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Technological artifacts such as software often comprise a large number of modules; more

than twenty thousand in the case of the Java software Eclipse. While on the micro-level
this system is modular, how should the building blocks be arranged on the macro-level?
In the literature this question has mainly been addressed with the same arguments
already used to advocate modularity on the micro-level: Dependencies should be min-
imized as they impede optimization and flexibility of the system. In contrast to this I
argue that along with a change from the micro view to the macro view also the argumen-
tation has to change. In this paper, I analyze the theoretical ramifications of dependency
between modules on the macro-level. In particular, I argue that macro-level dependen-
cies are first weak dependencies, and second, foster flexibility and change efficiency. This
argumentation is supported by an empirical analysis of 35 software architectures. Data
show that dependency relations seldom cause change propagation. Furthermore, high
dependency in the architecture negatively correlates with the occurrence of large change
events. Thus, higher interdependency is associated with higher evolvability and more
efficient change.

Keywords: Modularity; networks; evolution.

1. Introduction

In 1970, Cristopher Alexander stated: “Today more and more design problems are
reaching soluble levels of complexity” [3, p. 3]. Now, several decades later, the trend
to increasing complexity even intensifies. Not only do organizations and products
become more and more complex but they also have to prove themselves in envi-
ronments that are changing more and more rapidly. The idea of building a system
from scratch, to last forever, has become a concept of the past. Thus, a modern
system — be it an organization or a product — should not only be functional and
efficient, but also flexible.

This challenge, scholars across disciplines addressed almost unanimously with
a call for modularity: [5, 34, 35, 48, 55, 62, 64, 73] Modularity, as Langlois [34] puts
it, is achieved “[b]y breaking up a complex system into discrete pieces which can

1250083-1

A
dv

s.
 C

om
pl

ex
 S

ys
t. 

20
12

.1
5.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
W

IS
S 

FE
D

E
R

A
L

 I
N

ST
IT

U
T

E
 O

F 
T

E
C

H
N

O
L

O
G

Y
 Z

U
R

IC
H

 (
E

T
H

) 
on

 0
3/

08
/1

9.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.

http://dx.doi.org/10.1142/S021952591250083X


August 16, 2012 15:23 WSPC/S0219-5259 169-ACS 1250083

M. M. Geipel

then communicate with one another only through standardized interfaces within a
standardized architecture”. “The power of modularity” as Baldwin and Clark [6]
put it, has proven to be a veritable boon. Not only theoretically, but also in real
world scenarios. Langlois and Robertson [35] for example showed that modularizing
computer architecture and stereo equipment was rewarded with an explosion of
product variety and fast paced innovation.

The story does not end here, though. It is only the beginning. Let us now go
one step further: Having organized a system by decomposing it into modules of
manageable size we face another question, which, unlike modularity, has as yet
not been sufficiently discussed. Often, the modular system is comprised of a large
number of parts. The Java software Eclipse for example consists of more than 20,000
different modules (Java-classes). The question is: “Having a modular structure on
the micro-level — or statement level in software — what structure should the
macro-level exhibit?” Or, in other words, how should the modules or classes be
combined to form the macro-level of the system? Empirical evidence by Geipel and
Schweitzer [20] for instance shows that the simple dictum “minimize dependency” is
a problematic one. A more complex view of dependency seems necessary. Especially
as the structure of the macro-level has a strong impact on the evolvability of the
system as well as modification costs, and should therefore be a central question of
system design.

This paper addresses the challenge, both theoretically as well as empirically.
The argument is that the mechanisms on the macro-level, which focuses on the
dependency between modules, differ largely from the ones on the micro-level which
comprises fine grained dependency structures between functions, variables and
statements: Design principles valid on the micro-level are not necessarily effec-
tive on the macro-level. They make clear the difference between micro-level and
macro-level, as well as the arguments connected to each view. Section 2 reviews
the traditional micro-level perspective and the classical arguments against depen-
dency. Section 3 introduces the macro-level perspective and explain how the role
of dependencies differs for this view. The counterintuitive conclusion is, that lop-
sided minimization of dependence on the macro-level increases change costs and
decreases evolvability. To back this argumentation, an empirical analysis is pre-
sented in Sec. 4. Section 5 presents the results of this analysis. They empirically
back the theoretical arguments of the previous sections, based on evidence from 35
Java projects. Finally, the discussion is wrapped up in Sec. 6.

2. The Ubiquity of Dependency

A Microsoft official, working on the Windows operating system, was quoted by
Guth [24] as follows: “With each patch and enhancement, it became harder to strap
new features onto the software since new code could affect everything else in unpre-
dictable ways.” The key concept here, is dependency. Different parts of the system
are dependent, and affect each other.
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Indeed, in the history of modeling complex systems, considering elements con-
nected by a dependency relation has proven to be a dominant and timeless concept.
Already Simon [58] modeled complex systems by means of matrices which reflected
the dependency between parts of the system. He pointed out that real world systems
tend to be organized as a hierarchical composition of approximately independent
subsystems (Near Decomposability).

The system model used by Alexander [3, Appendix II] is designed along the same
lines: Elements of the system are connected by either positive or negative influence
links. He argues that designers should define subsystems that can be adjusted more
or less independently. Von Hippel [66] later applied this interdependency view to
innovation tasks.

More focused on practical application, Steward [61] developed the Design Struc-
ture Matrix methodology which evolved subsequently into a whole toolbox for
planning engineering tasks [14]. Furthermore, the dependency view entered into
practical management: The value chain model of Porter [50, Chap. 2] uses task
dependency as a key concept. Also in software engineering, similar dependency-
based approaches [27, 62] are common.

Again, with a theoretical focus, Kauffman [31] presented the NK-model which
establishes a connection between the dependency structure of a system and the
fitness landscape it generates. It thus establishes a connection between dependency
in a system and its evolvability.

What are the ramifications of dependency? In the same vein as the quotation
introducing this section, dependency is often viewed as a nuisance. A nuisance in two
respects: First, in optimizing the system configuration, and second, in performing
changes to the system. The next two subsections delve into these two aspects.

2.1. Optimizing the system

Given a system which is comprised of elements and dependencies between the ele-
ments as described in the previous section, the next step is to establish a connection
between this dependency structure and the evolvability of the system. Which struc-
ture facilitates optimization and which structure hinders optimization?

With this NK-model, Kauffman [31] added this evolutionary perspective to the
dependency discussion. While the NK-model was originally used to target biolog-
ical questions, it spawned a plethora of follow-up literature in management and
organization science (see Refs. [15, 16, 52, 55]).

In a nutshell, the NK-model defines a system as a set of n binary variables
(X ∈ B

n) with directed interdependencies between them. The parameter k denotes
the average number of dependencies per system variable. A system configuration
can be written as a binary string of length n, reflecting the states of the n system
variables. The fitness of the system is calculated via the fitness landscape. A fitness
landscape in general [70] is a function F : X → y that takes as input the (multi-
dimensional) system configuration X and maps it to a scalar fitness value y.
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In the case of the NK-model it is assumed that each binary variable x in the
system has a fitness contribution fx which depends on the state of x and the states
of all variables connected to x via dependencies. F is realized by summing up these
individual contributions:

F (X) =
∑

x∈X

fx(X). (1)

Consequently, dependency generates “rugged” landscapes: The more dependen-
cies the lower the correlation between neighboring points in the genotype space
(for a mathematical treatment, see Ref. [68]). Thus, interdependence renders local
search increasingly inefficient. Kauffman [31, p. 52] terms this the Complexity Catas-
trophe: “As complexity increases, the height of accessible peaks fall toward the mean
fitness.” Figure 1 schematically shows the fitness landscapes corresponding to the
two extremes of complete independence and complete interdependence.

Assuming that the system is optimized by evolutionary forces — local search —
minimization of dependencies is obviously desirable. An evolutionary point of view
is indeed deeply rooted in economic thought; starting from Schumpeter’s “Entwick-
lung” [57], strong arguments for an evolutionary optimization process, based on
local search, have repeatedly been advocated [1, 45].

Even if an evolutionary process is rejected and opted for optimizing rational
agents, the Complexity Catastrophe keeps lurking: With increasing dependencies
and system size, finding an optimal system configuration becomes unfeasible. Wein-
berger [68] showed that depending on the degree of dependency k the search for the
optimal system configuration falls into different computational complexity classes:
The two extremes being solvable in linear time: O(N) for complete independence
and solvable only in exponential time: O(2NN) for complete interdependence. For
a boundedly rational agent [30, 41, 59], a k too high will thus thwart optimization
effort. In the context of the NK-model reasoning along these lines is reflected in a
number of works [4, 16, 32, 36, 37].

Likewise, argumentation is not restricted to an NK-model context. In soft-
ware engineering Loyall and Mathisen [39], Bohner and Arnold [7], and Ryder
and Tip [54] discuss the impact of changes. Furthermore, in the Design Structure

configuration space

fit
ne

ss

configuration space

fit
ne

ss

Fig. 1. (Color online) Schematic fitness landscapes: A system with independent parts generates a

smooth fitness landscape (left). High interdependence between parts, however, results in a rugged
landscape (right).
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Matrix community, high dependency is linked to a more complex and time consum-
ing design process [14].

Finally, Herbert Simon saw a significant connection between the evolvability
of a system and its structure which he exemplified with his parable of the two
Swiss watchmakers [60].a Based on this literature it can be concluded that system
optimization is hindered by dependencies; at least on the micro-level.

Putting software in the NK model framework, the source code corresponds to the
configuration space. Code defines functionality. If the resulting functionality is the
one intended, it is assigned — using NK terminology — a high fitness. If dependency
is low, small changes in the code translate to small changes in functionality and thus
small changes of fitness (the situation depicted in on the left of Fig. 1). Conversely,
with high dependency a small change may influence large parts of the software in
maybe unpredictable ways and thus result in large jumps in fitness (right part of
Fig. 1).

2.2. Implementing change

In the previous section, the problems interdependence inflicts on the optimization
of a system were discussed. In this section, arguments are presented which lead
to the conclusion that also the implementation of a configuration found in the
optimization process is hindered by dependencies.

The question is, “What do we expect from a flexible architecture?”. First of all,
the architecture should be extendable (see also Ref. [49]). Adding a feature should
leave the rest of the architecture more or less untouched. Next, the modifications
needed to advance from one version of the software to the next should be as inde-
pendent as possible. This means that they can be distributed on different people
and on different points in time. Small independent changes also facilitate quality
control as problems can be backtracked to the responsible modification more easily.
Henceforth, a change event is modeled as a set of atomic changes Ct that were
committed simultaneously at time t.

How does interdependence interfere with the objective of having small indepen-
dent change events? Imagine that b depends on a, and a is modified. b will be
influenced to some degree and there is a risk that this influence might be strong
enough to force a modification of b to preserve the integrity of the system. In this
case, the modification of a entails a subsequent modification of b. The change per-
formed in a propagates to b. The result is a change event of size two: Ct = {a, b}.
If other modules depend on b this change could even propagate further and cause
a whole avalanche. The result: large change events.

aIn a nutshell: One watchmaker is building watches in a monolithic fashion, the other one in a
modular fashion. Damage in the monolithic watch renders the whole watch unusable. In a modular
one, damage only renders one module useless. Given a certain rate of damage, a monolithic design
becomes unfeasible.
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Argumentation along these lines is common in literature, especially in the con-
text of software: The law of Demeter, suggested by Lieberherr and Holland [38],
aims at organizing and reducing dependencies between classes. In the same vein,
MacCormack et al. [40] define a change cost metric by inferring the degree to which
a change in any single element causes a (potential) change in other elements of the
system. It is assumed that changes (potentially) propagate along links and conse-
quently high dependency results in high change costs or less options for change. As
will be shown in Sec. 3.2, as well as in the empirical results in Sec. 5, such an argu-
mentation in the context software (an already modularized system) can be prob-
lematic. Propagation of changes along code dependencies has also been reported in
several works [11,26,51]. Finally, Gorshenev and Pis’mak [22] argue along the same
lines when explaining the size distribution of change events in software evolution.

3. The Macro-Level: In Favor of Dependency

“A modular system is composed of units (or modules) that are designed indepen-
dently but still function as an integrated whole.” [5, box on page 86]. This section
deals with this “functioning as an integrated whole”. Arguments will be presented
why the switch from micro- to macro-level changes the rules of the game. In par-
ticular, a system in which modules make heavy use of each other’s functionality
will allow for more efficient change. In other words, while decoupling and depen-
dency minimization is desirable on the micro-level, as argued throughout Sec. 2,
on the macro-level, high interdependence in the sense of module usage is desirable.
There are two arguments backing this proposition. The first one (Sec. 3.1) is based
on an evolutionary point of view and the second one (Sec. 3.2) takes a software
engineering stance, highlighting the boon of module reuse.

3.1. Large evolutionary steps

Altering the fitness of a system requires changes in the system configuration,
changes in the system parts. Previous research concentrated on the question: “How
do we find the best configuration?”. Let us ask now: “How do we implement a
configuration if change is costly?”. The focus thus shifts from finding solutions to
implementing solutions.

In answering the search question it was assumed that optimization can be prox-
ied as local adaption. While it can be considered as a fact that man’s optimization
capabilities are limited and his behavior is, at best boundedly rational, limiting
system optimization to a blindfolded hill climbing mechanism is most probably
an oversimplification. Let us assume more farsighted but still limited optimization
capabilities. Let us further assume a cost of implementing solutions. A cost that
might outweigh the cost of searching a solution. Looking at software, for example,
this cost is important indeed: Besides consuming time and money, large changes in
software bear several risks: First, with each changed line of code a bug could be
introduced. Second, the more changes are made, the harder it will be to localize
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a newly introduced bug. Besides these technical costs and risks, large changes in
a system are often hindered by sociological forces: People do not like change [13,
Chap. 30].

Thus, a system should be designed in a way that its function/fitness can be
changed significantly with only minimal modifications of the system’s implementa-
tion. The efficiency of change can be defined as change in the functionality divided
by necessary change in the implementation. Obviously, lower implementation costs
and higher change efficiency are possible on rugged fitness landscapes: In the left
landscape shown in Fig. 1, starting from a random system configuration, the risk is
high that we need to “walk” a long distance in the configuration space to reach an
optimum. This walk is costly. In the right landscape, however, optima are widely
distributed. Any randomly chosen point in implementation space is close to an
optimum. The walk will be short.

This argument for change efficiency in rugged landscapes is further strengthened
if we assume that we are not searching the optimum but rather one sufficiently
good local optimum. In other words, a satisficing strategy is adopted, as described
by March and Simon [42] and Cyert and March [12]. A landscape offering many
such “islands” of satisfactory fitness distributed throughout configuration space is
superior to one that offers only one such island, as the next island can on average
be reached with less effort.

This leads to the following conclusion: Given substantial implementation costs,
compared to search costs, a rugged landscape gains attractiveness, as the fitness of
such a system can be changed with less implementation effort. If these conditions
are met in the case in software engineering reality, the following hypothesis should
hold true:

Hypothesis 1. Good design and high flexibility are compatible with high levels
of interdependency in the code.

3.2. Module reuse

It is only logical that if b depends on a and a is modified, b is affected. The question
is: “Are we really forced to modify b subsequently?” If the micro-level of the system
is already modular, meaning that a and b are realized as modules using information
hiding and interfaces, it should be possible to modify them independently. After all,
this is a central part of the very definition of modularity. Change would still affect
dependent modules, but not necessitate changing them. The dependency structure
we are dealing with thus resembles more a loosely coupled system in the sense of
Orton and Weick [47] than a system with strong dependencies in the sense of the
NK-model [31], Alexander’s dependency model [3, Appendix II] or the innovation
task partition model by von Hippel [66].

The following thought experiment shows that introducing (weak) dependen-
cies can reduce change effort: Imagine a system with three units performing three
different tasks x, y, z. To accomplish them they need to perform a sub-task a.
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Fig. 2. A system with three modules, each using a helper function a. The design minimizes
dependencies, however, in case a needs to be changed to b an avalanche of changes is caused
(gray).

Figure 2 shows a configuration where each unit incorporates its own version of a
(a1, a2, a3). Having dependency minimization in mind, this seems to be well done:
There are no dependencies and no changes can propagate one might think. Also
metrics looking only at the nodes and dependencies would give a favorable judg-
ment.

Yet, a software engineer would instantly dismiss such a design. It contradicts
one of the most basic principles of software designb: “Don’t repeat yourself!” as
formulated by Hunt and Thomas [29, Chap. 2]. Also Fowler denounce repetition as
bad design. Software engineers would suggest the design shown in Fig. 3.

Sub-task a is separated from x, y and z and not duplicated. Each x, y and
z uses the same a and as a consequence is dependent on it. Even though this
process generates dependencies on the macro-level, it reflects perfectly the definition
of modularity on the micro-level. The dependencies are governed by an interface
contract and implementation details are hidden, just as Parnas [48] and Baldwin
and Clark [5] recommend.

Furthermore, exactly because of these dependency links, it is more flexible.
Suppose a better way — let us call it b — is found to perform the task formally
performed by a. In the design in Fig. 2, we need to change three units (change
is indicated by gray shading) to incorporate the better solution b. In Fig. 3, in
contrast, only one change is needed. The performance of x, y and z is influenced
via the dependency links. Imagine now that x, y and z need more helper functions.
We will end up with more and more dependencies and at the same with more and
more flexibility.

The conclusions to be drawn from this thought experiment are the follow-
ing: First, in certain cases dependencies prevent change avalanches instead of

Fig. 3. A system with three modules, each using a helper function a which has been separated.
The design has more dependencies than the previous one (Fig. 2), but limits modifications caused
if a needs to be changed to b (gray).

bIt should not be left unmentioned that also management scholars argue for reuse in this
context: [25].
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creating ones. This flexibility of interdependent systems should be reflected in the
change history:

Hypothesis 2. Higher interdependence is associated with more small changes and
less big changes.

Second, if the elements of the systems are already modules adhering to the laws
of information hiding, it is unlikely that dependencies between them propagate
changes.

Hypothesis 3. Change propagation along class dependencies is the exception, not
the rule.

Taking into account the widespread use of modularity across disciplines, we can
assume that this reasoning does not only pertain to software but likewise to a
variety of social and technological systems.

4. Research Design

In the previous section, it was argued that high reuse between modules enables
efficient changes and fosters flexibility. In this section, empirical evidence for this
proposition is presented.

Software architecture is especially suitable for this endeavor: First, its structure
can be retrieved in an automated and unbiased fashion. Although system architec-
tures in other fields have been successfully analyzed the process of formalizing them,
thus finding the building blocks and the dependencies between them, it is tedious
and prone to subjective judgment. Furthermore, getting reliable data on the mod-
ification history is hardly feasible. Software elegantly avoids these problems: The
dependency structure can be read from the source files and the modification history
is recorded by a version control system such as SVN or CVS.

Furthermore, the burgeoning of Open Source Software has attracted many schol-
ars and inspired studies in various fields [67]. This is a convenient situation as
it allows us to build on a solid basis of established knowledge and best practice
methods.

While analysis of software from the dependency point of view is an established
procedure, the two level view argued for in the previous sections, is a novel aspect.
The next section is thus dedicated to explain the mapping of the micro- and macro-
system level to software (Sec. 4.1). Next, the data set used in the empirical analysis
is described, including the data retrieved (Sec. 4.2). Finally, in Sec. 4.3, the mea-
surements conducted are formally defined.

4.1. Mapping the micro- and macro-level to software

In the software industry it was soon clear that large projects needed to be struc-
tured and that programming languages needed to support a decomposition of the
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code into modules. Thus, many languages formally supported a certain degree of
modularity. Among them Ada, D, F, Fortran, Pascal (partly), ML, and Modula-2.
The decisive step toward modularity in the modern sense — as for example defined
by Ulrich and Tung [64] or Baldwin and Clark [5] — was the introduction of “Infor-
mation Hiding” by Parnas [48]. The code should not only be structured, but imple-
mentation details should be hidden from the user of the module. Modules are black
boxes hiding their inner working and are exposing only the interface, necessary for
calling their services. Developers should be relieved from knowing everything about
the system. Such an architecture has two advantages: it eliminates the inevitable
information overload a programmer has to bear in a growing project, and second
it contains the effects of modification, as the hidden code can be changed without
consequences, as long as the interface contract is not violated. Object-oriented pro-
gramming languages such as C++, Java, Eiffel etc. incarnate these principles. They
require each piece of code to reside in a class — a blueprint of a cohesive package
of data and function — which hides its inner working behind a public interface.
Classes form the basic modular building blocks of any object-oriented program.
Figure 4 illustrates this principle.

The classical object-oriented software engineering methodology [8, 44, 53] not
only describes the principles of classes and interfaces but also defines how real world
problems are mapped to an object-oriented representation. In other words, how the
problem should be decomposed into a system of interacting classes. Building on this
basis, pattern oriented software engineering — inspired by Alexander et al. [2] —
focuses on the composition of small ensembles of classes and suggests abstract
solution patterns for recurring problems [18].

Besides these prescriptive approaches to software architecture, there also exist
more empirical approaches where the focus lies on measuring aggregate properties
of the architecture. A method especially suitable for object-oriented software is the
Design Structure Matrix (DSM). It is a frequently used tool to depict and analyze
the module dependencies in product architecture and was devised by Steward [61].
Applications of the Design Structure Matrix method in the field of software are
discussed by Sullivan et al. [62], Sangal et al. [56] and MacCormack et al. [40]. The
idea is that the modules and their dependencies form a directed network which can
be interpreted as an adjacency matrix. Therefore this abstraction of the software
resembles the dependency-based models discussed in the previous sections.

Fig. 4. A schematic view of classes in object-oriented programming. Class1 contains functions
(f() and g()) as well as data (D). From the outside visible, however, is only its interface. Other
modules access Class1’s services only via this interface, without knowing the implementation
details hidden inside Class1.

1250083-10

A
dv

s.
 C

om
pl

ex
 S

ys
t. 

20
12

.1
5.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
W

IS
S 

FE
D

E
R

A
L

 I
N

ST
IT

U
T

E
 O

F 
T

E
C

H
N

O
L

O
G

Y
 Z

U
R

IC
H

 (
E

T
H

) 
on

 0
3/

08
/1

9.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 16, 2012 15:23 WSPC/S0219-5259 169-ACS 1250083

Modularity, Dependence and Change

1 public class Sing l eUserRat ingIn fo extends Rat i ng In f oL i s t {
2 private f ina l TOTorrent to r r en t ;
3

4 public Sing l eUserRat ingIn fo (TOTorrent to r r en t ) {
5 this . t o r r en t = to r r en t ;
6 }
7 [ . . . ]
8 }

Fig. 5. The source code of the class SingleUserRatingInfo from the Azureus project. ([...]
omitted parts).

The concept of class dependency shall now be explained based on the class
SingleUserRatingInfo which forms part of the Azureus project. Figure 5 shows
a shortened version of the class. SingleUserRatingInfo extends the function-
ality of RatingInfoList (line 1) and thus is dependent on it. Furthermore, it
uses the class TOTorrent (lines 3, 5 and 6); another dependency. On the other
hand, SingleUserRatingInfo is used by the class PlatformRatingMessenger

(source not listed here), meaning that PlatformRatingMessenger is dependent
on SingleUserRatingInfo. In a nutshell, two classes are dependent if one class
calls a function of the other one, inherits functionality of the other one or com-
prises the other one as a member. This practice is in line with previous works by
Challet and Lombardoni [10], Sangal et al. [56] and MacCormack et al. [40].

4.2. Description of the data set

The empirical analysis presented in this chapter is based on 35 Java
projects. The Java programming language was developed at Sun Microsystems
(http://java.sun.com) and is officially defined by Gosling et al. [23]. For several
reasons it is a natural choice for a study such as ours. First, unlike other popular
languages such as C++, Java was designed from scratch to be an object-oriented
language. There are no interpretation ambiguities. An advantage which adds to the
quality and reliability of the results. Furthermore, Java enjoys a high popularity in
the Open Source community: On one of the world-wide largest Open Source incu-
bator sites — SourceForge (http://www.sf.net) — Java is used in approximately
25%c of the projects, making it the most popular language used. C++ qualified for
the second place with 21%.

Accordingly, SourceForge served as main data source in the study. The 34
largest Java projects using CVS as version control system entered our anal-
ysis. Size was measured in number of class files and the project EasyEclipse
was excluded as it only constitutes a repackaging of the Eclipse IDE. The
data is complemented by the Eclipse IDE (http://www.eclipse.org) and AspectJ
(http://www.eclipse.org/aspectj/), both hosted by IBM. The complete list of the

cData gathered in August 2007. Note that projects may use more than one language.
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35 projects is printed in Appendix A, alongside with the size of each project and
the change history’s coverage. Further information on each SourceForge project can
be found at http://NAME.sf.net, where NAME stands for the name of the project.

For each project in the list the change history and the class dependency struc-
ture was gathered. The class dependency structure is stored as a directed graph
containing the set of classes C and the set of dependencies D ⊆ C ×C. (c1, c2) ∈ D

reads as “c1 depends on c2”. The data is retrieved by analyzing the source files of
the classes. Any reference to another class is counted as a dependence. The CVS
change log is stored as an ordered list L of sets of classes: L = (Ct)t∈T , where T

stands for time and Ct for the set of classes, that have been changed simultaneously
at time t.

4.3. Definition of measurements

To test the argumentation presented in Sec. 3, three aggregate measures are needed:
The first one is the average dependency of the modules (d). This means the average
number of other classes, a class depends on. It is defined by dividing the number
of dependencies (|D|) by the number of classes (|C|):

d =
|D|
|C| . (2)

In graph theoretic terms this is the average node in- or out-degree in the directed
dependency graph. Please note that average in- and out-degree are the same in
any directed graph as every edge adds one to both the in- and out-degree count.
Conclusion: The higher d, the higher the degree of interdependency in the software
architecture.

The next aggregate measure needed is the share of multi-class changes among the
change events. In Secs. 2.2 and 3.2 it was argued that changes should not propagate.
Or, in other words, being able to modify modules one by one in an independent
fashion is a desirable property of any system architecture. The degree was measured
to which this is possible by calculating how many change events affected only one
class (single class change, |Ct| = 1) and how many affected many classes at once
(multi-class change, |Ct| > 1). The share of multi-class changes among all change
events provides a measure for the architecture’s rigidity. The higher the share, the
harder it is to implement change. The formal definition of the share of multi-class
changes (m) is

m =
|{Ct ∈ L : |Ct| > 1}|

|L| . (3)

Finally, in Sec. 3.2, it was argued that in modular systems dependencies are loose
couplings. Changes of one module will only seldom necessitate a modification of the
modules depending on it. To verify this hypothesis, the influence of dependencies
on the propagation of changes needs to be measured.
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Let us use C (cursive, not to be confused with C) to denote the fact that two
classes have been modified at least once simultaneously, thus ∃Ct ∈ L : ci ∈ Ct, cj ∈
Ct. Let us further use D (cursive) to denote the fact that two classes are connected
by a dependency, thus (ci, cj) ∈ D. A straight forward measure for the influence of
dependencies on change propagation is the conditional probability P (C|D). Read:
the probability that two classes have at least once been modified together, given
that they are connected by a dependency P (C|D), is calculated from the data as
follows:

P (C|D) =
|{(ci, cj) ∈ D : ∃Ct ∈ L : ci ∈ Ct, cj ∈ Ct}|

|D| . (4)

As a reference, we also compute the probability P (C|¬D) that two unconnected
classes have at least once been modified together. We use ¬D to denote the fact
that two classes are not connected by a dependency, thus (ci, cj) �∈ D. P (C|¬D) is
calculated as follows:

P (C|¬D) =
|{(ci, cj) �∈ D : ∃Ct ∈ L : ci ∈ Ct, cj ∈ Ct}|

|C|2 − |D| . (5)

5. Empirical Results

Figure 6 visualizes the dependency network for two different Open Source projects.
Surprisingly, a high degree of dependency is evident. Just a first indication that
dependency minimization is not the dominant maxim of design. In this section, the
measures defined in the previous section are applied with the end to quantitatively
describe these networks.

Fig. 6. Dependency on the macro-level in two OSS projects. Nodes stand for Java classes and
edges for dependencies. Both pictures represent the state of the projects on 1st January, 2008.
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The results are presented in the following way: first one prominent project —
the Eclipse development environment — is discussed. This discussion addresses
Hypothesis 1. Next, we take a look at the complete set of projects introduced
in Sec. 4.2. Applying the measurements defined in Sec. 4.3 empirical support for
Hypotheses 2 and 3 is provided.

5.1. The case of eclipse

Eclipse is an Open Source integrated development environment (IDE) developed
by IBM. With over 20,000 classes, it is one of the largest Open Source projects
written in Java. Furthermore, according to a survey conducted by QA-Systems,d

Eclipse is the market leader in the Java IDE sector. With 45% market share it
is clearly ahead of its closest competitor, JBuilder (16%). Yet, more interesting
in the context of this paper is the fact that Eclipse is considered a show case of
good software engineering. The leading software architect of Eclipse is Eric Gamma,
one of the founders of pattern-oriented software engineering [18]. As Eclipse is a
multi-functional IDE intended to work for any programming language and any
programming-related activity, the whole architecture is designed with flexibility
and extendibility in mind [17]. In fact, the open architecture attracted a large
community of developers contributing a vast variety of extensionse and supports
development in many different languages (Java, C++, Phython etc.), manages SVN
and CVS repositories, supports user interface design, UML modeling and database
management (SQL).

To check Hypothesis 1, the following question needs to be answered: “Does
Eclipse exhibit a significantly higher or lower interdependency between classes,
compared to other projects?” The answer is quite unmistakable: Eclipse has the
second highest value of d in the set of analyzed projects: The average number of
dependencies per class d of Eclipse is 8.9; the mean of d in the sample is 4.1 with
a standard deviation of 1.8. As already mentioned, Eclipse is the by far the largest
project in our sample (see Appendix A). Before drawing a conclusion from the high
value of d, the size effect needs to be excluded. Important question: Is the average
degree in the dependency network growing with size?

The dependencies in Eclipse, however, do grow only slightly super linear with
the number of nodes (see Fig. 7). Fitting the growth to f(x) = axb with least
squares gives a = 3.36 and b = 1.09. For a more in depth treatment see [19], and
for a mathematical modeling approach to growth in software dependency networks
see [63].

This slight growth of d does not change the finding, though. Even in March 2002
when Eclipse had only 7467 classes — comparable in size to the other projects in
the sample set — it already had 57,762 dependencies and thus a d of 7.7. Eclipse

dData collected from the last week of August to the end of September 2003. See http://www.
qa-systems.com/products/qstudioforjava/ide marketshare.html
esee the Eclipse plug-in portal: http://www.eclipseplugincentral.com/
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Fig. 7. The evolution of network density expressed by the number of nodes |Nt| versus the
number of edges |Et|. Left: Eclipse. Right: Azureus. Circles represent data points, the solid lines
represent fits of equation f(x) = axb to the data.

back then would have equally been the project with the second highest value of d

in the set of analyzed projects. Therefore, the high value of d cannot be explained
by the large size of Eclipse. A high d is inherent in the design of Eclipse.

The conclusion is that flexibility and extendibility are compatible with a high
degree of interdependency as Eclipse evidences. We might even suspect that they
go hand in hand. A thought further elaborated on in the next section.

5.2. Evidence across 35 Java projects

To test Hypotheses 2 and 3 a comparative analysis of the whole set of 35 projects was
conducted. First, the question “To which degree does change propagation occur?”
will be addressed. It is linked to Hypothesis 2. Next, we look at the link between
dependency and the share of multi-class changes to test Hypothesis 3.

5.2.1. To which degree does change propagation occur?

To answer this question and thus verify Hypothesis 2 P (C|D) and P (C|¬D), defined
in Eqs. (4) and (5), need to be compared. Table 1 shows the results for all projects
in the sample. To recapitulate, P (C|D) is the probability that two classes, connected
by a dependency, are at least once modified together. P (C|¬D) is the probability
that two independent classes are at least once modified simultaneously. The error
margins of the estimates are given on a confidence level of 99% under the assumption
of a binomial distribution.

It can be seen that less than half of the classes linked by a dependency, change
together at least once in their common history. This is significantly higher than
the values for P (C|¬D), which, except for one outlier, lie between 0.1% and 7.1%.
With respect to Hypothesis 3, this result means two things: First, change propaga-
tion along dependencies exists even though the system is modular. Second, not all
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Table 1. P (C|D) and P (C|¬D) for each project. For the definitions see Eqs. (4) and (5)
in Sec. 4.3. The error margins are given on a confidence level of 1% under the assumption
of a binomial distribution.

Project P (C|D) P (C|¬D) Project P (C|D) P (C|¬D)

architecturware 33.2±1.3 0.5±0.1 jpox 35.1±1.2 0.8±0.1

aspectj 57.8±1.6 18.5±0.1 openhre 34.6±2.0 1.1±0.1

azureus 38.2±1.3 1.2±0.1 openjacob 24.0±1.3 1.2±0.1

cjos 36.3±1.1 0.2±0.1 openuss 26.8±1.5 1.6±0.1

composestar 49.0±2.0 1.7±0.1 openxava 28.0±1.8 2.0±0.1

diee-mad 23.0±2.4 1.1±0.1 pelgo 18.1±1.3 0.3±0.1

eclipse 21.5±0.3 0.3±0.1 personalaccess 29.8±1.9 1.3±0.1

enterprise 16.5±1.3 0.5±0.1 phpeclipse 49.5±1.9 2.0±0.1

findbugs 21.1±0.7 0.6±0.1 rodin-b-sharp 21.8±1.0 0.5±0.1

fudaa 34.5±0.9 1.6±0.1 sapia 42.4±1.7 1.1±0.1

gpe4gtk 28.9±1.4 1.1±0.1 sblim 12.7±0.6 1.5±0.1

hibernate 45.6±1.3 1.1±0.1 springframework 33.6±1.2 0.5±0.1

jaffa 29.5±1.5 0.9±0.1 squirrel-sql 27.4±1.5 1.2±0.1

jazilla 62.0±1.6 7.1±0.1 university 26.8±1.6 4.0±0.1

jedit 58.0±1.8 1.2±0.1 xendra 19.0±1.3 1.5±0.1

jena 33.0±1.1 1.0±0.1 xmsf 34.8±1.6 2.4±0.1

jmlspecs 48.2±1.9 3.1±0.1 yale 31.5±1.5 2.6±0.1

jnode 28.0±0.8 0.5±0.1

dependencies propagate changes. More than half of the dependencies seem indeed
to be “change neutral”. They foster code reuse without polluting the system with
higher change effort. This second part is a novel aspect and contrasts with the
literature reviewed in Sec. 2.2.

The project Aspectj seems to be an outlier: Many classes in its software repos-
itory make use of aspect-oriented-programming [33]. This means that many depen-
dencies are generated by the aspect weaver. Such dependencies are invisible to the
analysis presented in this paper and my thus distort the result.

5.2.2. How is interdependency linked to flexibility?

Hypothesis 2 formulated the conjecture that higher interdependence (higher d) is
associated with more small changes and less big changes (lower m). Figure 8 shows
a scatter plot of d against m based on the 35 projects analyzed. A calculation of
the Pearson product-moment correlation coefficient supports this argumentation:
the average degree in the class dependency network d and the frequency of multi-
class changes m exhibit negative correlation. The correlation coefficient r being
−0.49 while p < 0.002. Thus, the probability of this correlation being generated by
chance by two uncorrelated random variables is below 1%. The error margins of r

are [−0.70,−0.18] based on a 95% confidence level. Therefore, the negative correla-
tion is significant. The gray line serves as orientation. It was fitted to the data with
the least squares method. The conclusion is that a higher interdependency does
not necessarily lead to a higher frequency of change avalanches. Quite the con-
trary, a high level of interdependency between classes is, according to the analyzed
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Fig. 8. Link density (d) versus the frequency of multi-class changes (m). See Eqs. (2) and (3) in
Sec. 4.3.

data, associated with less multi-class changes. Therefore, in software, the positive
effects of dependency seem to outweigh the negative ones, as argued, based on the-
oretical considerations in Sec. 2. Namely: reuse, while causing more dependency,
actually makes small changes with high impact possible. Thus, a modification at
a single location (class) is sufficient to add new functionality. See Figs. 2 and 3 in
particular.

5.3. Limitations

While the theoretical discussion was held as general as possible, the empirical part
focused on software architecture. Caution is thus advised when generalizing the
results to all possible systems, eligible to the dependency-based view. Software
systems have certain idiosyncratic properties: The most salient one is that in a
software system no part is repeated. Why should it? If it is needed by more than one
other part, we make a module out of it which can be reused as many times as needed.
This starkly contrasts with physical systems in which repeated parts abound. The
here presented analysis is probably not valid for such physical systems with repeated
parts. Systems that share the uniqueness of parts with software systems are, for
example, task networks such as the ones described by Hippel [66], division of labor
as it is formalized by Marengo and Dosi [43], organizations as described by Rivkin
and Siggelkow [52], and Langlois [34]. Particular systems not sharing uniqueness
of parts with software systems are for example the physical systems discussed by
Huang and Kusiak [28], and Ulrich [65].
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6. Conclusion

Modularity is a lively field of research, yet scholars focused mainly on modularity
and dependency on the micro-level. In this paper, it was argued that once a sys-
tem is modularized, the dependencies between the modules form a new level, the
macro-level. Further, it was argued that dependencies play a different role on this
level. Whereas on the micro-level they are strong and add complexity to the system;
on the macro-level dependencies are weak and a manifestation of functional reuse.
This leads to a counterintuitive conclusion: higher dependency goes hand in hand
with higher flexibility.

Section 5 presented empirical evidence for this reasoning. First, an analysis of
the prestigious Eclipse project showed that high dependency is compatible with or
even necessary for good system design and high flexibility. Second, a comparative
analysis of 35 more projects showed that more than half of all dependencies between
classes are never involved in propagated changes: they are “change neutral”. This
means that more than half of the dependencies are irrelevant for the project’s
change dynamics and that methods estimating flexibility and change costs based
on the complete set of dependencies consequently will fail. This result also suggests,
that the negative role of dependencies is overestimated in management literature.
Finally, the analysis revealed, that propagated changes are not more frequent in
systems with high interdependency as common wisdom predicts. Quite the contrary:
there is a significant negative correlation. Nevertheless, a certain percentage of the
dependencies is a vector of change propagation. Blindly adding dependencies to a
system will therefore hardly lead to better design. It is essential to add the right
dependencies. Guidance in this respect might come from metrics which take further
structural aspects into account. For instance the Q metric by Newman [46] has found
recent application in the context of software dependency [71, 72]. There are also a
number of software specific metrics which might shed more light on the nature of
dependencies. An overview of software specific metrics is provided by Gilb [21].
Establishing a link between these metrics and the part of the dependencies which
foster change propagation seems a promising line of future research.

As a conclusion, the ambivalent role of dependencies — as a vector of change
propagation as well as functional reuse — suggests that we are confronted with
a tradeoff between independence and module reuse on the macro-level. A simi-
lar tradeoff question concerning not dependency but modularity has already been
discussed in the management literature. Ulrich and Tung [64], Welch and Wax-
man [69], and Brusoni et al. [9] pointed out possible negative side effects of modu-
larity and argued for balancing advantages and disadvantages. A similarly balanced
view seems also to be appropriate in the case of dependencies.
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Appendix A. Projects

Project Change history Change events Nodes Edges

architecturware 2003-08-20–2008-02-04 25,005 4725 14,637
aspectj 2002-12-16–2008-01-26 18,864 1735 10,342
azureus 2003-07-07–2008-01-29 38,408 3147 17,012
cjos 2000-10-04–2008-01-29 62,244 9030 21,902
composestar 2003-05-30–2006-11-18 8554 2358 7156
diee-mad 2005-07-28–2008-07-03 5780 2594 3517
eclipse 2001-04-28–2007-11-02 371,460 26,444 235,952
enterprise 2002-08-12–2008-02-04 28,970 6702 9467
findbugs 2003-03-24–2008-02-02 23,350 7107 43,511
fudaa 2002-11-25–2008-05-14 55,594 6033 35,364
gpe4gtk 2005-07-05–2007-05-31 19,010 2195 11,365
hibernate 2001-11-27–2006-02-27 44,955 3898 16,512
jaffa 2001-11-07–2008-01-26 12,402 2300 10,901
jazilla 1998-05-06–2004-07-07 8734 2764 10,447
jedit 1999-12-07–2007-04-05 14,375 2973 8489
jena 2000-06-22–2008-01-28 47,391 3931 21,236
jmlspecs 2002-02-18–2008-01-28 14,708 2380 7849
jnode 2003-05-12–2006-06-18 48,285 6677 40,663

jpox 2003-07-21–2007-11-23 45,374 3888 17,539
openhre 2004-10-14–2008-01-31 7720 2288 6777
openjacob 2006-10-16–2008-07-01 7886 2966 13,423
openuss 2000-05-29–2007-03-24 12,238 3074 10,358
openxava 2004-11-02–2008-02-01 32,876 2386 7201
pelgo 2006-04-14–2008-02-19 9012 4837 10,199
personalaccess 2004-09-13–2008-05-22 9972 2349 6490
phpeclipse 2002-07-11–2008-01-06 11,109 2196 7896
rodin-b-sharp 2004-04-28–2008-07-04 31,065 3949 21,309
sapia 2002-11-27–2008-06-21 16,076 2977 9518
sblim 2001-06-20–2008-06-30 36,053 4472 40,423
springframework 2003-02-06–2008-02-01 55,732 4900 18,433
squirrel-sql 2001-06-01–2008-07-03 15,794 2808 10,887
university 2005-01-02–2006-12-11 3623 3548 8677
xendra 2006-05-19–2007-08-01 5636 5010 10,322
xmsf 2003-07-22–2008-07-01 16,745 2516 9836
yale 2002-03-08–2008-01-28 41,836 2197 11,641
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