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We study a system in which N agents have to decide between two strategies 6;
(i €1...N), for defection or cooperation, when interacting with other n agents (either
spatial neighbors or randomly chosen ones). After each round, they update their strat-
egy responding nonlinearly to two different information sources: (i) the payoff a;(6;, f;)
received from the strategic interaction with their n counterparts, (ii) the fraction f;
of cooperators in this interaction. For the latter response, we assume social herding,
i.e., agents adopt their strategy based on the frequencies of the different strategies in
their neighborhood, without taking into account the consequences of this decision. We
note that f; already determines the payoff, so there is no additional information assumed.
A parameter ¢ defines to what level agents take the two different information sources into
account. For the strategic interaction, we assume a Prisoner’s Dilemma game, i.e., one in
which defection is the evolutionary stable strategy. However, if the additional dimension
of social herding is taken into account, we find instead a stable outcome where coop-
erators are the majority. By means of agent-based computer simulations and analytical
investigations, we evaluate the critical conditions for this transition toward cooperation.
We find that, in addition to a high degree of social herding, there has to be a nonlinear
response to the fraction of cooperators. We argue that the transition to cooperation in
our model is based on less information, i.e., on agents which are not informed about
the payoff matrix, and therefore rely on just observing the strategy of others, to adopt
it. By designing the right mechanisms to respond to this information, the transition to
cooperation can be remarkably enhanced. Our results are obtained in an evolutionary
PD game with fixed payoffs and a fixed four-player neighborhood, where agents follow
a stochastic better response dynamics.

Keywords: Prisoner’s dilemma; social influence; mechanism design; nonlinear voter
model.

1. Introduction

Cooperation is an abundant phenomenon in biological and social systems, but
in most game-theoretical approaches defection should be the rational strategy to
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choose. In order to solve this paradox, a vast number of literature has proposed
modifications to the classical approach. They can be categorized along different
directions:

e changes of the payoff structure: lowering the costs of cooperation to make it more
attractive in the first place is another form of “buying cooperation” [24].

e cxtension of the time horizon: considering either repeated interaction, a memory
for the strategy of the counterparts, calculating payoffs over a longer time interval,
anticipating the future response to the own action [2].

e considering spatial interaction: the threshold for the outbreak of cooperation is
lowered if agents’ interaction is constrained to their nearest or second-nearest
neighbors (as opposed to randomly chosen agents), or if agents can migrate
between different spatial domains [23].

e co-evolution of strategies and interaction: agents can adopt the strategy of their
best-performing neighbor and are allowed to break links with defective players,
which can lead to high levels of cooperation [41].

e introduction of additional strategies: instead of unconditional cooperation/
defection, strategies can allow for retaliation against defectors, e.g., TIT-FOR-
TAT, or voluntary participation [8, 11].

We note that, particularly for biological systems, other additional mechanisms
have been considered [19], such as altruism, the role of kinship relations, selection
mechanisms on the group level, etc.

In this paper, we add a new element to the discussion: social herding, i.e., a mech-
anism that does not take strategic considerations into account. Agents can observe
the actions of others without knowing their consequence. In a game-theoretical set-
ting this means they cannot adopt a certain strategy based on payoff considerations
because the payoff structure is not known to them. Thus, agents are just left with
knowing the frequency of strategies either globally or in their neighborhood, and
they choose their own strategy only based on the information about the frequency
of these strategies. In our model, we assume that any agent can consider both the
payoff-related and the frequency-related information and weight their influence by
a parameter (, which is assumed to be the level of social herding. Precisely, ( — 0
results in purely payoff-driven decisions, ( — 1 in pure social herding.

The case where social herding is dominant has been widely studied in binary
opinion dynamics models [5, 13, 18, 25, 27, 33, 36, 39] where opinions are not nec-
essarily related to payoff but rather to social norms. Thus, agents may adopt the
opinion of a majority in order to minimize social conflicts, but they may not have
a utility-based preference for either of these opinions. Instead their opinion results
from a frequency-dependent decision. The so called linear voter model, where the
probability to choose a particular opinion is directly proportional to its frequency is
a very common example for this. For homogeneous networks and finite system sizes
it is known to result in consensus, i.e., the existence of only one opinion, asymp-
totically, but the outcome which opinion will dominate is not determined. In the
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mean-field limit, this model always results in consensus of either of the two opin-
ions. Starting e.g., with the frequency f; of opinions § =1 and fy = 1— f; with 0 =
0, the probability that the final consensus state is 6; = 1 for all ¢ is f1 [12]. Hence,
a simple majority rule of social herding, as expressed in the linear voter model,
may not improve the situation for cooperation. If the network of interaction is
heterogeneous, e.g., in a complex network where agents have different degrees, the
probability to reach each of the ordered configurations is given by the initial frac-
tions weighted by the degree [31, 40]. Furthermore, the network topology can slow
down the ordering dynamics and may even lead to a disordered system where no
consensus is reached in the thermodynamic limit [28].

Therefore, we turn to the class of nonlinear voter models [22] in Sec. 2. As we
will also show analytically in Sec. 3, a nonlinear social herding by itself will not
lead to a transition toward cooperation. Instead, it is needed the right level of social
herding in combination with the right nonlinearity, to enhance cooperation.

What do we gain from such insights? First of all, a better understanding of
the fact that more information does not necessarily lead to a better outcome (in
this case, to cooperation). Common wisdom would suggest that it is always better
to have more information, e.g., to choose among more alternatives, to determine
their consequences in advance, and thus to reduce the risk associated with making
the wrong decision. What seems to be an optimal strategy on the individual level,
turns out to lead to the lock-in into unfavorable situations on the global level.
For example, in experiments on the wisdom of crowd effect, it was shown that more
information about the guesses of other agents, combined with social influence, leads
to a failure in the predictions [16]. Also, in a network formation model of agents
sharing knowledge it was shown that best response, i.e., the choice of partners based
on knowing all alternatives, resulted in a worse global performance as compared to
a situation where just the next best partner was accepted [15]. As we point out
with this work, to leave the trap of defection also crucially depends on using less
of the available information, or to have a considerable fraction of less informed
agents.

Second, from our insights we can derive mechanisms to improve the outcome
in systems of strategically interacting agents. Mechanism design can be seen as
the engineering part of economics. It allows to propose rules, or algorithms, for
interactions that avoid the system getting trapped in suboptimal states. Some of
these algorithms, such as the nowadays famous “Gale-Shapley” algorithm [7], are
basically related to combinatorial optimization problems. That is, they propose
a solution for the agents without involving the agents in finding it, themselves.
Systems design, the way we see it, aims instead at proposing new ways of interaction
at the agent level, in order to arrive at more favorable solutions at the system’s
level. Our paper gives a lucid example of this kind of systems design, by proposing
a different way of combining information an individual agent already has. This
still leaves room for the forces of self-organization to act, but restricts the possible
negative outcome.
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2. Basic Model
2.1. Combining social herding and strategic interaction

We consider a system with N agents. Each agent ¢ € 1... N is characterized by two
individual variables which may change over time: 6;(¢) shall describe the agent’s
strategic behavior when interacting with other agents, whereas (;(t) shall describe
how much the agent is prone to social influence. We adopt the definition of social
influence as the psychological tendency of individuals to adhere to and behave
according to the expectations of its local neighborhood [14]. In this sense, our
approach belongs to a wider class of models which do not restrict herding behavior
to perfectly rational agents [20].

In an economic context, ; refers to the strategy of a utility maximizing agent,
chosen from a (discrete) set o of possible strategies. We use the standard game
theoretical setting of a Prisoner’s Dilemma (PD) game, i.e., o € {0, 1}, where the
strategic behavior o = 0 refers to defection (D) and o = 1 to cooperation (C).

We assume that each agent plays a 2-person (noniterated) game with n other
agents which are located in its neighborhood. The completion of these n games is
called a round. From each of these interactions the agent receives a payoff which
depends both on the strategic behavior of the agent itself and on the opponents’.
The game structure describing a single interaction between two agents can be sum-
marized by the standard payoff matrix of a 2-person game:

|0, =1]6; =0|
6,=1| R/R | S/T
6, =0| T/S | P/P

Suppose, agent i has chosen to cooperate, then its payoff is R if the other agent j
has also chosen to cooperate (without knowing about the decision of agent ), but
S if agent j defects. On the other hand, if agent 7 has chosen to defect, then it will
receive the payoff T if agent j cooperates, while it will receive P if agent j defects.

In this paper, we will restrict the discussion to the PD game, but we note that
our investigations can be extended to other games that result from different values
of R, S, T and P [24]. For the particular case of the PD game, the payoffs have to
fulfill the following two inequalities:

T>R>P>S; 2R>S+T. (1)

The known standard values are T'=5, R =3, P = 1, S = 0. This implies that, in a
so-called one-shot game (no repeated interaction), defection o = 0, is the rational
strategy because it rewards the higher payoff for an agent ¢ no matter whether
the opponent chooses C' or D. As this argument applies to both agents, one can
expect that on the system level a global defective behavior emerges. Because of this,
the PD game has become a paradigmatic model to study different mechanisms of
transition toward a global cooperative behavior [1, 32], a question that has puzzled
the scientific community for decades.
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Let us define the degree of cooperation on the system’s level by the total number
of cooperating agents, N (t) relative to the total population N. Since the number
of agents is constant, the global frequencies f, of cooperating and defecting agents
are given by

N = ZN" = No + Ny = const.; o €{0,1},

’ (2)
f=hH=1-fo.

In the following, the variable f shall refer to the global frequency of cooperators.

The interaction of each agent with n other agents in a 2-person game results in
(?{) different possibilities to choose a partner. As the result of these interactions
that may occur independently, but simultaneously [9, 24|, agent i receives a total
payoff A;(6;) which depends both on its own strategy 6; and the strategies of the n
different partners. Let us assume that ng of these partners have chosen to defect,
whereas n1 = n — ng partners have chosen to cooperate. Then the total payoff from
these n interactions reads:

A; (91) = 51791. [an + TLQS] + 50791. [TllT + TLQP], (3)
where 0, , means the Kronecker delta, which is 1 only for = y and zero otherwise.
Dividing by n gives the scaled total payoff:

@, 1) = 2O = [fR (- )8+ o lATH (- FOFL @)

where f; = ni/n = 1—np/n gives the fraction of cooperating agents agent ¢ interacts
with. Assuming e.g., that agent i interacts with its neighbors, f; gives the local
frequency of cooperators. If on the other hand agent ¢ interacts with n randomly
chosen agents, the probability to choose a cooperator is directly proportional to the
global fraction f. That is, in the so-call mean-field approach we set f; = f.
Strategic considerations implies that agent i pays attention to the scaled pay-
off a;(0;, fi) expected from the interaction with f; cooperators, which of course
also depends on its own strategy 6;. A nonlinear function G(a;) shall consider the
way agent ¢ combines the information about the different payoffs a;(0;, f;) and
a;(1 — 0;, f;) resulting from its possible strategic choice. This shall be used below
to define the transition rate for an agent to change between strategies, therefore we
conveniently normalize G(a;) to one. In a very general way, we assume:
exp|Biai(0s, fi)]

Glai) = exp|Bia;i(0;, fi)] + exp[Bia; (1 — 0;, f;)] o

Equation (5) has the form of a logit-function well established in decision the-
ory [4, 17, 37]. The parameter j3; allows agents to individually weight differences
between the payoffs. 3; — 0 represents the limit of random choice between strate-

gies, G(a;) — 1/2, whereas 3; — oo means that even small differences in payoff
lead to an immediate switch between G(a;) = 0 and G(a;) = 1. For small values of
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Bi, the G(a;) tends to one if the expected payoff times the a;(0;, f;) from strategy
0; is much larger than the expected payoff a;(1 — 6;, f;) from the opposite strategy
1 —0; and it tends to zero in the opposite case. If both payoffs become comparable,
G(a;) is about 1/2. Intermediate values of 3; allow for a smooth transition between
the two strategic cases.

We note that for sufficiently small values of 3;, Eq. (5) can be approximated by
the linear function

1 Bi
Gla;) ~ 5 1+E{Gi(eiafi)_ai(l_eiafi)} ; (6)
i.e., agents pay attention to the difference between the two possible payoffs.

The situation becomes different if the agent is unable to calculate the expected
payoff. In our model, we assume that the agent then rather pays attention to the
action of the majority and tends to imitate this without knowing about the con-
sequences. Thus, agent ¢ only responds to the information associated with the fre-
quency which shall be described by a logit-function similar to Eq. (5):

Flfa) = exp(20iri(fo,) fo.] 1
' eXp[zﬂi’ii(f&)f@i] + exp[_Qﬁi’ii(fei)f&} 2
fo, describes the local frequency of agents playing strategy 6; in the neighborhood
of agent i, and f1_y, = 1 — fp, is the local frequency of agents playing the oppo-
site strategy. Both frequencies being equal, F(fp,) = F(f1—0,) = 1/2. Again, for
sufficiently small 3;, from a linear approximation in Eq. (7) we find,

ki(fo,) is a nonlinear response function to consider a weighted influence of the
frequency [22] as we will investigate below. ;(fg,) may also depend on the time an
agent has kept its current strategy, or opinion [29, 30]. We emphasize that for the
so-called linear voter model, x;(fy,) is simply a constant x that does not depend on
the frequency. So (;k can be scaled to one, which means that for the linear voter
model we simply arrive at F(fg,) = fo,.- Thus, the response of agent i is directly
proportional to the local frequency of agents playing strategy 6;.

After having defined the agent’s response to strategic information and to social
herding, we use the individual parameter (; to weight these two different influences.
Specifically, we define the transition rate for agent i to switch from strategy (1 —6;)
to the opposite strategy 6; as follows:

w(l;|(1 = 0:), fi, ) = (1 = ¢;)G(ai) + GF (fo,)- 9)

(7)

For (; — 0, we cover the limit case of strategic interaction in PD game, for ¢; — 1,
we arrive at the limit case of pure social herding, i.e., imitation behavior without
calculating the resulting consequences.

1350017-6



Advs. Complex Syst. 2013.16. Downloaded from www.worldscientific.com
by SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH (ETH) on 08/18/14. For persona use only.

How Can Social Herding Enhance Cooperation?

2.2. Specifying the transition rates

Before describing the system’s dynamics by means of a master equation in the
following section, it will be handy to write down the transition rates of Eq. (9)
more specifically. The transition rates apply for a frequency dependent process, i.e.,
they do not depend on the specific sequence of interaction. In this paper, we fix
the number of independent, but simultaneous 2-person games to n = 4, which is
convenient to compare random interactions with local ones on a regular lattice.
Hence, the relevant frequencies have only discrete values f; = k;/n where k; =
np = 0,1,2,3,4 is the actual number of cooperating agents, agent ¢ is interacting
with. On the other hand, random interactions can be approximated by the so-called
mean field approximation, where f; = f, the global fraction of cooperators.

Dropping the individual index ¢ for the moment, we have to distinguish between
two different transition rates, c¢x(¢) = w(1|0, k, ), i.e., the transition from defection
to cooperation dependent on k cooperating agents, and di(¢) = w(0|1, k, (), i.e.,
the transition from cooperation to defection under the same conditions. Both of
these rates are comprised of two parts, one resulting from strategic behavior (¢,
Jk.), the other one resulting from social herding (¢, dk.),

ee(Q) = (1= Qe+ Cors di(¢) = (1 = Q)dy, + Cdy. (10)

For the terms (¢, dk) related to social herding, we use the linear approximation,
Eq. (8), i.e., for the specified neighborhood n = 4,

n —

. ay

k .
Crp = Zﬁfﬁk; dp=1-—

Again, for the linear voter model with k; = k and the (¢, czk) would simply result
from the set of values {0, 1/4, 2/4, 3/4, 1}. In order to use nonlinearities in the
frequency response, we rather prefer to specify the (¢, Jk) by discrete values «y,
a1, ag as shown in Table 1.

The parameter ag describes the transition of a cooperator (defector) toward
defection (cooperation) if surrounded by cooperators (defectors) solely based on
social herding. Because agents with such strategies to follow are absent in the
neighborhood, «g should be consequently zero, even if there is a strong strategic
incentive for a cooperator to switch toward defection if surrounded by cooperators.

Table 1. Nonlinear transition rates to
cooperation dependent on the frequency
of cooperating neighbours, f.

f=k/n ¢& dg ¢, dy
0 Co zig ag 1—ap
1/4 1 Jl (<31 11—y

2/4 G da az o

3/4 ¢z dz 1-—o a1

1 G di 1—ap ao
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Fig. 1. (Color online) (left) Parameter space (a1, a2) to define the nonlinearity in social herding
(see also Table 1). The different regions are explained in the text. We use the (pa) region, defined
by Eq. (17). (right) Linear voter model (red line) and deviations controlled by as at f = 0.5.

Hence, considering only social herding, pure cooperation and pure defection are
“absorbing” states for the dynamics of the system. This can be avoided by choosing
ap = €, a very small value that allows for occasional random changes of the strate-
gies [22], but in this paper we choose ag = 0.

Possible combinations of (i, as) define a parameter space to distinguish
between different forms of social herding, as shown in Fig. 1(left). Positive fre-
quency dependence (pf) means that the probability to change to the opposite
strategy monotonously increases with the frequency of that strategy in the neighbor-
hood, also known as “majority voting”. Negative frequency dependence (nf) means
the opposite, i.e., the probability monotonously decreases with the frequency, also
known as “minority voting”. On the other hand, (pa) and (na) define parameter
regions with nonmonotonous dependence. For example, (pa) means an increase of
the probability as long as the opposite strategy is not the majority, also known as
voting against the trend, while (na) describes constellations with a strong amplifica-
tion of minority strategies. We note that the so-called “voter point” that represents
the linear voter model — where oy = 1/4 and as = 207 = 1/2 are strictly pro-
portional to k — is on the border between the (pf) and (pa) parameter regions.
For our investigations, we will consider a scenario where the nonlinearity is only
represented by as, whereas a; is chosen according to the linear voter model. Four
possible cases which refer to the (pf), (pa), (na) and the linear voter model are
shown in Fig. 1(right).

It remains to specify the payoff related terms (¢, di) which follow directly
from Eq. (5). Here, we assume the deterministic limit §; — 0, for which we get
G(a;) = Ola;(0;, fi) — ai(1 — 0;, f;)], where O[y] is the Heavyside function, which is
one if y > 0 and zero otherwise. That is, G(a;) is either one or zero depending on
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whether the payoff for the changed strategy is larger or less than the payoff resulting
from the current strategy. Taking into account the payoff relations, Eq. (1), we verify
that the expected payoffs, Eq. (4), for defectors, a(0, f), are always larger than the
corresponding ones for cooperators, a(1, f), regardless of the fraction of cooperators
in the neighborhood. That is, in nonrepeated games as considered here, defection
is an evolutionary stable strategy. Hence, in the deterministic limit of strategic
interaction, we have always ¢; = 0 and d = 1. This can be rightly assumed
as the worst-case scenario because, considering only a strategic point of view, the
system will always end up in pure defection. The most important thing is to identify
conditions where an additional social herding allows not only to avoid this trap,
but also to let the dynamics to converge to pure cooperation.

The observant reader may have noticed that we have interpreted (; differently
for social herding (where we assumed that it is just small) and for strategic interac-
tion (where 8 — 0 was assumed). This is not a contradiction. In fact, 8 quantifies
the randomness in following the different information, and we can assume that the
payoff related attention is much higher and less prone to errors than the response
to the behavior of neighbors. In general, we may distinguish between ; and ﬂl for
the different responses, but this is not applied here.

2.3. Dynamics to change the strategy

In the previous section, we have defined the “rules” for agents to change their
strategy dependent on both strategic information and social herding. Most agent-
based models, at this point, would continue with extensive computer simulations to
probe the parameter space for some nontrivial results. We will certainly follow with
computer simulations as well, however we are also interested in some analytical
insights into the model which would allow us to predict the system’s dynamics
without testing every possible parameter combination. For this reason, we need to
specify the dynamics of agents in a more formal way, on two different levels, (i) on
the micro level of the individual agent, and (ii) on the macro level, describing the
fraction of cooperators in the system.

For the micro level, we use a stochastic approach, i.e., we deal with the prob-
ability p;(0;,t) that agent i uses strategy 0; at time ¢. As explained before, this
probability depends on the strategies of agents in the neighborhood of agent i
expressed by the vector 0, = {0;,,0,,,...,0; }. Hence, p;(0;,t) is defined as the
marginal distribution:

pii,t) = Zpez,et (12)

The summation is over all possible distributions #’;. Specific realizations of these

distributions shall be denoted as g. For n = 4, there are 2" possible realizations.

For the time-dependent change of p;(0;,t) we assume the following master equation:

d

api(@,t) =3 [w(B:|(1 = 6:),0)p(1 = 05,05, 1) — w(l — 6,16, 07)p(6:, 67, 1)) (13)
0’

=i

1350017-9



Advs. Complex Syst. 2013.16. Downloaded from www.worldscientific.com
by SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH (ETH) on 08/18/14. For persona use only.

F. Schweitzer, P. Mavrodiev and C. J. Tessone

This equation considers all possible processes that may lead to an increase or
decrease in the probability that agent ¢ uses strategy 6; given the neighborhood
distribution @, with the transition rates w(6;|(1 — 6;),0%), w(1 — 6;|6;,0,). Note
that these are not the transition rates defined in Eq. (9), which only depend on the
local frequency f;, but not on the neighborhood distribution §,. In order to map the
two, we have to consider how many specific realizations of the distribution §; may
lead to the same f;. Taking the example o = {0010}, there are exactly ( ) differ-
ent possibilities to realize f; = 1/n. Hence, transforming the master equation (13)
that depends on the neighborhood distribution @, into one that only contains the
respective local frequency f; results in a combinatorial prefactor of (Z) Using again
the specific notations cg, di, Eq. (10) for the transition rates, we can rewrite the
master equation (13) now as
n
o160 =3 () llOpl0. k. C.0) = duOp(1 b/ 0L (14
k=0

The corresponding master equation for p;(0,(,t) = 1 — p;(1,,t) follows likewise.
Note that in Eq. (14) we have chosen the individual parameter ¢; to be a constant
¢. That is, whereas the local frequency f; = k/n changes over time because of
concurrent decisions of neighboring agents about their strategies. ( is, in this paper,
assumed to be a global control parameter the impact of which will be discussed
together with the computer simulations.

With this, we have a bottom-up description of the system’s dynamics given
by N stochastic equations, Eq. (14), which are coupled because of the overlapping
neighborhoods of agents, expressed in terms of f;. On the other hand, on the macro-
scopic level we have to deal with the probability P(f,(,t) to find a given fraction
of cooperators, f, at time ¢, assuming the social herding factor . The dynamics
can again be specified by a stochastic equation:

SRt = SIWUIFL QP60 - WL OPULGH)L (15)
7

f! denotes all possible deviations from a given value f that can be reached during
one time step by means of the transition rates W (f’|f, (). These are not identical
with the individual transition rates, Eq. (9), but aggregated rates that take into
account all possible ways to change f. The smallest change of f = N1/N, Eq. (2),
is the addition or subtraction of a single cooperator, i.e., f' € {(Ny +1)/N; (N, —
1)/N}. The individual equivalent for such processes is given by Eq. (10), where the
terms ¢y (¢) describe the transition of a single defector into a cooperator, and the
di(¢) the opposite transition. Hence, we find for the aggregated transition rates

n

W+ 1NIL0 = W50 = 3 ()40 - e
k=0
(16)

W(f = 1NIf,Q) = W Z()f"’“ i (©).

k=0
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The combinatorial prefactors preceding the ¢ (¢) and di(¢) result from the various
ways to choose agents with n = 4 neighbors, k of which could be cooperators given
the global fraction of cooperators f. Here, we have used the so-called mean-field
assumption that replaces the frequencies f; of the individual neighborhoods by the
global value f. With the specific values for ¢;(¢) and di(¢) given by Egs. (10)
and (11), the dynamics on the systemic level is also completely specified. In the
following, we will use the dynamics on the micro level for carrying out computer
simulations, while the dynamics on the macro level will be used for analytical inves-
tigations.

3. Results of Computer Simulations

We now use the dynamics specified in Eq. (14) to run agent-based computer simu-
lations for different sets of parameters. According to Egs. (10), (11), we only need
to vary the weight 0 < ¢ < 1 and the parameters 0 < (g, ) < 1 assigned to
the social herding of the agents. Regarding their strategic decision, everything is
already defined, and with ¢ = 0, di, = 1 defection remains the only choice. This
“worst case scenario” can be only changed because of a considerable amount of
social herding, in which agents copy the strategy of their neighbors regardless of
the payoff assigned to it. This is shown in Fig. 2. Below a critical level for social
herding, ¢ = 0.7, only defection remains. For ¢ > 0.7, we observe different levels of
cooperation which depend on the combination of { and as. If { > 0.8, cooperation
even becomes the majority, i.e., f > 0.5, but only for large values of ¢ and asy full
cooperation, f — 1, is reached. This issue is further investigated below.

The role of the nonlinearity in social herding, expressed in terms of a7, as, is
further investigated in Fig. 3, given a supercritical level of social herding. We see

0.8

0.6

0.4

0.2

0 02 04 06
¢

Fig. 2. (Color online) Global fraction of cooperation f dependent on the level of social herding
(. a1 = 0.25 is fixed, ag varies between 0.4 and 1.0 according to the color scale. System size
N = 400.
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Fig. 3. (Color online) Fraction of cooperation (color scale) dependent on the nonlinearities in
social herding, defined by a1, ag. Fixed level of social herding ¢ = 0.95. The four different areas
are defined in Fig. 1(left). e indicates the linear voter model. System size N = 400.

that there is an optimal nonlinearity to enhance cooperation, i.e., oy, as have to be
chosen such that they belong to the area of “positive allee” (pa) effects. This area
is defined by the inequalities [see also Eq. (11)],

0<a<ay; (1—a1)<as<l1. (17)

It describes a response where the transition toward a given strategy increases with
the frequency of that strategy as long as that strategy is not the majority, i.e., minor-
ity strategies are favored. A special case where «; is taken from the linear voter
model, whereas s is larger than 0.5 is shown in Fig. 1 (right). We note in particular
that social herding according to the linear voter model will not allow the transition
toward cooperation, which will be further substantiated by analytical results in the
next section. Further, all forms of the transition rates that monotonously increase
with the frequency, indicated by the (pf) area, will not lead to cooperation. Social
herding in this case only amplifies defection.

In order to also estimate the impact of the system size, N, on the fraction of
cooperation, we present two cuts through the parameter space of ay, s in Fig. 3,
i.e., aq varies while s is fixed to either a high or a low value. In Fig. 4, the fraction
of cooperation is shown for four different values of N. Differences in the symbols
are hardly noticeable, which means that f is largely independent of N for system
sizes of 100 and larger. Finite size effects on the fraction of cooperation play a role
only for rather small systems (N < 50), which we did not consider in the paper.

Assuming the right choice of parameters for the transition to cooperation, we
can now take a look how the dynamics evolve in space. We have chosen a two-
dimensional regular lattice with Von-Neumann neighborhood, where each agent
interacts with n = 4 local neighbors. Initially, we assume a small cluster of
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Fig. 4. Fraction of cooperation, f dependent on the nonlinearity a1, with fixed aa = 0.75 (upper
curve, filled symbols) and aa = 0.25 (lower curve, empty symbols). Different system sizes: N = 100
(0), N =400 (O), N =1000 (A), N = 10,000 (V). The fact that they are almost indistinguishable
indicates that N does not have an impact. Other parameters: ¢ = 0.95.

cooperating agents. Without social herding, this cluster would immediately dis-
appear in the next time step because all agents will choose defection, which is the
rational choice to maximize their payoff. We observe instead a spreading of cooper-
ation, i.e., an invasion of the cooperating strategy into the domain of defectors. The
cooperating agents, however, do not form compact clusters. A minority fraction of
defectors will always survive and their spatial distribution in small clusters across
the domain of cooperators continues to change in time. That is, we never reach
a stationary state in space, despite that the global fraction of both strategies, on
average, reaches an equilibrium.

We further note that there is a critical size for the initial cluster of cooperators
to grow. This has been already discussed in detail for pure PD games on a regular
lattice [9, 24], and in opinion dynamics models [36]. Now, the addition of super-
critical social herding of course reduces these requirements. Is it worth mentioning
that, starting from random initial conditions in a spatially extended system, we find
that a vanishingly small initial density of cooperators is enough to trigger the final
state. The reason for this stems from the fact that, if the system is large enough,
one cluster of cooperators larger than the critical size will appear by chance. This
cluster will be sufficient to trigger the outbreak of cooperation. Here, however, we
will not dig further on this discussion. Instead, the initial conditions and parame-
ter constellations for the outbreak of cooperation will be further discussed for the
mean-field case, in the next section.

4. Mean-Field Investigations
4.1. Calculating the effort

We verified by means of computer simulations that there is indeed a way of utilizing
social herding to boost cooperation. Now, we try to illustrate this finding by some
analytical considerations. As a first step, we want to calculate the “effort” to transfer
the system into a majority of cooperators. Considering only the strategic dimension,
this effort should be very high because there is a strong incentive to defect. On the
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other hand, social herding may help in this situation because it neglects the payoff
differences. So, it is particularly important in the first stage of the phase transition.

A formal approach to calculate the effort starts from the master equation (15)
on the systemic level, in the mean-field limit. The detailed balance condition, which
is a specific form of the equilibrium condition dP(f,t)/dt = 0, requires that the net
probability fluxes are balanced, i.e.,

W(f1f=1/N,QP(f —1/N,¢) = W(f = 1/N|f,Q)P°(f,C), (18)

where P°(f,() denotes the equilibrium probability distribution which is indepen-
dent of ¢t. This equation is recursive and, using f = N;/N, Eq. (2), can be re-
formulated as:

N1 i 1
W (%59
PO(£.¢) = P°(0,0) | | o (19)
o
The normalization P°(0,¢) can be found by enforcing Zio PYi/N,¢) = 1 and
the transition rates are given by Eq. (16). We visualize the equilibrium probability
distribution by means of a potential (£, () that has its minimum where P°(f, ()
has its maximum, i.e., it represents the “effort” of reaching a given equilibrium
state,

P(f.¢) = exp{-Q(f. ()}, (20)
where 2 is given by
N 4|zl
O(f,¢) =~ P°(0,0)— S n l%ﬁ_éﬂ . (21)
i=1 N N

Figure 2 shows the effort Q(f, () as a function of the global fraction of cooperators
f and the level of social herding ¢, which acts as a control parameter. We observe
that for very low values of ¢ the effort is a monotonously increasing function of
the frequency f. Given a fraction of cooperators, f = 0.2, and small (, it becomes
more and more difficult, or unlikely, to find a larger fraction of cooperators (red
line). Considering instead a high level of social herding, e.g., ¢ about 0.85. There
is a monotonous decrease of the effort with an increasing fraction of cooperators.
That is, starting from a supercritical level of social herding, the outbreak and the
increase of cooperation becomes very likely (green line).

The observant reader will notice in Fig. 5 for large ¢ the nonmonotonous depen-
dence of the effort on the fraction of cooperators. That is, there is a critical region
around of f ~ 0.2 below which defection becomes the most probable state. This
relates to the critical cluster size of cooperators in Fig. 6 to allow the transi-
tion toward cooperation. However, there is a noticeable difference underlying both
results. Figure 5 is based on the mean-field limit, i.e., there is no spatial correlation
between interacting agents, whereas Fig. 6 assumes a spatial neighborhood defined
by the regular lattice. In fact, it is known that spatial interaction enhances coop-
eration [21, 24, 26]. Already small, randomly formed clusters of cooperators are
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Effort

Fig. 5. (Color online) Effort Q(f, (), Eq. (21) dependent on the global fraction of cooperators f
and the level of social herding ¢. The nonlinearity is specified by a1 = 0.25, ag = 0.85.

® B

o

Fig. 6. (Color online) Snapshots of the transition toward cooperation at times ¢ =
0,10, 20, 50, 150, 500. N = 10* agents are placed on a regular lattice and interact each with their
n = 4 spatial neighbors. Dark color (blue) indicates cooperators, light color (yellow) defectors.
Parameters a; = 0.25, ag = 0.7, { = 0.95.

sufficient for the outbreak of cooperation, whereas random interaction results in a
much larger threshold.

4.2. Competition dynamics

Eventually, we can also derive a deterministic dynamics for the global fraction of
cooperators, f(t), in the mean-field limit. Basically, there are two ways of deriving
this. One starts from the stochastic dynamics on the microscopic level, p;(0;,t),
Eq. (13) and is discussed in detail in [22]. The other one starts from the stochastic
dynamics on the macroscopic level, P(f,(,t), Eq. (15). The expected value for the
global fraction of cooperators then follows from

(F(¢, 1)) =D P(f.¢1), (22)
-
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where f’ denote all possible realizations of f. Using the master equation (15), we
arrive at the deterministic dynamics

d{f(¢ 1)

—= =W (£,O0 = () =W (£,0 (), (23)

where the aggregated transition rates W, (f, (), W_(f,() are given by Eq. (16).
Assuming a narrow probability distribution in equilibrium, P°(f, (), the expected
value (f°(¢)) can be approximated by the maxima of P%(f,(). In particular, the
deterministic dynamics will converge to those areas where PY(f,() is largest, or
where Q(f, () has its minima, shown in Fig. 5. While we do not argue about the
specific global dynamics at intermediate times (which can be governed by stochastic
influences in particular in early stages), we can see the late stage of the dynamics
as a “quasi-stationary” motion along the valley in the potential landscape shown
in Fig. 5, provided ¢ chosen large enough.

We can rewrite Eq. (23) which basically describes the
erators at the global scale, to make it more alike to the known replicator
equation,

“replication” of coop-

d{f( 1)

ST — () (= (MIES.Q) = Bol£,)) (24)

The two terms 7 and E; are the fitness values associated with the two different
strategies. The fraction of cooperation will grow if the fitness of cooperation E1(f, ()
is larger than the fitness of defection Ey(f, (), which both depend on the global level
of cooperation and the level of social herding,

Bi(r.0 = O gy = LY, (25)
f 1-f

To evaluate the fitness values, one should note the strictly nonlinear dependence
of the transition rates on f, (16). Figure 7 shows the difference Ey — Ey on the
whole range of f and (. We emphasize that this graph holds for fixed values of
the nonlinearity parameters o, as, i.e., it adds another dimension to Fig. 3, which
was obtained for a fixed herding level (. Figure 7 also clearly shows the influ-
ence of the initial fraction of cooperators, f(0), for the mean-field case. Assum-
ing e.g., a fixed value of ¢ = 0.85, we see that the fraction of cooperators f(t)
can be increased in time only if f(0) is between 0.15 and 0.6. While the lower
bound has an intuitive meaning as the minimum threshold to start cooperation,
the upper bound is less obvious. It results indeed from the influence of the non-
linear social herding, which does not simply support cooperation if that is the
strategy of the majority. We recall that social herding does not assume any “value”
related to the strategies. Hence, for the example considered, the maximum fraction
of cooperators is given by f = 0.6. A higher level of social herding, or different
values for the nonlinearities, may increase this fraction up to about one, i.e., full
cooperation.
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Fig. 7. (Color online) Difference of the fitness values E1(f,()— Eo(f, ¢) dependent on the fraction
of cooperators, f € [0.02,0.99], and the level of social herding, ¢ € [0.05,0.99]. Dashed-line denotes
the minimum level of social herding required for a given initial fraction, f(0), such that the growth
of cooperation starts. Contour line at 0 denotes the minimum level of social herding that ensures
positive fraction of cooperators in the long term. Nonlinearity parameters: oy = 0.25, ag = 0.8.
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Another way of expressing the dynamics of Eq. (24) is through

D) — (£(¢,y)) (B — (E));

(E) =225 Eo (fo) = E1 (f) + Eo(1 = (f)).

(26)

As long as FEj is larger than the average fitness, (E), the fraction of cooperators
in the system is able to grow, but one has to recognize that, because of the time
dependence of (f(t)) and its implicit feedback on E,, (E(t)) evolves over time as
well. Hence, Eq. (26) describes a nonlinear selection process for each of the strategies
dependent on the parameters describing strategic interaction and social herding.
For some special cases, we are able to derive closed form solutions of the compe-
tition dynamics expressed by Eqs. (23)—(26). In the absence of any social herding,
¢ = 0, we just have to count in the transition rates from strategic interaction, which
are ¢, = 0, d = 1. This results in Ey(f,{ = 0) = 0 and Eo(f,{ = 0) = 1, ie.,
the dynamics reads (f(¢t)) = f(0) exp{—t}, which means that cooperation dies out,
exponentially. In the opposite case, { = 1, i.e., absence of any strategic interaction,
Eq. (24) can be solved for the case of the linear voter model, which implies ¢, = k/4
and dj, = 1— (k/4), Eq. (11). We then find Ey(f,¢ = 1) = Eo(f,¢ = 1), i.e., the fit-
ness of both strategies, which are actually mere labels without any payoff assigned,
is the same. This results in the dynamics (f(t)) = f(0), i.e., a conservation of
the initial fraction of cooperators, on average. This is known as one of the puzzles
associated with the linear voter model, i.e., individual realizations of the dynamics,
e.g., using stochastic simulations, always lead to convergence with f — 0 or f — 1,
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but averaging over many runs reveals that the frequency at which cooperators or
defectors dominate is equal to their initial fraction f(0).

These two limiting cases allow us to position the dynamics if 0 < ¢ < 1, i.e.,
the influence of both strategic interaction and social herding at the same time. For
social herding, let us first assume the case of the linear voter model as described
above. We can then verify that the closed solution for the dynamics of cooperators
is given as:

(F(¢. 1) = f(0) exp{(¢ — 1)t}, (27)
which is similar to the case of only strategic interaction, except that the time scale
for the extinction of cooperators is stretched by the factor (1 — ¢). This is an
important result because it demonstrates that linear social herding will not prevent
the extinction of cooperation, not even for large . Hence, in order to turn defection
into cooperation, we essentially need a high level of nonlinear social herding, i.e.,
the right ¢ and ay values.

Considering a nonlinearity where ay = 1/4 but as # 2/4, we find from Eq. (23)

d{f(¢1))

LS (1) (e + 30 (1= {102 ar 1] - 1}, (28)
For ap = 2/4, the solution reduces to Eq. (27), whereas for ( = 1 we arrive at
the mean-field equation for the nonlinear voter model, only [22]. In order to make
cooperation, (f) = 1, a stable fixed point for the full dynamics, the following

condition for as has to be met:

1 1-¢

2 eca- g St 2
which implies 1/[1 + 3 (f) (1 — (f))?] < ¢ < 1. This inequality can be only met
for a considerable high level of social herding. The feasible range of (f,() values
that is consistent with a given value of as, e.g., as = 0.8, is shown in Fig. 7.
The maximum range resulting from as = 1 is also shown in the same figure by
dashed line. We note again that, even if Eq. (29) is fulfilled, the dynamics does
not necessarily converge to f — 1. Dependening on the parameters {(, a1, as} also
lower equilibrium fractions of cooperators may be reached, i.e., we find a coezistence
of cooperation and defection.

5. Conclusion

In this paper, we have explored a new route toward cooperation. This route differs
from many other attempts, most of which are rooted in traditional or evolutionary
game theory, where the transition toward cooperation is induced by specific neigh-
borhood relations, repeated interactions, discounted payoffs over long time hori-
zons, indirect reciprocity, favorable strategy mutations, the enforcement of social
norms, etc. [10, 23, 32, 34, 35]. All of these propositions either improve the payoff of
the cooperating strategy or provide, in one or another way, additional information
agents may consider when making a strategic decision.
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Our approach is much simpler, by not changing payoffs at all, but only counting
on the information agents already have if they simultaneously play a 2-Person PD
game with their n neighbors (which can be spatial neighbors, or randomly chosen).
This information is the local fraction of cooperators, f; = ni/n, and defectors,
(1 — fi), of an agent, that also enters the calculation of the payoff, Eq. (4). That
means there is no additional information assumed. We argue instead that agents, at
the same time, respond to this information in two different ways, as summarized in
Eq. (9). In a strategic interaction, they choose the strategy 6, that will lead to the
highest payoff a;(0;, f;), whereas in the case of social herding they simply respond
to the local frequency of each strategy in a nonlinear manner, F(fg,). In some
sense, the second way assumes less information because no payoff matrix needs to
be known. This implies that both strategies are seen as equally valuable.

The parameter (; gives a weight to these two different ways of utilizing the
information associated with f;. In Eq. (9) we have assumed (; to be an individual
parameter, which means that agents dependent on their internal preferences or
access to knowledge (such as a known payoff) can give different weights to these
two responses. In this paper, however, we did not further explore this source of
heterogeneity, but kept it as a global parameter, constant and the same for all
agents. This limit case is equivalent of assuming a population of agents, a fraction
¢ of which only follows social herding, whereas a fraction (1 — {) only considers
strategic interactions. This allows to interpret our main result about a critical ¢ to
turn a population of defectors into cooperators in a more general manner: ¢ can
be seen as the minimal fraction of agents following only social herding, to enable
the transition to cooperation. With respect to the access to information, we can
interpret this finding as follows: if the information about the payoff matrix is known
to all agents, they will — in the given Prisoner’s Dilemma setting — collectively
choose defection (which is the suboptimal state). However, if only a small fraction
of agents (about 20) respond to the decision of others by means of nonlinear social
herding, this can drive the system toward a state where cooperation is the dominant
strategy. To put it succinctly: less information (or a larger fraction of uninformed
agents) will lead to more cooperation.

This interesting and important conclusion is derived for the case of an evolu-
tionary PD game with fixed payoffs and a fixed four player neighborhood, where
agents follow a stochastic better response dynamics. The transition toward cooper-
ation relies on choosing the right nonlinear social herding in response to the local
(or global) fraction of cooperators. We have demonstrated that the linear response,
where the probability to choose a strategy is directly proportional to the fraction of
that strategy in the neighborhood (or the population), fails to enhance cooperation.
Instead, we have to choose a nonlinearity, expressed in terms of the parameters «;,
ag, from the region of positive allee (pa) effects (Fig. 2). As a minimal condition for
the transition toward cooperation, all transition rates can be (but not necessarily
have to be) chosen according to the linear voter model, except e, which has to be
above the critical value 0.5 to break the tie in case of an equal fraction of cooperators
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and defectors. Further, the combination of ¢ and as also determines the maximum
level of cooperation that can be reached using the two different responses.

Our finding tells that social herding matters most in tie situations, which is also
similar to another class of group decision models [6]. To design a mechanism that
influences social herding only in this situation also provides a quite “cost-efficient”
solution in that we will not need to enforce a decision against the majority, to allow
for the transition toward cooperation. Agents can still follow the strategy of the
majority — just in the undecided case, we need to ensure that the symmetry is
broken into the “right” direction.

Eventually, we wish to point out that in this paper we have discussed a kind
of worst-case scenario where, in the absence of social herding, defection is the only
stable state for the system. Even for this case, our proposed mechanism excels in
transferring defectors into cooperators, on the population level. We can leverage
other model ingredients to further facilitate this transition. For example, we could
count in stochastic changes of the strategy as already considered in the strategic
component G(a;), Eq. (5), which would support random cooperation. We can further
allow for repeated interaction or “the shadow of the future” which are already known
to foster cooperation [2, 3, 38]. The important message here is that, even under
worst conditions there is a way to reach cooperation in a game-theoretical setting
by means of social herding, i.e., by pure social influence. Including this additional
dimension into strategic interaction avoids the lock-in into pure defection, which
is the suboptimal state compared to pure cooperation. The mechanism we have
proposed here does not rely on additional information, in fact it uses less of the
available information, in particular no information about the payoff structure and
no comparison of alternative strategies. Further, we emphasize again the “cost
efficiency” of the mechanism proposed in that it does not enforce decisions against
the majority, but influences the decisions of agents only in tie situations.

Summing up, adding social herding to strategic interactions is a way to sub-
stantially increase the level of cooperation with less, not more: simple rules instead
of far-reaching regulations to enforce cooperation, no additional information as
assumed e.g., in success driven mechanisms, no additional costs as in other incen-
tive schemes. Just social herding, the right (nonlinear) way.
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