate the effort required for bug triaging. It
can also be used to automatically enforce the adherence to
community guidelines, e.g. by automatically asking original
reporters to reconfirm that reported bugs are neither duplicates
nor incomplete.

Due to the importance for practical software engineering, a
number of different approaches for the automated classification
of bug reports have been studied, among them approaches
based on the automated assessment of information provided
by bug reports [1–4], natural language processing [5–7], the
temporal dynamics of bug handling processes [8], coordination
patterns [9], or the reputation of bug reporters [10–12]. Based
on a unique data set containing the full history of more than
700, 000 bug reports in four major OSS communities, in this
paper we consider to what extent automated bug classification
techniques can be based on quantitative measures for the so-
cial embeddedness of bug reporters in the project’s community.
We particularly address this question from the perspective of
complex, evolving collaboration networks and the computation
of node-centric metrics that capture structural properties like
centrality and clustering.

Our contributions to the current state of research are the
following:
• We study relations between the centrality of bug reporters

and the eventual outcome of the bug triaging process. For
the four OSS communities studied in this paper, we find
strong evidence for the hypothesis that the centrality of
users in the collaboration network is indicative for the
quality of bug reports.

• We show that quantitative measures for the bug reporter’s
position in the collaboration network can be used for an
automated classification of valid bug reports. For the four
studied OSS communities, we find that this classification
achieves a precision of up to 90.3% with an associated
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recall of 38.9%.
With this, we extend previous works that have studied

automated classification of bugs that are eventually fixed.
In particular, we use a more comprehensive data set, more
sophisticated quantitative measures for user’s position in the
evolving structures of a community as well as a predictive
modeling approach that is based on a support vector machine.
In the following section, we provide a more detailed review
of existing literature on automated bug classification and
prediction mechanism as well social aspects of collaborative
software engineering. From this we then extract a set of open
research questions that are addressed in the remaining sections
of this paper.

II. SOCIAL ASPECTS IN BUG REPORT PROCESSING

The distribution of contributions, the structure and evolution
of collaboration networks in OSS projects, as well as their
relation with individual and collective performance have been
studied in a number of works. A quantitative study of the
development efforts in the projects APACHE and MOZILLA
has been presented in [13]. Among other aspects, the distri-
bution of contributions across community members has been
analyzed. For the APACHE project, the authors particularly
validate that - while coding efforts are mainly concentrated
on a small set of core developers - the bug handling and
reporting process is based on a much larger community of
part-time contributors.

Apart from the mere distribution of contributions, the topol-
ogy of communication and collaborations between contributors
is an interesting field of study. The relation between the
network position of developers in bug handling communities
and their success rate (in terms of the number of bugs the
developers fix) has been studied in [14]. There, the authors find
that developers with higher node degree fix bugs at a higher
rate. Furthermore the authors provide implications for future
research, calling for subsequent studies of the relation between
communication structures and individual as well as team-based
performance. Our work complements the study of [14] in the
sense that we investigate the relation between the centrality of
bug reporters and their individual performance, i.e. whether the
reports are eventually found to refer to actual software issues.
Social mechanisms underlying the impact of communication
topologies on bug handling performance have been studied
in [15]. There, the authors conclude that the most difficult
task of successfully handling bugs is the mediation between
the users and the developers of a project. Similar results have
been presented by the authors of [16], whose analysis is based
of the bug handling communities of two major OSS projects.
Their analysis verifies that the collaborative identification of
the cause of a software defect is one of the most difficult
tasks that needs to be solved before bugs can be properly
addressed by developers. Based on data obtained from the
BUGZILLA community of the ECLIPSE project and similar to
our approach, in [17] measures of communication dynamics
and user centrality have been studied in networks constructed
based on user comments and CC subscriptions. The findings

suggest that the centrality of users in the communication flow
networks extracted from BUGZILLA data is related to the
future failure proneness of code. Similarly, the relationship
between communication structures and success at the collec-
tive level has been studied in [18] and [19]. In those papers,
the use of social network structures and communication defi-
ciencies for the prediction of build failures has been proposed.
Furthermore, it was found that positive team performance is
related to communication structures that facilitate information
dissemination. These quantitative insights about the social
dimension of software engineering highlight the importance
of social indicators and provide an important foundation for
our approach of using related measures from social network
analysis for the classification of bug report quality.

Due to the difficulty of handling user contributed bug reports
in large-scale projects with millions of users, a number of
different approaches for supporting bug triaging processes
based on an automatic classification of bug reports have been
studied. In [2] a simple linear regression model for the quality
of bug reports has been proposed based on a data set of
27, 984 bug reports from the project MOZILLA FIREFOX. The
model is based both on information available at the time of
submission as well as post-submission data like the number
of comments or attachments added during the first hours and
days. The evaluation of a model based on this data shows that
there is a 5% increase of predictive power compared to a pure
chance prediction. In a case study on the ECLIPSE project [4],
a predictive model has been introduced that is based on the
textual information in comments and the bug description. The
analysis shows that the model yields a precision of 62.9% and
a recall of 84.5% when predicting which bugs will be reopened
after being marked as closed. Apart from simple regression
models, machine learning approaches have been used for
the automated classification and triaging of bug reports in a
number of works [1, 3, 8, 20, 21]. In [1], the use of machine
learning techniques for assisting humans in assigning bugs
to developers has been proposed. In [3] a machine learning
approach is used to reduce bug tossing, i.e. the simultaneous
assignment of bugs to multiple developers. The authors show
that bug tossing can be reduced significantly when classifying
developers according to the product relationships of previously
fixed bugs. In [21] different machine learning approaches have
been applied to bug descriptions and comments stored in the
BUGZILLA database of the ECLIPSE project. Here the authors
prove the suitability of support vector machines and Latent
Dirichlet Allocations for the prediction of the category of bug
reports.

Indicators for the social context of users have been con-
sidered for the prediction of which bugs get fixed and which
are likely to be reopened in [10, 12]. In [10], a number of
bug report features have been used, including the reputation
of bug reporters in terms of the fraction of their previously
reported bugs that were eventually fixed. The authors show
that a statistical model for the automated identification of those
bugs that will get fixed can yield a precision of 68% and a
recall of 64%. The same approach has recently shown to be



successful for the prediction which bugs get reopened [12].
Data from the BUGZILLA installations of ECLIPSE and

MOZILLA have been used in [11] to model developer priori-
tization in bug repositories. Here the authors used a ranking
of developers based on social networks and apply a support
vector machine to predict the severity of bug reports assigned
to developers. In [22], a predictive model for the bug severity
based on the location of the defect in the software dependency
network has been studied. Here the authors find that the degree
of components in the software is indicative for the severity of
bugs.

Based on a the review of existing work that is related to a)
the influence of social embeddedness on the performance of
communities and individual contributors and b) the automated
classification of bug reports, we identify the following open
research questions which will be addressed in our paper:

RQ1 Is the position of bug reporters in the evolving collabo-
ration structures of bug handling communities related to
the quality of contributed bug reports?

RQ2 Can quantitative measures for the position of bug re-
porters be used to predict which bug reports refer to valid
bugs?

With the prediction methodology proposed in section V,
we extend and improve previous approaches to automated bug
classification in a number of ways: First we consider a larger
data set which contains a total of more than 5.8 million time-
stamped change events for more than 700, 000 bug reports
from four large OSS projects. Second, rather than using
simple, one-dimensional social indicators like the number of
previously submitted reports or the number of connections,
we use a set of nine topological measures to quantify the
position of bug reporters in the collaboration network, among
them a comprehensive set of centrality measures as well as
degree, local clustering structure and membership in the largest
network component. Third, rather than taking a simple static
perspective, we consider evolving collaboration networks by
using fine-grained temporal data on collaboration and commu-
nication events. Based on these features, we apply a machine
learning approach for predicting which of the bug reports
are eventually identified as valid, i.e. which are referring to
actual bugs that need to be addressed by the community.
We further strictly limit our prediction methodology to only
include information available at the time of the submission of
a bug report, thus making the approach directly applicable in a
practical setting. To the best of our knowledge, no prior work
has combined such a comprehensive set of network measures
on evolving networks with a machine learning classifier and
applied it to data set of similar scale. Our findings show that
our methods significantly improve the precision and recall
of existing automated bug classification schemes. A more
detailed description of our data set and our methodology will
be provided in the next section.

III. DATA COLLECTION AND ANALYSIS

In our paper, we adopt a data-driven approach that is based
on a data set we collected from the MOZILLA BUGZILLA[23]

installations of the four communities evolving around the fol-
lowing OSS projects: MOZILLA FIREFOX, MOZILLA THUN-
DERBIRD, ECLIPSE and NETBEANS. In the following, we
provide a detailed description of a) the data retrieval process
and the categories of bug reports available in the data, b)
our methodology of extracting time-stamped collaboration
networks and c) the measures applied in our analysis. We
finally describe a qualitative approach, based on a targeted
survey, which aims at complementing our empirical findings
with insights from practitioners.

A. Data Retrieval

Records retrievable via the BUGZILLA API are centered
around bug reports which are identified by a unique bug Id.
Further, users registered in the BUGZILLA installation of the
respective OSS project are also identified by their unique user
Id. Each bug report has a number of associated fields, for
which the history of all updates along with a time stamp and
the Id of the user who has changed the field, is stored in the
database. For our analysis, we use the user Id of the user who
initially submitted the bug report (throughout the paper we
will refer to this user as the bug reporter), the time stamp of
the initial submission, and the status of the bug report (like
e.g. unconfirmed, pending, reproduced, resolved). We further
use the user Id of the so-called ASSIGNEE, who is a user
responsible for providing a fix to the bug, and a list of user
Id’s of those users that have (or were) subscribed to receive
subsequent updates on the bug report, CC.

For our study, we retrieved the full history of all bug reports
via the API of the respective projects. Our data set contains
roughly 715, 000 bug reports and 5.8 Million change events
recorded in the time between January 1999 and June 2012.
Table I presents some basic statistics of the data set used
throughout this paper.

In particular, our analysis is focused on a subset of those
287, 540 bug reports that had a final status indicating that
they were resolved. We limit our analysis to these bug reports
because the bug handling community already completed the
triaging process and thus reached a decision on how they were
processed. For this subset of resolved bugs we extract the full
history of change events and categorize each bug according to
the final change in the Resolution field of the corresponding
record. Bugs that had a final Resolution status of FIXED (i.e.
a bug fix has been created by a developer), INVALID (i.e.
the report refers to expected behavior or wrong usage rather
than to a software bug), DUPLICATE (i.e. the report refers
to a bug that has already been reported) or WONTFIX (i.e.
the bug is valid and reproducible but it will not be fixed
due to a lack of resources or low priority) were categorized
accordingly. In addition, we consider a bug report to fall into
the category INCOMPLETE whenever it had an intermediate
status that indicates that the initial bug report was missing
information required to properly triage the bug. While the
projects MOZILLA FIREFOX, MOZILLA THUNDERBIRD and
NETBEANS make use of a specific status for incomplete
reports, in the ECLIPSE community, bug reports that lack



TABLE I
TIME PERIODS, NUMBER OF BUGS, NUMBER OF CHANGE EVENTS AND NUMBER OF BUGS WITH PARTICULAR STATUS. THE DIFFERENT BUG RESOLUTION

CATEGORIES ARE THE FOLLOWING: FIX FOR FIXED, DUP FOR DUPLICATE, INV FOR INVALID, WOF FOR WON’T FIX AND FINALLY INC FOR
INCOMPLETE. MORE DETAILS IN SECTION III-A.

FIREFOX THUNDERBIRD ECLIPSE NETNEANS Total
Start date April 2002 January 2000 October 2001 January 1999 −
Total bug reports 112,968 35,388 356,415 210,921 715,692
Change events 1,068,070 313,957 2,594,385 1,875,878 5,852,290
Changes / report 9.45 8.87 7.28 8.89 8.18
Resolved bugs (resolved/total) 64,088 (0.57) 21,644 (0.61) 158,957 (0.45) 42,851 (0.19) 287,540 (0.40)
FIX (FIX / resolved) 10,856 (0.17) 4,508 (0.21) 103,453 (0.65) 21,442 (0.50) 140,259 (0.49)
DUP (DUP / resolved) 24,263 (0.38) 10,336 (0.48) 28,227 (0.18) 9,328 (0.22) 72,154 (0.25)
INV (INV /resolved) 11,785 (0.18) 2,829 (0.13) 12,601 (0.08) 4,082 (0.10) 31,297 (0.11)
WOF (WOF / resolved) 2,708 (0.04) 581 (0.03) 14,676 (0.09) 5,515 (0.13) 23,480 (0.08)
INC (INC / resolved) 14,476 (0.23) 3,390 (0.16) - 2484 (0.06) 20,350 (0.07)

necessary information simply remain in the initial status NEW.
Since this procedure does not allow us to easily classify
corresponding bugs, we disregard the INCOMPLETE category
for the ECLIPSE project.

B. Network Construction
Our approach to utilize measures for the embeddedness of

users in the community is based on the extraction of social
networks. Those can be viewed as proxies for the collaboration
and communication structure of an OSS project during a
particular period of time. Our data set is comprehensive in
that it contains a history of all events associated with all
bugs reported during a period of more than ten years. For
the construction of social networks we focus on those update
events that directly capture dyadic interactions, and therefore
can arguably be interpreted as pairwise interactions between
users. In particular, we use the dyadic relations ASSIGN and
CC for this purpose. For the present study, we decided to
neglect additionally available information like the sequence
of comments on bugs for which the inference of direct
interactions between users is more difficult and necessarily
error-prone. Any user can add usernames to the CC list of a
bug report, which will make sure that the added user receives
information on all future updated of a particular bug. Special
permissions are required for a user to ASSIGN a bug to another
user, which is hence being made responsible for providing a
solution for the issue. We would like to emphasise that focus-
ing on CC and ASSIGN updates necessarily provides a limited
perspective on the interactions between users. Nevertheless we
argue that the generated social networks are insightful with
respect to the collaboration and communication structures of
a project: A CC interaction between users A and B indicates
that A is aware of B and that A knows what B is interested
in. In addition, an ASSIGN interaction between A and B is
indicative for different roles in the community. For example,
user A identifies the cause of a bug and assigns it to user B
who is a developer and likely be able to fix it.

The simplest, and usually adopted, approach to analyze
social networks in OSS communities is to study the topology
by aggregating all interactions throughout the history of a
project. However, since our data set covers interactions from
more than one decade, the meaningfulness of such aggregated
structures is questionable. It is likely that most of the users
represented by nodes in the aggregated network never have
been active within the same time period. This clearly limits the

expressiveness of the network structure in terms of a project’s
“social organization”. In order to overcome this shortcoming,
we make use of the fact that - like all other updates in
our data set - CC and ASSIGN interactions have a precise
time stamp. In our analysis, we particularly study networks
of collaborations constructed by aggregating all interactions
occurring within time windows with a length of 30 days.
This allows us to focus on collaboration networks existing
at short periods of time during the project’s history, e.g. when
particular users were present, particular bugs were reported or
when the project had a particular level of popularity. In the
following, we provide a detailed account of the quantitative
measures used in our analysis of the resulting time-stamped
collaboration networks.

C. Network Measures

The literature is rich in measures to quantify structural
features of (social) networks [24, 25]. We adopt some of these
measures to capture the social organization in bug processing
communities.

1) Centrality measures: Node-centric measures of central-
ity allow us to assess the relative importance of nodes in a
given network. This importance, or centrality, can be expressed
through different approaches. The simplest one is the number
of connections a node has to other nodes, known as the
degree centrality. In a social context, degree centrality can be
interpreted either in terms of the potential impact of a node
on other nodes or as the amount of information available to a
node. However, degree centrality does not capture the actual
position of a node in the network in terms of how close an
node is to all other nodes. A further important measure is
thus the so-called closeness centrality [26], which is defined
as the inverse of the sum of all distances to all other nodes.
The centrality of nodes can be also measured in terms of
the role they play in connecting other nodes. The so-called
betweenness centrality is given by the total number of shortest
paths between all possible pairs of nodes that pass through a
node [24].

Eigenvector centrality is a more sophisticated feedback cen-
trality measure in which the centrality of a node is recursively
influenced by the centrality of its direct neighbors:

Ev(ni) =
1

λ

∑
nj∈M(ni)

Ev(nj) (1)



where M(ni) is the set of direct neighbors of node ni and λ
is the largest eigenvalue of the network’s adjacency matrix A
[25]. In other words, nodes connected to highly central nodes
increase their own centrality. For our analysis, we use the
eigenvector centrality implementation of the IGRAPH library
[27] for the R language [28]. The last two measures considered
are the clustering coefficient and k-coreness. The first captures
to what degree two nodes that have a neighbor in common
are also neighbors. The second one is based on a network
decomposition such that nodes are assigned to so-called shells
of the network topology. Nodes belong to a given shell k
if they have a degree k after removing all other nodes with
degree up to k − 1. Nodes in shells with higher number can
be seen to have higher relative influence within a community
[29].

2) Analysis of Largest Connected Component: In large-
scale, sparse social networks usually not all nodes have a
link to the rest of the network, i.e. some parts can become
isolated. Thus, in addition to connected parts (components)
of the network, a number of disconnected components exist.
Several network measures, including the eigenvector centrality,
are not well defined for networks with different connected
components. To overcome this problem, we restrict our analy-
sis to the so-called largest connected component (LCC) of the
monthly collaboration networks. We find that the fraction of
nodes in the LCC was high: For ECLIPSE, an average fraction
of 0.78 of all users in the monthly collaboration network
belong to the LCC, for NETBEANS the average fraction is
0.96, for MOZILLA THUNDERBIRD 0.53 and for MOZILLA
FIREFOX 0.58. Moreover, we verified that the largest size of
the remaining components was insignificant when compared
to the size of the LCC. To illustrate our approach, in Figure 1
we show the components of a monthly collaboration network
for each of the four projects studied in our analysis. In each
of these networks of comparable size the LCC is highlighted.
The structural differences between these networks indicate
significant variations in the social organization of the four
projects.

D. Survey study with key users

In addition to our quantitative findings, we created a qual-
itative survey in order to gain insight into the bug triaging
practices adopted by the studied OSS communities. In each
of these communities, we particularly contacted a number of
key users working on bug triaging teams. The survey was
composed of ten open-ended questions. The underlying idea
was to understand to what extent bug triaging is influenced by
the reputation of bug reporters and how reputation evolves with
contributions and interactions within the community. We also
asked for the main procedures adopted within each community,
and which kind of bug triaging mechanisms they believe would
fit their needs. A brief summary of the insights they have
shared with us is provided in section VI.

IV. USER CENTRALITY AND BUG REPORT QUALITY

In this section we apply the methods introduced in section
III to address research question RQ1, specifically:

Is the centrality of bug reporters in the collaboration
network related to the quality of the submitted bug reports?

A positive answer to this question could serve as a foun-
dation for the development of automated bug classification
schemes that are based on methods from social network anal-
ysis. We investigate this question for four major OSS projects
that adopt the BUGZILLA bug tracking system: ECLIPSE, NET-
BEANS, MOZILLA FIREFOX and MOZILLA THUNDERBIRD.
Using the data set described in section III-A, we analyze the
history of all bugs that were eventually marked as resolved,
along with the corresponding resolution categories. As em-
phasized before, the resolved bugs are the ones for which the
bug report processing was completed (see section III-A for
details). The resolution categories are: FIXED, DUPLICATE,
INVALID, WONTFIX and INCOMPLETE. In addition, we
consider bugs to fall in the category INCOMPLETE, if a bug
report had this status at some point in its history, independently
of the final resolution category. According to the bug handling
guidelines of the respective communities, bug reports will only
be marked as such if the reporter failed to include the required
additional information within a certain period of time. Some
basic statistics about the total and relative number of bugs
falling in the different categories are given in Table I.

In line with our research question, we first hypothesize that
the submission of “helpful” bug reports - those that eventually
result in a bug fix - increases the centrality of the bug reporter,
i.e.

H1: The centrality of users increase after the submission of
bug reports that eventually result in a bug fix.

Complementary to H1 we can furthermore hypothesize:
H2: The centrality of users decrease after the submission

of bug reports that are eventually identified as duplicate or
invalid.

While these two hypotheses address the relation between the
submission of helpful or duplicate bug reports and subsequent
changes of the users’ centrality in the community, it is also
reasonable to consider an inverse dependence: The users’
centrality at the time when a bug is reported can possibly
influence their ability to contribute helpful bug reports. A
better knowledge of bug handling procedures that results from
a higher centrality in the community may for instance help to
prevent duplicate bug reports. In our third hypothesis - which
is also the basis for our prediction method - we thus propose
that the centrality of bug reporters is indicative for the outcome
of the bug handling process.

H3: The centrality of a bug reporter in the monthly collab-
oration network preceding the time of the report is indicative
for the eventual outcome of the bug handling process.

We would like to emphasize that one can imagine different
mechanisms, both at the level of the user and the community
that are compatible with these hypotheses. As mentioned
above, the users’ centrality in the network is likely to be



(a) ECLIPSE (Dec. 2002)
244 nodes, 319 links

(b) NETBEANS (Jun. 2006)
246 nodes, 513 links

(c) FIREFOX (Oct. 2003)
241 nodes, 184 links

(d) THUNDERBIRD (Nov. 2004)
245 nodes, 170 links

Fig. 1. Four monthly collaboration networks representing the communities of ECLIPSE, NETBEANS, FIREFOX and THUNDERBIRD. Although the networks
are of similar size, the different topological structures indicate that these communities differ largely in terms of social organization. The yellow shaded area
represents the network’s largest connected component (LCC).

correlated with the level of contribution as well as the knowl-
edge and experience of contributors. These factors are likely
to influence the quality of bug reports submitted by a user.
Furthermore, being central in the community can influence the
attention received by other users, thus increasing the chance
of bug reports being taken seriously, prioritized and eventually
fixed.

A. Analysis

We test hypotheses H1, H2 and H3 in the following
way: We first categorize all bug reports that were eventually
resolved according to their final resolution. As described in
section III-B, we then extract the collaboration networks in
the month preceding and following the time of the bug report
and compute the eigenvector centrality of bug reporters in both
networks. By this, we obtain five distributions of centralities of
bug reporters in the monthly collaboration network preceding
the time of the bug report for the bug categories FIXED,
DUPLICATE, INVALID, WONTFIX and INCOMPLETE. We
denote these as FIX1, DUP1, INV1, WOF1 and INC1

respectively. Similarly, we extract the distributions of eigen-
vector centralities of bug reporters in the month after the
bug report and denote these as FIX2, DUP2, INV2, WOF2

and INC2. We would like to emphasize that - out of the
quantitative measures introduced in section III-C - in this
section we only use eigenvector centrality to quantify the
position of bug reporters. However, for the classifier proposed
in the next section we use a more comprehensive set consisting
of additional topological measures for centrality, coreness,
degree and membership in the LCC.

In order to compare the different eigenvector centrality
distributions of bug reporters described above, we apply a
Wilcoxon-Mann-Whitney test [30]. For two samples SA and
SB drawn from two distributions FA and FB with FA(x) =
FB(x− α), the Wilcoxon-Mann-Whitney infers the stochastic
ordering of the distributions, i.e. whether the shift parameter
α is likely to be larger than zero (i.e. FA > FB) or smaller
than zero (i.e. FA < FB). Based on the null hypothesis that
α = 0 (i.e. FA ∼ FB) the test is executed either with the one-
sided alternative hypotheses FA > FB or FA < FB , or with
a two-sided alternative hypothesis FA 6= FB . For each of the
three alternative hypotheses, the test yields a p-value which -

if it is below a given significance threshold - is used to reject
the null hypothesis in favor of the alternative hypothesis. If
none of the p-values for one of the alternative hypotheses is
below the significance threshold, one cannot reject the null
hypothesis that both samples SA and SB are in fact drawn
from the same distribution, i.e. FA ∼ FB .

We now test H1 by applying the methodology described
above to the two samples FIX1 and FIX2, i.e. we test
whether there is an increase in the eigenvector centralities
of users after the report of a bug that is eventually fixed.
The null hypothesis H0 related to H1 is that the samples
FIX1 and FIX2 are drawn from the same distribution,
i.e. FIX1 ∼ FIX2 or - in other words - the eigenvector
centrality of users reporting helpful bugs does not change
after the time of the report. We reject the null hypothesis
and accept hypothesis H1 if the p-value for FIX1 < FIX2

is below a significance threshold of 0.05. The resulting p-
values for the comparison of the distributions FIX1 and
FIX2 are given in Table II. One observes that for the projects
ECLIPSE and NETBEANS one cannot reject the null hypothesis
that eigenvector centralities of users do not change after the
submission of bug reports that result in a bug fix. However,
for MOZILLA FIREFOX there is a significant increase in
the eigenvector centralities of users reporting bugs that are
eventually fixed. Interestingly, for MOZILLA THUNDERBIRD
we also reject the null hypothesis but instead find a significant
decrease of eigenvector centrality.

Similar to H1, we test hypothesis H2 by applying a
Wilcoxon-Mann-Whitney test on the samples DUP1, INV1,
DUP2 and INV2, i.e. we compare the eigenvector centrality
distributions of bug reporters submitting duplicate or invalid
bug reports before and after the time of the submission.
The results shown in Table II provide strong evidence for
hypothesis H2 regarding bugs that are eventually identified
as duplicates. In fact, the null hypothesis that the DUP1 and
DUP2 are drawn from the same distributions can be rejected
in favor of the alternative hypothesis DUP1 > DUP2 for all
of the studied projects. For the case of bugs that are eventually
identified as invalid, we cannot reject the null hypothesis
for the projects FIREFOX, ECLIPSE and NETBEANS. For the
project THUNDERBIRD the null hypothesis can be rejected in
favor of hypothesis H2.



TABLE II
COMPARISON OF EIGENVECTOR CENTRALITY DISTRIBUTIONS FOR THE FIVE BUG RESOLUTION CATEGORIES CONSIDERED IN OUR ANALYSIS. IN EACH

ROW WE PRESENT THE HYPOTHESIS BEING TESTED, THE CORRESPONDING DISTRIBUTIONS INVOLVED (E.G. FIX1 ∼ FIX2), THE ALTERNATIVE
HYPOTHESIS (I.E. >,<, 6=), ITS RESPECTIVE p-VALUE (WE INDICATE WITH (*) WHEN WE ACCEPT THE ALTERNATIVE HYPOTHESIS) AND THE SAMPLE

SIZE OF EACH DISTRIBUTION (I.E. NUMBER OF BUGS). MORE DETAILS IN SECTION IV-A.
Hypothesis Comparison of Distrib. FIREFOX THUNDERBIRD ECLIPSE NETBEANS

<, p = 0.0026, (*) >, p = 0.0351, (*) 6=, p = 0.1453 6=, p = 0.6435H1 FIX1 ∼ FIX2 (5847, 6140) (2139, 2377) (66208, 69026) (13930, 14668)
>, p = 0.0349, (*) >, p < 2.22e− 16, (*) >, p < 2.22e− 16, (*) >, p < 2.22e− 16, (*)H2 DUP1 ∼ DUP2 (6799, 8697) ( 973, 3027) (17600, 22215) (3984, 5470)
6=, p = 0.7268 >, p = 0.0449, (*) 6=, p = 0.8489 6=, p = 0.1266H2 INV1 ∼ INV2 (1321, 1394) (242, 297) (5313, 5958) (1906, 2066)
>, p = 1.81e− 10, (*) >, p = 1.58e− 06, (*) <, p < 2.22e− 16, (*) >, p < 2.22e− 16, (*)H3 FIX1 ∼WOF1 (5847, 1022) (2139, 106) (66208, 7769) (13930, 2847)
>, p < 2.22e− 16, (*) >, p < 2.22e− 16, (*) <, p < 2.22e− 16, (*) >, p < 2.22e− 16, (*)H3 FIX1 ∼ DUP1 (5847, 6799) (2139, 973) (66208, 17600) (13930, 3984)
>, p < 2.22e− 16, (*) >, p = 4.93e− 10, (*) <, p < 2.22e− 16, (*) >, p < 2.22e− 16, (*)H3 FIX1 ∼ INV1 (5847, 1321) (2139, 242) (66208, 5313) (13930, 1906)
>, p < 2.22e− 16, (*) >, p < 2.22e− 16, (*) (-)(-) >, p < 2.22e− 16, (*)H3 FIX1 ∼ INC1 (5847, 587) (2139, 159) (66208, 0) (13930, 661)

Finally, we test hypothesis H3 by comparing the distribution
FIX1 to the distributions WOF1, DUP1, INV1 and INC1,
i.e. we check whether the centralities of users reporting bugs
that are eventually fixed are - on average - different than
of those reporting bugs that fall in other categories. The
results of our analysis are shown in Table II. We find strong
evidence for hypothesis H3 when comparing FIX1 to either
WOF1, DUP1, INV1 or INC1. In the projects FIREFOX,
THUNDERBIRD and NETBEANS we particularly find that the
centrality of users reporting bugs that are eventually fixed is
significantly larger. Interestingly, the opposite relation holds
for the project Eclipse, i.e. here the centrality of users reporting
bugs that are eventually fixed is significantly smaller.

In summary, our analysis validates that there is a statistically
significant relation between the centrality of a bug reporter
and the outcome of bug handling processes. We particularly
emphasize that our analysis supports the hypothesis that the
centrality in the collaboration network during the month pre-
ceding the bug report is indicative for the outcome of the bug
handling process. In the following section, we make use of this
finding to develop a prediction method that can e.g. be applied
in (semi-)automatic bug report prioritization strategies. By this,
we show that a quantitative analysis of social structures in
OSS communities can assist in bug triaging. While in the next
section we exclusively focus on the use of a set measures
of social embeddedness, we would like to highlight that a
combination of these measures with existing methods is likely
to further improve the classification mechanism.

V. CLASSIFICATION OF BUGS WITH SOCIAL NETWORK
ANALYSIS

Based on the observed relations between the bug reporters’
centrality and bug report quality presented in section IV, we
now address research question RQ2, specifically:

Can quantitative measures for the position of bug reporters
be used to predict which bug reports refer to valid bugs?

The goal is to develop a practical method that makes use of
topological measures for the position of bug reporters in the
collaboration network. In order to facilitate the bug triaging
process, we particularly aim at predicting whether a bug report
is likely to be either Valid or Faulty. As Valid bug reports, we

consider all bug reports that have a final status of FIXED,
WONTFIX. Conversely - and in line with the semantics of
bug categories provided in section III-A - we consider all
bug reports as Faulty that have a final status of DUPLICATE,
INVALID or INCOMPLETE.

The task for our classifier is to predict whether a given
bug report is Valid or Faulty, based on a set of features
that are comprised of different quantitative measures for the
position of bug reporters in the collaboration network. In order
to highlight the predictive power gained by the inclusion of
further measures, we start with a very simple classifier which
only considers the presence of a bug reporter in the network’s
largest connected component (LCC). We then incrementally
add a prediction that is based on a threshold of eigenvector
centrality as well as - eventually - a support vector machine
that makes use of the following set of nine topological
measures calculated at the level of a node: presence in the
LCC, eigenvector, betweenness, and closeness centrality, local
clustering coefficient, coreness, as well as in-, out- and total
degree. Illustrative overviews of the three different classifi-
cation schemes are provided in Figures 2(a), 2(b) and 2(c).
For each of the obtained classifiers, we evaluate its predictive
power in terms of precision, recall and the corresponding F-
score (i.e. equally weighted precision and recall) [2, 31]. In
order to enable the reader to correctly interpret the predictive
power based on the obtained precision and recall values, in the
first line of Table IV we indicate the actual fraction of Valid
bug reports in our data set for each of the considered projects.

TABLE III
PERCENTAGES OF BUG REPORTERS THAT ARE IN THE LCC OF THE SOCIAL

NETWORK IN THE MONTH PRECEDING THE REPORT. THE PERCENTAGES
GIVEN WERE CALCULATED FOR EACH OF THE RESOLUTION CATEGORIES
(E.G. FROM THOSE THAT REPORTED BUGS RESOLVED AS FIXED: 53.9%

WERE IN THE LCC WHILE 46.1% WERE NOT).
FIREFOX THUNDERBIRD ECLIPSE NETBEANS

FIX 53.9% 47.4% 64.0% 65.0%
DUP 28.0% 9.4% 62.4% 42.7%
INV 11.2% 8.6% 42.2% 46.7%
WOF 37.7% 18.2% 52.9% 51.6%
INC 4.1% 4.7% - 26.6%
Valid 50.6% 44.1% 62.6% 62.2%
Faulty 17.2% 8.3% 56.1% 41.2%

We first consider a simple prediction method which consid-
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Fig. 2. Graphical illustration of the three classifiers described in section
V. When bug reporters submit reports, we immediately quantify the nine
measures that express their social embeddedness as described in the text.
These are used as input to the classifier, which will then predict if bug reports
are valid or faulty. For the case of the SVM classifier, we separate 5.0% of
the samples to be used as training data.

ers a bug report to be valid whenever the bug reporter is in the
LCC of the collaboration network in the month preceding the
submission of the bug report. The basis for this prediction is
provided in Table III, which lists the fraction of bug reporters
belonging to the LCC of the network individually for each
of the different bug categories. In the two bottom rows, we
furthermore provide the same values for the aggregated sets of
Valid and Faulty bugs. For MOZILLA FIREFOX and MOZILLA
THUNDERBIRD one observes a significant difference between
these two categories, i.e. the fraction of reporters of Valid bugs
that are in the LCC is significantly higher than the fraction
of reporters of Faulty bugs. For ECLIPSE and NETBEANS
the effect is less pronounced. Table IV (i.e. (LCC) rows)
shows the precision, recall and F -score of a classifier that
is solely based on LCC membership. When comparing to the
real proportion of VALID bug reports, this predictor clearly
performs better than a null model of randomly sampling bug
reports. Due to the stronger effect of LCC membership, the
performance is clearly better for MOZILLA FIREFOX and
MOZILLA THUNDERBIRD, which at the same time the projects
with the smallest proportion of VALID bug reports.

TABLE IV
PRECISION (p), RECALL (r) AND F -SCORE OF FILTERING VALID BUG

REPORTS BASED ONLY ON MEASURES OF SOCIAL EMBEDDEDNESS.
FIREFOX THUNDERBIRD ECLIPSE NETBEANS

Valid 21.0% 23.3% 74.3% 62.4%
p (LCC) 44.1% 62.1% 76.3% 71.9%
r (LCC) 50.9% 44.5% 62.6% 62.4%
F (LCC) 0.47 0.52 0.69 0.67
p (evcent) 60.4% 68.6% 76.3% 76.7%
r (evcent) 30.5% 5.4% 62.6% 38.8%
F (evcent) 0.41 0.10 0.69 0.52
p (SVM) 82.5% 90.3% 88.7% 78.9%
r (SVM) 44.5% 38.9% 91.0% 87.0%
F (SVM) 0.58 0.54 0.89 0.83

As the next measure we add to the classifier the eigenvector
centrality of bug reporters. This classifier will mark bug reports
as VALID if the reporting users is part of the LCC and if their
respective eigenvector centrality scores are above a precentile
threshold that is tuned for each community individually. The
results shown in Table IV (i.e. (evcent) rows) indicate that -
compared to a classification based on mere LCC membership
- the inclusion of eigenvector centrality increases the precision
while generally decreasing recall and F -score. Due to the
negative relation between eigenvector centrality and bug report
quality found for MOZILLA THUNDERBIRD, the drop in the
F -score is particularly pronounced for this project.

Our next and final step towards a practical tool is a)
the use of a support vector machine (SVM) [32] for the
prediction of valid bug reports and b) the use of the full
set of nine topological measures. In order to eliminate the
risk of overfitting the data, we use a training set that is
composed of only 5.0% of all available samples. The nine
measures we consider as input features are: LCC membership,
eigenvector centrality, betweenness centrality, total degree, in-
degree, out-degree, closeness centrality, clustering coefficient
and k-coreness. We present the results of the SVM classifier
in Table IV (i.e. (SVM) rows). For MOZILLA FIREFOX and
MOZILLA THUNDERBIRD we obtain precision values of 82.5
and 90.3 as well as F -scores of 0.58 and 0.54 respectively.
In both of these projects the fraction of Valid bug reports is
comparably small (with 21% and 23.3% respectively).

The fraction of Valid bugs in the ECLIPSE and NETBEANS
projects is significantly higher. We hypothesize that this is
due to more stringent bug reporting procedures and a higher
technical proficiency of users which is related to the fact that
both projects target a user community that mainly consists
of developers. For ECLIPSE and NETBEANS our classifier
obtains a precision of 88.7% and 78.9% with F -scores of
0.89 and 0.83 respectively. Since the majority of bug reports
in these two projects are Valid, we propose to use the classifier
to identify the minority of Faulty bug reports instead. In Table
V, we show the corresponding results for all four projects. In
this setting, our classifier achieves F -scores of 0.92 and 0.91
and a precision of 86.9% and 84.9% for MOZILLA FIREFOX
and MOZILLA THUNDERBIRD respectively. For the projects
ECLIPSE and NETBEANS we obtain a precision of 73.6% and
73.1% and F -scores of 0.69 and 0.67 respectively.

TABLE V
PRECISION (p), RECALL (r) AND F -SCORE OF FILTERING FAULTY BUG

REPORTS BASED ONLY ON MEASURES OF SOCIAL EMBEDDEDNESS.
FIREFOX THUNDERBIRD ECLIPSE NETBEANS

Faulty 79.0% 76.7% 25.7% 37.6%
p (SVM) 86.9% 84.9% 73.6% 73.1%
r (SVM) 97.3% 98.2% 64.0% 61.8%
F (SVM) 0.92 0.91 0.69 0.67

VI. THREATS TO VALIDITY AND IMPLICATIONS FOR
FUTURE WORK

Prior to concluding our article, we discuss a number of
limitations of our analysis and the resulting threats to validity.



As described in section III, all our findings are based on inter-
actions recorded in the BUGZILLA installation of the projects
MOZILLA FIREFOX, MOZILLA THUNDERBIRD, ECLIPSE and
NETBEANS. Clearly, a significant threat to the applicability of
our approach for general collaborative software engineering is
that we were mainly focused on these four OSS communities.
However, we argue that these particular projects represent
communities with different levels of heterogeneity in their
user base, the level of contributions, commitment, technical
proficiency and commercial influence by companies. Our
analysis shows that, even for such diverse projects, machine
learning techniques based on quantitative measures of social
embeddedness yield high accuracy results when predicting bug
report quality. Therefore our contribution can be seen as a
proof of concept case study. Nevertheless, we are currently
collecting and analyzing data as well as qualitative insights on
the social organization of a number of additional communities
in order to further generalize our results.

While we have presented a set of quantitative results regard-
ing the relation between the network position of bug reporters
and the outcome of bug report processing, it is unclear what are
the exact social mechanisms at work. In order to gain a better
insight in this question, we have created a survey that was sent
to the community managers of the projects considered in this
case study. Indeed, in their replies the community managers
of ECLIPSE and NETBEANS confirmed that such a relation
may exist. Specifically, we received the feedback that for the
NETBEANS community “one of the criteria developers use
while choosing bugs for fixing is reproducible case and/or
reputation of the reporter”. Similarly, for the ECLIPSE project
community managers confirmed that “a committer is often
times more likely to spend triage time on a bug from somebody
with a known reputation for quality”. Unfortunately, we did
not receive any feedback to our survey for the communities
of MOZILLA FIREFOX and MOZILLA THUNDERBIRD.

For the network measures studied in this paper, we only
used the direct dyadic relations CC (i.e. users subscribing
to receive information about future updates on bug reports)
and Assign (i.e. users assigning the task of handling a bug
to another one). While these recorded interactions are clearly
associated with users knowing about and interacting with
each other, the resulting network must clearly be seen as a
mere proxy for the actual social organization of a community.
In particular, in our study of network measures we did not
consider further relations that may be extracted for instance
from the sequence of comments on a bug. The reason for
not considering these is the lower fidelity with respect to
whether an extracted relation is really associated with direct
communication or collaboration. Furthermore, in our study we
so far did not use further potential data sources, like mailing
lists or threaded forum communication that could be used to
augment our network perspective in a subsequent analysis.

Another remark related to the measures of social embed-
dedness adopted in our analysis is that they can be quantified
right away after a bug report is submitted. As we show in the
text, this works well for OSS communities that have accumu-

lated enough samples to apply machine learning techniques.
Therefore the extension of this methodology to newly born
communities remains a challenge.

A possible reason of concern is the fact that we use a
fixed size window of 30 days to construct the networks used
in our analysis. Although we have obtained high accuracy
results for this particular choice of window size, we are further
investigating whether tuning this parameter to each community
independently will increase performance.

Finally, the application of machine learning comes at the
risk of overfitting data by using a too large fraction of training
data. In order to avoid this pitfall, we limited the fraction of
randomly chosen training data to 5.0%.

VII. CONCLUSIONS

In this paper we have studied to what extent the positions
of bug reporters in the collaboration networks of four OSS
communities are indicative for the quality of contributed bug
reports. We have addressed this question from the perspective
of evolving complex networks that have been extracted from a
comprehensive data set on 700, 000 bug reports for the projects
MOZILLA FIREFOX, MOZILLA THUNDERBIRD, ECLIPSE and
NETBEANS. The main results of our case study on these
communities are the following:

(1) We study the evolution of bug reporter centrality in
evolving collaboration networks. We note the time resolution
of 30 days over a total period of 10 years. For the project
MOZILLA FIREFOX, we are able to validate our hypothesis
that the eigenvector centrality of bug reporters increases after
the submission of valid bug reports (i.e. reports that refer
to actual software bugs, are no duplicates and contain all
necessary information). We observe the opposite relation for
MOZILLA THUNDERBIRD.

(2) In all projects we were able to validate our hypothesis
that there is a statistically significant decrease of eigenvector
centrality following the submission of duplicate bugs.

(3) For the projects MOZILLA FIREFOX, MOZILLA THUN-
DERBIRD and NETBEANS we were able to validate our
hypothesis that the eigenvector centrality of users reporting
valid bug reports is significantly higher than those of users
submitting faulty bug reports. From this we conclude that the
position of bug reporters in the collaboration network of OSS
communities is indicative for the quality of bug reports.

(4) Based on this finding, we develop an automated bug
report classification mechanism. We use nine topological mea-
sures at the level of bug reporters (eigenvector, betweenness
and closeness centrality, k-coreness, clustering coefficient, in-
, out- and total degree as well as membership in the largest
connected component) for the prediction of whether a reported
bug is valid or faulty. Based on a support vector machine and
depending on the project considered, our automated classifi-
cation achieves a precision of up to 90.3% and an F -score of
up to 0.92.

We would like to emphasize the fact that - although it is
merely based on measures quantifying the network position
of bug reporters - our proposed classification mechanism



achieves a remarkably high accuracy across different commu-
nities. The combination of our approach with further features
used in previous studies of automated bug classification is
likely to further improve its accuracy. Our case study can
thus be seen as a contribution towards classification schemes
that are highly accurate, yet simple enough to be of practical
relevance in the design of support infrastructures.
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