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We consider a population of agents that are heterogeneous with respect to (i) their strat-
egy when interacting ng times with other agents in an iterated prisoners dilemma game,
(ii) their spatial location on K different islands. After each generation, agents adopt
strategies proportional to their average payoff received. Assuming a mix of two cooper-
ating and two defecting strategies, we first investigate for isolated islands the conditions
for an exclusive domination of each of these strategies and their possible coexistence.
This allows to define a threshold frequency for cooperation that, dependent on ng and
the initial mix of strategies, describes the outbreak of cooperation in the absence of
migration. We then allow migration of a fixed fraction of the population after each
generation. Assuming a worst case scenario where all islands are occupied by defecting
strategies, whereas only one island is occupied by cooperators at the threshold frequency,
we determine the optimal migration rate that allows the outbreak of cooperation on all
islands. We further find that the threshold frequency divided by the number of islands,
i.e., the relative effort for invading defecting islands with cooperators decreases with the
number of islands. We also show that there is only a small bandwidth of migration rates,
to allow the outbreak of cooperation. Larger migration rates destroy cooperation.

Keywords: Migration; cooperation; iterated prisoners dilemma.

1. Introduction

Human Migration, i.e., the movement of large numbers of people out of, or into
specific geographical areas, is seen as one of the biggest challenges that face the
human societies in the 21st century. On one hand, part of the human population
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has reasons to emigrate into countries which provide a “better” life — on the other
hand, industrialized countries cannot sustain their current situation without the
immigration of people. The real problem arises because the “demand” and the
“supply” side cannot be matched. Industrialized countries fear that immigrants do
not contribute to their further economic growth but, on the contrary, deplete their
wealth by taking advantage of a social security, health, and educational system
which they did not contribute to.

If we move this problem on the more abstract level of a game-theoretical model,
we can distinguish between two types of agents: those cooperating, i.e., being able
to integrate in a society and to contribute to a common good, namely economic
growth, and those defecting, i.e., without the ability to socially integrate and thus
depleting a common good at the cost of the cooperating agents. Certainly, based on
their past experience, agents can adapt, i.e., they can change their strategy from
defection to cooperation and vice versa dependent on the payoff they receive in
a given environment. The question for an industrialized country would be then to
define an optimal immigration rate that (a) does not destroy the common good, and
(b) allows agents to adapt to the assumed cooperative environment within one or
two generations, even if they may have not immigrated with a cooperative strategy.

The problems of cooperation and defection and the payoff-dependent adoption
of strategies have been discussed in the framework of the Prisoner’s dilemma (PD)
and the iterated PD (IPD) game (see Sec. 2). With our paper, we add to this
framework the ability to migrate between different countries (“islands”). Our aim
is to reveal optimal conditions for the migration of agents such that cooperating
strategies can take over even on those islands where they were initially not present.

We note that migration was previously studied in a game-theoretical context by
different authors [6, 10]. Our work differs from these attempts in various respects.
First of all, we do not assume that migration is based on the anticipated success [6, 7]
— this shifts the conceptual problem of the “outbreak of cooperation” to proposing
rules with nonlocal information such that two cooperators meet at the same place,
from which cooperating clusters can grow. We also do not make migration depen-
dent on local variables such as the number of defectors in the neighborhood [10]
or random choices of “empty” places [6, 10]. In fact, human migration is rarely
targeted at less densely crowded places, it is rather the opposite. Further, we do
not assume one-shot games such as the PD, but instead consider the IPD in which
the number ng of repeated interaction as well as the mix of up to eight different
strategies plays a crucial role.

Eventually, we do not use an agent-based model in which update and migration
rules are freely defined, to study their impact on computer simulations on a lattice.
Our approach proposes a population based model in which subpopulations are
defined with respect to (i) their interaction strategy, and (ii) their spatial location.
The consideration of separated “islands” allows a coarse-grained implementation of
spatial structures which is in between a lattice or network approach and a meanfield
description. It is known that spatial structures have an impact on the outbreak of
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cooperation [11, 15, 16], but their influence varies with other degrees of freedom,
such as update rules, synchronization, interaction topology, payoff matrix.

Therefore, in this paper we adopt mostly standard assumptions about the inter-
action type (IPD with ng encounters) and interaction topology (panmictic subpopu-
lations), strategy adoption (replication proportional to payoff), and migration (fixed
fraction of the population). To understand the basic dynamics, we first investigate
“isolated” islands (no migration) to find out about the conditions for the “outbreak
of cooperation” without external influence. This “outbreak” is defined as the criti-
cal point (strategy mix, number of encounters ng) beyond which a whole island is
going to be occupied by cooperating agents, if agents adopt strategies proportional
to their average payoff. Then, we add migration between islands to this dynamics
to find out under which conditions the outbreak of cooperation can be enhanced.
It is important to note that migration does not distinguish between strategies or
islands, i.e., there are no better suited strategies for immigration, or bad places with
high emigration rates — which we consider as artificial assumptions to explain the
“outbreak of cooperation”.

To determine the robustness of our findings, we always consider worst case sce-
narios, i.e., initial settings in which most islands have either an entirely defective
subpopulation, or at least a defective majority. We further control for important
parameters such as the pool of available strategies s, the number of interactions
ng or the number of islands K, for which critical conditions are derived. Our
finding that migration is indeed able to boost the outbreak of cooperation is
remarkable both because it is based on minimal assumptions about the dynam-
ics and because it follows from a quite systematic investigation of the underlying
conditions.

2. Rules of the Game

2.1. Strategic interaction

Let us investigate a population of N agents divided into subpopulations on K

different islands which imply a coarse-grained spatial structure, i.e., N =
∑K

k Nk.
Agents at island k are assumed to interact with the Nk − 1 other agents on their
island (panmictic population). But, in general we assume that migration between
the islands is possible, with the respective migration rates given by muv. These
define the fraction of the agent population at island u that migrates to island v in
a given time interval. Figure 1 shows the case of three different locations.

Our model basically considers two different time scales for interaction and migra-
tion. We define a generation G to be the time in which each agent has interacted
with all other Nk − 1 agents a given number of times, denotes as ng. Thus the
total number of interactions during each generation in the panmictic population is
roughly N2

k/2 × ng. At any given time, agent i can interact only with one other
agent in a “two-person game”. But during one generation G, it interacts with all
other Nk − 1 agents ng times (repeated two-person game).
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Fig. 1. Subpopulations Nk (with different strategies) are spatially distributed on k islands from
where they can migrate at rates muv .

For the interaction, we adopt the well known iterative prisoner’s dilemma (IPD)
from game theory. At each encounter between agents i and j, both have two actions
to choose from, either to collaborate (C) or to defect (D), without knowing the action
chosen by their counterpart. The outcome of that interaction is described in the
following payoff matrix:

C D

C (R, R) (S, T )

D (T, S) (P, P )

(1)

If both agents have chosen to collaborate, then they both receive the payoff R. If
one of the agents chose to defect and the other one to cooperate, then the defecting
agent receives the payoff T and the cooperating the payoff S. If both defect, they
both receive the payoff P . In the special class of Prisoner’s Dilemma (PD) games,
the payoffs have to fullfil the following two inequations:

T > R > P > S; 2R > S + T (2)

which are met by the standard values T = 5, R = 3, P = 1, S = 0. This means in
a cooperating environment, a defector will get the highest payoff.

For ng = 1 (“one-shot” game) choosing action D is unbeatable, because it
rewards the higher payoff for agent i no matter if the opponent chooses C or D.
At the same time, the payoff for both agents i and j is maximized when both
cooperate. A simple analysis shows that defection is a so-called evolutionary stable
strategy (ESS) in a one-shot PD. If the number of cooperators and defectors in
the population is given by N c and Nd = N − N c respectively, then the expected
average payoff for cooperators will be ac = (R × N c + S × Nd)/N . Similarly the
expected average payoff for defectors will be ad = (T × N c + P × Nd)/N . Since
T > R and P > S, ad is always larger than ac for a given number N c, and pure
defection would be optimal in a one-shot game. Even one defector is sufficient to
invade the complete population of N − 1 cooperators.

But in a consecutive game with short memory, both agents, by simply choosing
D, would end up earning less than they would earn by cooperating. Thus, the

1250059-4

A
dv

s.
 C

om
pl

ex
 S

ys
t. 

20
12

.1
5.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
W

IS
S 

FE
D

E
R

A
L

 I
N

ST
IT

U
T

E
 O

F 
T

E
C

H
N

O
L

O
G

Y
 Z

U
R

IC
H

 (
E

T
H

) 
on

 1
0/

20
/2

0.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



June 8, 2012 9:43 WSPC/S0219-5259 169-ACS 1250059

Optimal Migration Promotes the Outbreak of Cooperation in Heterogeneous Populations

number of games ng two agents play together becomes important. This makes sense
only if the agents can remember the previous choices of their opponents, i.e., if they
have a memory of nm ≤ ng − 1 steps. Then, for the iterated Prisoner’s Dilemma
(IPD), they are able to develop different strategies based on their past experiences
with their opponents. We note that the IPD game was studied both in the context
of a panmictic population ([1, 4, 5, 12, 14, 23]) and assuming a spatial population
structure [3, 18, 19].

Usually, in an IPD only a one-step memory is taken into account. Based on
the known previous choice of its opponent, either C or D, agent i has then the
choice between eight different strategies. Following a notation introduced in [13],
these strategies are coded in a 3-bit binary string [Io|IcId] which always refers to
cooperation. The first bit represents the initial choice of agent i: it is 1 if agent i

has cooperated, and 0 if it has defected initially. The two other values always refer
to the previous choice of agent j. Ic is set to 1 if agent i chooses to cooperate
given that agent j has cooperated before and 0 otherwise. Id is similarily set to
1 if agent i chooses to cooperate given that agent j has defected before and 0
otherwise.

Both Ic and Id can be also interpreted as probabilities to choose the respective
action given the knowledge of the previous choice of the opponent, i.e., {0 ≤ Ip, I

d ≤
1} in the stochastic case. In the deterministic case considered in this paper, Id and
Ic are either 0 or 1. Out of the eight possible strategies, to keep our results in a
tractable manner, we consider the following four strategies z(s) (s = 1, 2, 3, 4):

z(1) : [1|10] TFT

z(2) : [0|00] ALL − D

z(3) : [1|11] ALL − C

z(4) : [0|01] A − TFT

(3)

These four strategies were also considered originally in the famous paper by Axel-
rod and Hamilton [1]. Hence, we will extend these investigations by later adding
migration to the game. We note that all eight strategies have been discussed in [17].
In this paper we have dropped those variants that differ only in the first move but
then continue as described in the following. The strategies ALL-D and ALL-C are
obvious: for z(2) agent i always chooses to defect regardless of the previous choices
of agent j, z(3) follows likewise. These two strategies represent the limit case of no
memory, i.e., agent i is simply “fixed” as a cooperator or a defector.

The most interesting strategy z(1), known as “tit for tat” (TFT), means that
agent i initially cooperates and continues to do so, given that agent j was also
cooperative in the previous move. However if agent j was defective in the previous
move, agent i chooses to be defective, too. This strategy was shown to be the most
successful one in iterated Prisoners Dilemmas [1]. If initially two cooperative agents
meet, they stay cooperative (forever, in a deterministic game), this way maximiz-
ing their average payoff. This encourages other agents to adopt TFT. Hence, the
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“outbreak of cooperation” in a community of N agents occurs as the amplification
of a cooperative initial fluctuation.

The fourth possible strategy z(4) is just the negation of the most successful
one, therefore named Anti-TFT. It means that agent i starts as a defector and
continues to be so, as long as it meets with cooperative agents j, this way receiving
the highest possible payoff T . But, if it meets an agent that has previously defected,
it changes its “behavior” to cooperation. This makes some sense, since the loss in
payoff is not that much — P would be just slightly higher than S. On the other
hand, if the collaborative agent meets again with another cooperative agent, the
payoff would be R, which is a much higher gain. So, this strategy, while not making
sense in the first place, may end up with a higher payoff in those cases where
defecting and cooperating strategies are equally present. We will later show that
A-TFT in the long run benefits agents playing ALL-D and therefore will create a
more difficult environment for the invasion of cooperation, i.e., considering all four
strategies captures a worst-case scenario for the outbreak of cooperation which we
deem interesting to study (instead of giving rational arguments in favor of A-TFT).

2.2. Dynamics of replication and migration

In this paper, we are interested in how the frequencies of the different strategies
would evolve in the agent community. The fraction of agents choosing strategy z(s)

on island k is defined as f
(s)
k (t) = N

(s)
k (t)/Nk, where the different strategies are

given by Eq. (3). Similarly, the total fraction of agents playing strategy z(s) in the
whole system, is given as f (s)(t) = N (s)(t)/N . For the dynamics we may assume
that during each generation G every agent behaves according to a fixed strategy
picked up from the pool of possible strategies. This strategy can be changed only
after one generation is completed. The “update” rule for the strategy is simply given
by the success of different strategies during the past generation. As the evaluation
criteria, we choose the average payoff a

(s)
k , each strategy has received during the

last generation on island k. This will be compared with the total average payoff āk

that gives an estimate of the overall dynamics on that island:

āk(t) =
4∑

s=1

a
(s)
k (t)f (s)

k (t);
4∑

s=1

f
(s)
k (t) = 1. (4)

For the evolution of the frequencies of the different strategies, the following dynam-
ics is postulated:

f
(s)
k (G + 1) =

a
(s)
k (G)
āk(G)

f
(s)
k (G). (5)

It means that in the next generation G+1 the share of agents choosing a particular
strategy z(s) has grown/shrunk — i.e., strategy z(s) has replicated — according to
the relative performance of this strategy on island k during the previous genera-
tion G. In population dynamics, this is known as fitness-proportional selection [8],
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we adopt it here since the relative performance of a certain strategy can be also
interpreted as its fitness.

The dynamics of Eq. (5) does not take into account that agents can migrate
between the K islands. For simplicity, we assume that each island k is occupied by
the same number of agents Nk = N/K and migration can occur between any two
islands with a constant and equal migration rate muv ≡ m/(K − 1). We interpret
m ∈ {0, 1} as the total fraction of the agent population at any given island that
migrates to other islands in a given time interval, namely one generation. In a
first approximation, we assume that migration only occurs after a generation is
completed, i.e., at fixed times G, G + 1.

While the fraction m is fixed (but controlled for, afterwards), the composition
of the migrating subpopulation across the existing strategies z(s) is not. We assume
this composition to be proportional to the fraction f

(s)
k of these strategies at island

k at the time when generation G is completed and migration occurs, to affect the
dynamics during the next time interval G + 1. This means migration changes the
fraction f

(s)
k (G+1) by an additional amount F representing the difference between

the influx and the outflux of the agents playing strategy z(s):

F (s)
k (G) = −mf

(s)
k (G) +

m

K − 1

K∑
j=1,j �=k

f
(s)
j (G) (6)

which defines the complete dynamics by the following set of iterative equations:

f
(s)
k (G + 1) =

a
(s)
k (G)
āk(G)

f
(s)
k (G) + F (s)

k (G). (7)

Using F(0) = 0 and an equal share fs
k(0) for each strategy on each island as

initial conditions, the dynamics is completely determined if we know the respective
average payoffs which are derived in the following section. We note that, in general,
the fixpoints of a difference equation may not characterize its asymptotic behavior,
while it holds for the given simplified case.

2.3. Determining the payoffs of repeated interaction

In a deterministic game, we are able to calculate the average payoff a
(rq)
i that is

received by agent i playing strategy z(r), r ∈ s, ng times with an agent j playing
strategy z(q), q ∈ s. For s = 1, 2, 3, 4, the results are given in the 4×4 payoff matrix
of Eq. (8). Note that the matrix is not symmetric, since it gives the average payoff
of agent i. r refers to the row and q to the column of Eq. (8).

ai =
1
ng




ngR S + (ng − 1)P ngR a(14)

T + (ng − 1)P ngP ngT P + (ng − 1)T

ngR ngS ngR ngS

a(41) P + (ng − 1)S ngT a(44)


 (8)
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where

a(14) = (ngdiv4)P +
(ngrem4)∑

k=1

bk; a(41) = (ngdiv4)P +
(ngrem4)∑

k=1

ck

a(44) = (ngdiv2)(P + R) +
(ngrem2)∑

k=1

dk. (9)

The symbols T, R, P and S refer to the payoff matrix of the two-person game, Eq.
(1). Further, we have used ng = (ngdivy)y + (ng rem y), with 0 ≤ (ng rem y) < y.
(ng div y) means the integer part of the division ng/y, i.e., (ng div 4) = 4 for ng =
18; while (ng rem y) means the remainder, i.e., (ng rem 4) = 2 for ng = 18. The
constants appearing are defined as follows:

P = T + R + P + S; b1 = S; b2 = P ; b3 = T ; b4 = R

c1 = T ; c2 = P ; c3 = S; c4 = R d1 = P ; d2 = R. (10)

To verify how the matrix entries of Eq. (8) are derived we have provided a number
of illustrative examples shown in Appendix A.

With the known average payoff resulting from each possible interaction, the
average payoff per strategy at island k is simply given as:

a
(s)
k =

4∑
r=1

a(rs)f
(r)
k ;

4∑
r=1

f
(r)
k = 1 (s = 1, . . . , 4), (11)

where f
(r)
k denotes the fraction of agents playing strategy z(r) at island k and the

a(rs) are given in Eq. (8). Strictly speaking, Eq. (11) has to consider the fact that
an agent does not play against itself. This would lead to a correction term of the
order of a(ss)/N , which is small and therefore neglected here.

2.4. Calculating the fixpoints

With the above specifications we are now able to solve the dynamic equations
with respect to the fraction of agents f

(s)
k (t) playing strategy z(s). Here, we are

mostly interested in the impact of migration on the prevalence of certain strategies,
therefore we will discuss first the case without migration, Eq. (5), which should
be used as a reference for the case with migration, Eq. (7). Also, we are mostly
interested in the stationary solutions of the respective dynamics, i.e., in the fixpoints
f

(s)
k reached after a sufficiently large number of generations. Our focus is then on

three issues which crucially determine the long-term outcome:

(i) the initial frequencies of strategies f (s)(0),
(ii) the number of repeated interactions, ng, as this enters the payoff matrix, Eq.

(8) and therefore affects the average payoff per strategy, Eq. (11)
(iii) the impact of the migration rate m on the prevailing strategies.
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The stationary values of f
(s)
k are reached if the different frequencies do not change

anymore in the new generation. This leads to the stationary condition:

f
(s)
k (G + 1) = f

(s)
k (G) = f

(s)
k , (12)

where f
(s)
k shall denote the stationary (i.e., asymptotic) frequency of strategy z(s),

in contrast to f
(s)
k (0) that denotes the initial frequency. For the full dynamics which

includes migration, Eq. (7), we solve this condition numerically. But for the case
without migration, Eq. (5), the stationary condition leads to ākf

(s)
k = a

(s)
k f

(s)
k ,

which reduces to the quite simple expression āk = a
(s)
k only if f

(s)
k �= 0.

To further discuss the case of isolated islands, we drop the index k. For m = 0
Eq. (12) with Eq. (5) basically yields two different types of solutions, which could
be either stable or unstable:

(i) the exclusive dominance of any one strategy z(q) (q ∈ s) while all other strate-
gies z(r), r �= q, have disappeared, i.e.,

f (q) = 1; āk = a(q) and f (r) = 0 for r �= q (13)

(ii) the co-existence of some (or all) of the strategies z(q), z(r) with the same average
payoff ā, but probably different frequencies of agents, f (q), f (r), i.e.,

4∑
i=1

a(iq)f (i) =
4∑

i=1

a(ir)f (i) (14)

In the deterministic case considered here it solely depends on the initial conditions
f (s)(G = 0), which of the possible stationary solutions will be eventually reached.
After we know the basins of attraction, i.e., the range of possible initial conditions
that lead to a given stationary solution and the separatrix dividing them, we could
tell from the outset which strategies will be adopted by the population, and which
strategies will disappear. Therefore, in the next section we will calculate the basins
of attraction for the case of isolated islands, to compare these later on for the case
of migration which, as we will see, shifts these basins considerably.

3. No Migration: Coexistence and Dominance of Strategies

For isolated islands, condition (12) leads to s = 4 coupled equations, which fol-
low from Eq. (4) with Eq. (11). In addition, we have the boundary condition∑

s f (s) = 1, which leads to three independent variables f (1), f (2), f (3). The separa-
trix then appears as a two-dimensional plane in this three-dimensional space, which
will be hard to calculate analytically. In order to elucidate this multi-dimensional
problem, we discuss in Appendix B the case of only two possible strategies, where
the separatrix appears as a point in the one-dimensional space, and in Appendix C
the case of three possible strategies, where the separatrix appears as a line in the
two-dimensional space. Here, we continue with the full problem of four possible
strategies.
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Compared to Appendix C, strategy z(4) = A-TFT is added which in the long run
benefits agents playing ALL-D and therefore will decrease the basins of attraction
of the cooperating strategies, i.e., considering A-TFT as an additional strategy will
create a more difficult environment for the invasion of cooperation, therefore it will
be very interesting to see, under what conditions cooperation can survive also in
the worst case. The stationary solutions for the frequencies f (s) result from the
following set of coupled equations:

ā =
4∑

s=1

a(s)f (s) =
4∑

s=1

(
4∑

r=1

a(rs)f (r)

)
f (s)

āf (i) − (a(i1)f (1) + a(i2)f (2) + a(i3)f (3) + a(i4)f (4))f (i) = 0 (i = 1, 2, 3, 4)

f (1) + f (2) + f (3) + f (4) = 1.

(15)

The matrix elements a(rq) can be calculated from Eq. (8). With ng = 4 we find the
following stationary solutions:

(i) f (1) = 1, f (2) = 0, f (3) = 0, f (4) = 0 (stable)

f (1) = 0, f (2) = 1, f (3) = 0, f (4) = 0 (stable)

f (1) = 0, f (2) = 0, f (3) = 1, f (4) = 0 (unstable)

f (1) = 0, f (2) = 0, f (3) = 0, f (4) = 1 (unstable)

(ii) f
(1)
thr = 0.2, f

(2)
thr = 0.8, f (3) = 0, f (4) = 0 (for ng = 4) (unstable)

f (1) = 1.0 − f (3)(0 ≤ f (3) ≤ 1), f (2) = 0, f (4) = 0 (stable).

(16)

We note that the stationary solutions also cover the results of the two-strategy case,
Appendix B and the three-strategy case, Appendix C. We find solutions of type (i)
where one strategy is exclusively dominating the whole population. However, the
solution of all agents playing z(4) = A-TFT is also an unstable attractor, because a
small perturbation by agents playing either strategy ALL-D or TFT will lead to the
invasion of that respective strategy into the whole A-TFT population. To see this,
we also refer to the payoffs received in the respective interactions, Eqs. (A.3) and
(A.4). From the solutions (ii) that describe the coexistence of strategies we further
see that the addition of strategy z(4) = A-TFT does not lead to new coexisting
states compared to the case of two strategies, Appendix B and three strategies,
Appendix C. There is only a coexistence between strategies z(1) = TFT and z(3) =
ALL-C, which is stable as long as no spontaneous mutations towards ALL-D or
A-TFT occur.

The separatrix that distinguishes between the different attractors is in the given
case a two-dimensional plane in the three-dimensional space of independent frequen-
cies with

∑
s f (s) = 1. With respect to the cooperative strategy TFT it defines the

threshold frequency f
(1)
thr = f (1)(G = 0) that has to be reached initially, in order

to allow the system to converge to a fully cooperative state, f (1)(G → ∞) = 1.
Because of the ng-dependence of the payoff matrix, Eqs. (8), (B.1) f

(1)
thr strongly
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ng

0

0.1

0.2

0.3

0.4

0.5

f(1
) th
r

Fig. 2. Threshold frequency f
(1)
thr = f(1)(0) of agents playing strategy z(1) = TFT versus number

of interactions ng between each two agents, in the case of four strategies. For f (1)(0) ≥ f
(1)
thr , the

TFT strategy will be adopted by the whole population, while for f (1)(0) ≤ f
(1)
thr the z(2) = ALL-D

strategy will be adopted by the whole population.

decreases with the number of encounters ng, as shown in Fig. 2. In agreement with
known results from evolutionary game theory [5, 16], for a sufficiently large number
of interactions the whole population will adopt the cooperative strategy, this way
increasing the average payoff. The important point to notice here is the quantitative
analysis which allows us to determine, for a given finite number of ng, the thresh-
old initial frequency f

(1)
thr of agents playing TFT, in order let cooperation invade

the whole population. Or else, for a given initial frequency f (1)(0), we are able to
determine the minimum number of interactions, nmin

g , to let the whole population
adopt the TFT strategy.

To get some further insights, we find it more convenient to present two-
dimensional graphical projections of this three-dimensional space, where the sepa-
ratrix naturally appears as a line. The most interesting projection is the f (1) − f (2)

projection, since it allows us to compare the results with the previous cases. The
results are shown Fig. 3. They have been obtained by numerically solving Eq. (5)
for the full range of initial frequencies, 0 ≤ f (s)(0) ≤ 1. In the stationary limit,
the average payoff was then evaluated to find out to which basin of attraction the
solution belongs.

The calculation of the basins of attraction in Fig. 3 are done for a fixed number
of interactions, ng = 4, but for a varying initial frequency of agents playing strat-
egy z(4) = A-TFT. Of course, this sets limits to the maximum initial frequencies
f (1)(0) = 1 − f (3)(0) and f (2)(0) = 1 − f (3)(0), therefore in Fig. 3 we have scaled
the f (s)(0)-axes by the maximum possible value, which should be noticed when
comparing the figures. For a small initial frequency of A-TFT [Fig. 3 (left)] we
find the picture rather similar to the case of three strategies shown in Appendix C,
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0 0.1 0.2 0.3 0.4 0.5

f
(1)

(0)

0

0.1

0.2

0.3

0.4

0.5

f(2
) (0

)

A B

0 0.1 0.2 0.3

f
(1)

(0)

0

0.1

0.2

0.3

f(2
) (0

)

A B

Fig. 3. Basins of attraction, i.e., range of initial frequencies f (s)(0) that lead to a particluar
stable solution, Eq. (16), in the case of four strategies. A: adoption of z(2) = ALL-D strategy in
the whole population, B: adoption of z(1) = TFT strategy in the whole population, C: coexistence
of both z(1) = TFT and z(3) = ALL-C strategies. f(3)(0) = 1 − f(1)(0) − f(2)(0), ng = 4. (left)
f(4)(0) = 0.2, (middle) f(4)(0) = 0.5, (right) f(4)(0) = 0.7.

however the separation line between the basins of attraction A (defection) and
B + C (cooperation) is now a nonlinear function, different from Eq. (C.3).

With an increasing initial frequency of A-TFT, we find that the basin of attrac-
tion of defection is naturally decreasing in absolute size, but it is increasing relative
to the basin of attraction of cooperation. That means that an increase in the frac-
tion of agents initially playing A-TFT always benefits the adoption of the ALL-D
strategy, at the end. A similar conclusion can be drawn also for the number of agents
initially playing ALL-C. We notice that with an increasing initial frequency of A-
TFT region C, that describes the coexistence of both strategies TFT and ALL-C,
ceases to exist, i.e., strategy ALL-C has vanished for the benefit of strategy ALL-D.
This can also be understood by looking at the average payoff matrix, Eq. (8). If an
agent playing ALL-D meets with an agent playing ALL-C, it gets the maximum
payoff, T , while it gets almost the maximum payoff (P + (ng − 1)T )/ng when it
meets an agent playing A-TFT. Thus, strategy ALL-D will eventually invade the
population of agents playing either ALL-C or A-TFT, or, in other words, the pres-
ence of strategies like ALL-C and A-TFT in the population helps strategy ALL-D
to invade.

Eventually, we have also calculated numerically the relative size of each basin of
attraction as shown in Fig. 4 for two different values of ng = 4 and ng → ∞. Here
the relative sizes a, b, c and d refer to the three-dimensional space of all possible
initial conditions (which is different from Fig. 9 where they refer to the areas A,
B and C shown, thus Eq. (C.4) does not apply here). When ng = 4, the ALL-D
basin “a” is slightly bigger than the cooperative basin “d” as shown in contrast to
Fig. 10. With ng → ∞, the size of the ALL-D basin “a” becomes pretty small as
compared to cooperative basin “d”.

To conclude this analysis, we have shown for the case of isolated islands (no
migration) what are the critical initial conditions for cooperative strategies, such
as ALL-C, TFT to be adopted by the whole agent population. Dependent on the
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Fig. 4. Relative size of the basins of attraction. “a” represents the size of the ALL-D basin, “b”
represents the size of the TFT basin, “c” represents the size of TFT + ALL-C basin and “d”
represents the size of cooperative basin (i.e., b + c). The left bars (shaded area) refer to ng = 4,
while the right bars (black area) refer to ng → ∞. Thus, the change indicates the influence of ng

on the size of the basins of attraction.

number of interactions ng, we can tell the minimum initial frequency of TFT,
f (1)(0) that has to be reached to ensure an cooperative outcome dependent on the
initial mix of strategies (details of the two and three strategy case are provided
in Appendix B and Appendix C). In the limit of small ng, while one may naively
assume that an initial increase of the ALL-C strategy benefits cooperation, at the
end, this analysis shows that with the involvement of A-TFT it eventually benefits
defection in the system, which is an interesting finding by itself. In the following,
we will investigate how this picture changes if we add the possibility of migration.

4. Migration: The Rise and Fall of Cooperation

4.1. The role of migration

The previous section has shown that an increase of the number of interaction ng

always supports the prevalence of cooperating strategies, such as ALL-C and TFT.
Therefore, in the following we will concentrate the analysis on the critical conditions
which occur for small ng. We fix ng = 4 (note that ng = 3 is the threshold number of
interaction to allow the replication of cooperating strategies at all, see Appendix B
and Fig. 2.

To understand how migration affects the existing equilibrium states, let us start
with the simple example shown in Fig. 5. We take the setup of Fig. 1 and consider
only two strategies, z(1) = TFT and z(2) = ALL-D, but different initial conditions
on the three islands. As the detailed analysis of Appendix B has shown, below an
initial frequency f (1)(0) = 0.2 the only stable stationary state is f (1) = 0, f (2) = 1.
Hence, if no migration is possible, with the given initial conditions shown in Fig. 5(i)
the three islands converge into a final state shown in Fig. 5(iia) where ALL-D
prevails in two islands, while in one TFT dominates because that island started
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Fig. 5. Migration between the three islands enhances the outbreak of cooperation. (i) Initial state
(G = 0) using two strategies. The defective strategy ALL-D has the majority on all islands. (ii)
Final state (G → ∞) (a) without and (b) with a small migration rate. In (a) only one island has
adopted cooperation, in (b) all three islands have adopted cooperation.

from an initial condition above the threshold. If we however introduce a rather
small migration rate of m/2 = 0.04 all three islands are eventually dominated by
the cooperating strategy, TFT, as shown in Fig. 5(iib). Hence, even with a rather
small advantage on one island (f (1)(0) = 0.3 is just above the threshold of 0.2), a
small migration was able to induce a transition toward TFT instead of a relaxation
into ALL-D on all islands.

It is precisely this kind of phenomenon that we would like to understand bet-
ter regarding the critical conditions involved. In particular, we concentrate on the
impact of the migration rate on the threshold value of TFT, to still observe the
outbreak of cooperation. The results are found numerically, by iterating the set of
Eq. (7), for ng = 4 and K islands that have the same total number of agents, but
different initial strategy distributions.

Figure 6 shows results of the two strategies case, TFT and ALL-D, for K = 5
and three different migration rates, in terms of the average payoff āk. As explained
in Appendix B āk = 1 means that ALL-D invades the entire population, whereas
āk = 3 is achieved when TFT takes over. Figure 6(left) with m = 0 is used for
comparison only, as it shows the result predicted in Appendix B, i.e., three islands
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Fig. 6. Evolution of the average payoff in the K = 5 island model for different migration rates
m: (left) m = 0.0, (middle) m = 0.08, (right) m = 0.2. Parameters: Panmictic population in

K = 5 island model consisting of TFT and ALL-D. Initial frequencies of TFT: f
(1)
1 = 0.3, f

(1)
2 =

0.25, f
(1)
3 = 0.1, f

(1)
4 = 0.18, f

(1)
5 = 0.15 and f

(2)
k = 1 − f

(1)
k .

which have a frequency of TFT below the threshold value of 0.2 are taken over
by agents playing ALL-D. The remaining two islands are invaded by TFT. This
result changes in Fig. 6(middle), where we allow migration of m = 0.08 between
islands. Then all islands become populated solely by TFT which is indicated by
āk = 3. However, if we further increase the migration rate to m = 0.2, the opposite
result occurs. In this case ALL-D invades all islands as shown in Fig. 6(right) where
āk = 1. These results suggest that there exists an optimal range for m that ensures
the outbreak of cooperation, which will be further investigated in the following
sections.

4.2. How migration influences cooperation

We continue our discussion for the case of two strategies, TFT and ALL-D, and
now assume that for K = 6 (K − 1) islands are initially dominated by strategy
ALL-D, i.e., f

(1)
k (0) = 0 for k ∈ 2, . . . , 6, while the first island k = 1 is initially

populated by both TFT and ALL-D, i.e., 0 < f
(1)
1 (0) < 1. We then vary the

migration rate m for different initial frequencies f
(1)
1 (0) to study numerically under

which condition the outbreak of cooperation on all islands can be obtained. The
results are shown in Fig. 7. For very small m, the average payoff ā just reflects the
mix of the initial strategies. But, as the middle part of Fig. 7 shows, for a certain
value of the initial frequency f

(1)
1 (0), we find a spike ā = 3 at a particular value

of m that indicates the outbreak of cooperation, thanks to an optimal migration
rate. One would assume that increasing the initial fraction of TFT would further
boost cooperation but, as Fig. 7 (right) clearly shows, the “bandwidth” of optimal
migration rates m is rather limited. Precisely, if f

(1)
1 (0) = 0.40 the bandwidth

of optimal migration rates is 0.07 ≤ m ≤ 0.095 which is to be compared to the
maximum bandwidth 0.07 ≤ m ≤ 0.155 for f

(1)
1 (0) = 1. This makes sense because

a large migration rate may have a contrary effect: While cooperative agents are
“exported” to other islands, the same number of defective agents are “imported”,
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Fig. 7. Increasing f
(1)
1 (G = 0) leads to increasing bandwidth of m in which cooperation will

emerge in the system. From left to right: (1) f
(1)
1 (G = 0) = 0.31 (2) f

(1)
1 (G = 0) = 0.32 (3)

f
(1)
1 (G = 0) = 0.40 (4) f

(1)
1 (G = 0) = 1.00. Parameters: ng = 4, K = 6.

which may reduce the fraction of TFT below the critical threshold. Hence, there is
a nonmonotonous relation between m and the outbreak of cooperation.

4.3. Calculating the threshold frequency

We are now interested in finding the minimum initial frequency f
(1)
1 (0) that will

lead to invasion of cooperation on all K − 1 islands, when varying the migration
rate m. We define this as the threshold frequency, fK

thr:

fK
thr(m

K) = min
f
(1)
1

f
(1)
1 (G = 0) (17)

with f
(1)
k (G = 0) = 0 ∀ k ∈ 2, . . . , K; f

(1)
k (G = ∞) = 1 ∀ k ∈ K.

For each fK
thr, there exists a specific value of the migration rate mK ∈ [0, 1] such

that the outbreak of cooperation happens on all islands. mK denotes the the small-
est value of the bandwidth of optimal migration rates shown in Fig. 7, i.e., for
fixed ng and a given number of islands K with the initial conditions specified in
Eq. (17), there exist a tuple of critical values (fK

thr, m
K) which determine the out-

break of cooperation. The outbreak shown in Fig. 7(middle) for K = 6 is observed
for (fK

thr, m
K) = (0.32, 0.07). This leads us to the question, how the threshold value

and the critical migration rate change if we change the number of islands.
The results of exhaustive numerical calculations which had to search for the

outbreak of cooperation on the whole (K, f
(1)
1 (0), m) parameter space are shown in

Fig. 8(left). Obviously, for K = 1 the threshold frequency results from the analysis
given in Appendix B. If the number of islands increases, f

(1)
1 (0) has to increase as

well, in order to be able to “export” cooperating agents while still staying above
the theshold. This increase, however, is nonlinear in K. Precisely, as can be verified
in Fig. 8,

fK
thr = K3A0 − K2(2A0A1) + K(A0A

2
1 + A2). (18)
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Fig. 8. (left) Threshold frequency fK
thr (black line) and relative effort fK

thr/K (dashed line) depen-
dent on the number of islands K. Symbols represent results of numerical calculations. Fitted values
of Eq. (18) A0 = 0.006, A1 = 4.798, A2 = 0.060. (right) Optimal migration rate mK dependent
on the number of islands K.

The values of the constants An depend implicitly also on the payoff matrix, Eq. (1),
which defines the comparative advantage of each strategy for reproduction and
invasion, subsequently. Plotting fK

thr/K we see that for 2 ≤ K ≤ 6, with every new
island added the relative effort to invade the new one with cooperators decreases,
while for K ≥ 6 this effort increases quadratically with K. However, the effort
of invading other islands with cooperators always stays below the threshold of an
isolated island, which is 0.2. This is a direct consequence of the combined processes
of migration and reproduction. Newly arriving cooperative agents will reproduce
on the other islands, this way reaching the threshold value the before the next
generation is ready for migration. Hence, diversification of the reproduction sites
for cooperating agents lower the relative effort for the outbreak of cooperation and
makes it more favorable.

As a second consequence of the nonlinear dependency, the export of coopera-
tion from one island to K − 1 other islands is only possible for a limited number
of islands, because of the two effects already mentioned above, i.e., the “export”
of cooperating agents and the “import” of defecting agents both decrease the
fraction of cooperating agents below the threshold frequency. Hence, for the two
strategy case discussed here, K = 8 already leads to the collapse of exporting
cooperation.

The critical migration rate mK dependent on the number of islands is shown
in Fig. 8(right). We recall that this gives the minimal fraction of the population
that has to migrate in order to allow the outbreak of cooperation on any island.
If f

(1)
1 (0) = fK

thr it is at the same the maximum fraction to not let cooperation
collapse back home, i.e. it is the optimal migration rate [see Fig. 7(middle)].
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Eventually, one can ask how the outbreak of cooperation (fK
thr, m

K) is affected
if instead of the two strategies TFT, ALL-D three or four strategies are considered.
In general, the presence of both ALL-C and A-TFT favors the invasion of ALL-D
at the end, whereas the presence of A-TFT favors the invasion of TFT — thus we
can expect that the thresholds are slightly higher or lower in such cases. A more
involved discussion is presented in Appendix D.

5. Conclusion

Before summarizing our findings, we wish to comment on a related strand of lit-
erature about multi-level selection in populations [20, 22]. There, quite similar to
the setup presented in our paper, a population consisting of several groups (sub-
populations) was considered where interaction only occurs between agents of the
same subpopulation. The fitness of agents was determined by the payoff obtained
from an evolutionary game, simply chosen as a non-iterative Prisoner’s Dilemma,
and their reproduction was assumed to be dependent on their payoff according to
a Moran process [21]. Further a stochastic dynamics was considered.

In addition to these differences (PD, Moran process, stochastic dynamics), also
a separate group dynamics was assumed. Groups can split when reaching a certain
size, which denotes a amplified replication process at the group level. Precisely,
groups that contain fitter agents reach the critical size faster and, therefore, split
more often. This concept leads to selection among groups, although only individuals
reproduce. It allows for the emergence of higher level selection (group) from lower
level reproduction (agents). It was shown [20, 22] that cooperation in such a setting
is favored if the size of groups is small whereas the number of groups is large.
Migration does not support the outbreak of cooperation in this model because it
favors the invasion of defectors rather than of cooperators.

In contrast to these investigations, we have contributed to the analysis of evo-
lutionary (deterministic) IPD games in two different domains:

(i) For the meanfield limit, represented by a panmictic population where each
agent interacts with N − 1 other agents ng times, a quantitative investigation
of the basins of attraction was provided. Dependent on the initial mix of two
cooperative (ALL-C, TFT) and two defective (ALL-D, A-TFT) strategies and
the number of interactions ng, we could derive the critical conditions (threshold
frequencies) under which the outbreak of cooperation can be expected in a
panmictic population. A detailed analysis of the two, three and four strategy
cases helped to better understand the contribution of each strategy on the final
outcome.

(ii) Using the “unperturbed” (or meanfield) limit as a reference point, the impact
of migration on the outbreak of cooperation in a spatially distributed system
could be quantified. We found that there is a bandwidth of optimal migration
rates which lead to the induction (or “export”) of cooperation to a number of
islands which otherwise would converge to defection. We were able to determine
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the critical conditions fK
thr, m

K which guarantee the outbreak of cooperation in
a worst case scenario. Remarkably, the relative effort fthr/K to export coopera-
tion to defecting islands was decreasing with K in some range and always stayed
below the critical value for an isolated island, i.e., effectively it became easier
to turn defecting into cooperating islands, provided the optimal migration rate
was reached.

It is important to note that the outbreak of cooperation is not enforced by a max-
imal migration rate but, as stated above, by a small range of optimal migration
rates. This is because migration, different from other approaches, is not seen as an
unidirectional dynamics, where agents just move to a “better” place. Instead, our
model is based on the assumption that it is a bidirectional process, which we deem
a more realistic assumptions when considering a dynamics over many generations.
In fact, agents, or their offsprings, which have obtained certain skills or wealth
at their immigration country, quite often decide to start new buisiness back home
at their origin country — because their new capabilities give them a considerable
advantage there, while it is only a marginal advantage in their immigration coun-
try. This assumption is in line with many policies about immigration/education
of foreigners in a country, to give indirect support for development and to allow
future business with those countries, where some agents with positive experience
have resettled. At the end, as we have shown in our paper, it remarkably helps to
spread “cooperation” globally, if the number of breeding places for such a strategy
is increased (above a minimum threshold).
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Appendix A. Calculating the Average Payoff

In order to illustrate Eq. (8), let us look at two agents i and j. If both of them play
strategy z(1), TFT, then, during the ng different “iterations”, their choices are as
follows:

1 2 3 4 · · · ng

payoff a
(11)
i : R R R R · · · R

i (TFT ) : C C C C · · · C

j (TFT ) : C C C C · · · C

payoff a
(11)
j : R R R R · · · R.

(A.1)

Consequently, the average payoff for both agents i and j is a
(11)
i = a

(11)
j = R. If

agent i playing TFT meets with an agent j playing strategy z(2) (ALL-D) the series
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of choices would be:

1 2 3 4 · · · ng

payoff a
(12)
i : S P P P · · · P

i (TFT ) : C D D D · · · D

j (ALL − D) : D D D D · · · D

payoff a
(21)
j : T P P P · · · P,

(A.2)

which leads to an average payoff for agent i of a
(12)
i = [S + (ng − 1)P ]/ng, while

the average payoff for agent j is a
(21)
j = [T + (ng − 1)P ]/ng.

If agent i playing A-TFT interacts with agent j playing ALL-D, the series of
choices reads:

1 2 3 4 · · · ng

payoff a
(42)
i : P S S S · · · S

i (A − TFT ) : D C C C · · · C

j (ALL − D) : D D D D · · · D

payoff a
(24)
j : P T T T · · · T.

(A.3)

That means the average payoff for agent i is a
(42)
i = [P + (ng − 1)S]/ng, while the

average payoff for agent j is a
(24)
j = [P + (ng − 1)T ]/ng. The remaining cases can

be explained similarly. Only the three more complex cases are given below. a
(14)
i

follows from:

1 2 3 4 5 6 7 8 · · ·
payoff a

(14)
i : S P T R S P T R · · ·

i (TFT ) : C D D C C D D C · · ·
j (A − TFT ) : D D C C D D C C · · ·

payoff a
(41)
j : T P S R T P S R · · ·

(A.4)

Here, the average payoff of agent i results from a repeated payoff series SPTR, and
the value of ng defines when this series is truncated. Similarly, the series for a

(41)
i is

TPSR. Thus, the first term of a
(rq)
i , Eq. (9) calculates all completed payoff series

(ng div 4), while the second term calculates the remaining payoffs (ng rem 4).
For a

(44)
i , we find eventually:

1 2 3 4 · · ·
payoff a

(44)
i : P R P R · · ·

i (A − TFT ) : D C D C · · ·
j (A − TFT ) : D C D C · · ·

payoff a
(44)
j : P R P R · · ·

(A.5)

Here, the period of the payoff series is just 2 instead of 4, and the expression for
a
(44)
i = a

(44)
j , Eq. (9) follows accordingly.
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Appendix B. Two Strategies: TFT and ALL-D

We assume that the population consists of only two strategies: z(1) = TFT and
z(2) = ALL-D, Eq. (3). This is an interesting combination since defection is known
to be the only equilibrium in an one-shot PD game, while TFT fares well in a
repeated PD interaction, given there is a critical number of encounters (discussed
below).

The average payoff a
(rq)
i received by agent i playing strategy z(q) (q ∈ 1, 2)

results from Eq. (8). Choosing ng = 4 we find:[
a(11) a(12)

a(21) a(22)

]
=

[
3.0 0.75

2.0 1.0

]
. (B.1)

Applying Eqs. (4) and (11), we find for the total average payoff:

ā = a(11)f (1)2 + (a(12) + a(21))f (1)f (2) + a(22)f (2)2 (B.2)

On the other hand, it follows from the stationary condition (12):

āf (i) − (a(i1)f (1) + a(i2)f (2))f (i) = 0 (i = 1, 2)

f (1) + f (2) = 1. (B.3)

The combined Eqs. (B.2), (B.3) have to be solved simultaneously for the possible
stationary frequencies f (1), f (2). As the result we find:

(i) f (1) = 0, f (2) = 1 (stable)

f (1) = 1, f (2) = 0 (stable)

(ii) f
(1)
thr = 0.2, f

(2)
thr = 0.8 (for ng = 4) (unstable)

(B.4)

Solution (i) implies that either strategy ALL-D or TFT invades the population
completely, which are the two stable attractors of the system in the case of only
two strategies. On the other hand, solution (ii) describes the coexistence of the two
strategies with different frequencies within the total population. In the given case,
it is is an unstable point attractor that separates the basins of two stable attractors,
and therefore acts as a separatrix here, i.e., for an initial frequency f (1)(0) ≤ 0.2
of strategy z(1) = TFT, the dynamics of the system will converge into a stationary
state that is entirely dominated by strategy ALL-D (where the payoff per agent is
ā = P = 1), whereas in the opposite case the population will entirely adopt strategy
TFT (average payoff ā = R = 3).

The threshold value f
(s)
thr strongly decreases with the number of encounters ng,

as shown in Fig. 2 for the case of four strategies. This raises the question about the
critical ng for which TFT could invade the whole population. Let us compare the
average payoffs of the strategies z(1) = TFT and z(2) = ALL-D:

a(1) = a(11)f (1) + a(12)f (2)

a(2) = a(12)f (1) + a(22)f (2).
(B.5)
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The respective values of a(rq) can be calculated from Eq. (8) for different numbers
of ng. We find that only the elements a(12) and a(21) change with ng, as follows:

ng 1 2 3 · · ·
a(12) 0.0 0.5 0.677 · · ·
a(21) 5.0 3.0 2.333 · · ·

(B.6)

With a(11) = 3.0 and a(22) = 1.0, we find for ng = 1 that a(21) > a(11), a(22) > a(12).
This implies that a(2) > a(1) for all possible initial frequencies of the two strate-
gies in the population. Thus, from the dynamics of Eq. (5) (fitness-proportional
selection) the extinction of the strategy TFT results, in agreement with the known
results. For ng = 2 we find a(21) = a(11), a(22) > a(12), which again implies that
a(2) > a(1) for all possible initial frequencies of the two strategies in the population,
i.e., the extinction of strategy TFT. However, for ng = 3, we find a(21) < a(11),
a(22) > a(12). Thus, there exist some initial frequencies of the two strategies for
which a(1) > a(2) results, i.e., we can conclude that for the given payoff matrix
nthr

g = 3 is the threshold value for the number of interactions between each two
agents that may lead to the invasion of cooperation in the whole population.

Appendix C. Three Strategies: TFT, ALL-D and ALL-C

When strategy z(3) = ALL-C is added to the previous strategies z(1) = TFT and
z(2) = ALL-D, agents playing ALL-D will benefit from agents playing ALL-C.
Therefore, if the frequency of agents playing ALL-C is increased in the initial pop-
ulation, it can be expected that the basin of attraction of the TFT strategy will
shrink, while the basin of attraction of the ALL-D strategy will grow, compared
to the case of two strategies, discussed in Appendix B. The stationary frequencies
have now to be calculated from the following set of coupled equations that result
from Eqs. (4), (11) and the stationary condition (12):

ā =
3∑

s=1

a(s)f (s) =
3∑

s=1

(
3∑

r=1

a(rs)f (r)

)
f (s)

āf (i) − (a(i1)f (1) + a(i2)f (2) + a(i3)f (3))f (i) = 0 (i = 1, 2, 3)

f (1) + f (2) + f (3) = 1

(C.1)

The matrix elements a(rq) can be calculated from Eq. (8). With ng = 4 we find the
following stationary solutions:

(i) f (1) = 1, f (2) = 0, f (3) = 0 (stable)

f (1) = 0, f (2) = 1, f (3) = 0 (stable)

f (1) = 0, f (2) = 0, f (3) = 1 (unstable)

(ii) f
(1)
thr = 0.2, f

(2)
thr = 0.8, f (3) = 0 (for ng = 4) (unstable)

f (1) = 1.0 − f (3)(0 ≤ f (3) ≤ 1), f (2) = 0 (stable)

(C.2)
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We note that a mean-field analysis of the three-strategy case was also dicussed in
[24] and, assuming extensions such as mutations and fluctuations, analyzed further
in [2, 9]. We consider the deterministc case here. Solutions (i) imply that either
strategy TFT or ALL-D or ALL-C invades the entire population. We note that
only the first two solutions are stable ones, while the last point-attractor f (3) = 1,
f (1) = f (2) = 0 is an unstable one, because any small pertubation (i.e., the invasion
of one defecting agent) will transfer the cooperating system into a defecting one.

The first of the solutions (ii) describing coexisting strategies is already known
from the investigation in Appendix B to be an unstable one. In the absense of
the third strategy, it defines the separatrix point. The second solution (ii) however
is a stable one, indicating that both agents playing TFT and ALL-C can coexist
in the panmictic population. Note that there is neither a stable nor an unstable
coexistence of all three strategies.

The separatrix that divides the different basins of attraction is now a line in a
two-dimensional space of the initial frequencies. But different from Appendix B the
stationary solutions of Eq. (C.2) do not give further information about the sepa-
ratrices. In order to calculate the different basins of attraction, we therefore have
numerically solved Eq. (5) for the full range of initial frequencies: 0 ≤ f (1)(0) ≤ 1,
0 ≤ f (2)(0) ≤ 1, f (3)(0) = 1 − f (1)(0) − f (2)(0), and have evaluated the average
payoff in the stationary limit. If ā = P , obviously the whole population has adopted
strategy z(2) = ALL-D. Similarly, if ā = R and f (1) = 1, the whole population has
adopted strategy z(1) = TFT. However, if ā = R and f (1) < 1, then there is a
coexistence of agents playing strategy z(1) = TFT and z(3) = ALL-C.

The basins of attraction are shown in Fig. 9 for two different values of ng = 4
and ng → ∞. In the latter case, a(12) = a(21) = 1 results for the payoffs in
Eq. (8). For ng = 4 we can distinguish between three different regions in Fig. 9.
Region A denotes the range of initial frequencies f (s)(0) that lead to the adop-
tion of the z(2) = ALL-D strategy in the whole population, region B denotes the
range of initial frequencies that lead to the adoption of the z(1) = TFT strat-
egy in the whole population, while region C denotes the range of initial fre-
quencies that lead to the coexistence of both z(1) = TFT and z(3) = ALL-C
strategies.

Since regions B and C both describe the adoption of cooperating strategies in
the population, the most interesting line in Fig. 9 is the separatrix between region
A (all defectors) and region B (all cooperators). We can easily interpret this line
based on our previous analysis of the two-strategy case, Appendix B. The diagonal
in Fig. 9 represents f (1)+f (2) = 1, i.e., a population with only two strategies, z(1) =
TFT and z(2) = ALL-D. Thus, the separatrix line between regions A and B starts
from the separatrix point f (1) = 0.2, f (2) = 0.8, f (3) = 0, Eq. (C.2). Further below
the diagonal, the frequency f (3) of the strategy z(3) = ALL-C increases in the initial
population, which in turn increases the threshold frequency f (1) necessary for the
invasion of the z(1) = TFT strategy. In a certain range of frequencies, the separatrix
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Fig. 9. Basins of attraction, i.e., range of initial frequencies f (s)(0) that lead to a particular
stable solution, Eq. (C.2). A: adoption of z(2) = ALL-D strategy in the whole population, B:
adoption of z(1) = TFT strategy in the whole population, C: coexistence of both z(1) = TFT and
z(3) = ALL-C strategies. f(3)(0) = 1 − f(1)(0) − f(2)(0). (left) ng = 4, (right) ng → ∞.

line between defection and cooperation can be described by a linear relation, found
numerically as:

f (2) = −6.1538f (1) + 2.0308 for 0.2 ≤ f (1) ≤ 0.31. (C.3)

However, we notice that the separatrix line between regions A and B never hits the
x-axis. For very low values of f (2)(0), i.e., close to the x-axis, it makes a sharp turn
towards the origin. This means that for a vanishing initial frequency of ALL-D there
will be no route to the respective attraction region A, which is obviously correct.

The influence of the parameter ng is shown by comparing the left (ng = 4)
and the right part (ng = ∞) of Fig. 9. In the latter case the basin of attraction A

(exclusive domination of strategy z(2) = ALL-D) becomes very small. In order to
further quantify the influence of ng on the dominating strategies in the stationary
limit, we have also calculated the relative size of each basin of attraction. If FA, FB

and FC denote the area of the regions A, B and C in Fig. 9, the relative sizes are
defined as follows:

a =
FA

Ftot
; b =

FB

Ftot
; c =

FC

Ftot
; d =

FB + FC

Ftot
; Ftot = FA + FB + FC (C.4)

The results are shown in Fig. 10 for the two different values of ng.
In Fig. 10, d, Eq. (C.4) denotes the relative size of the basin of attraction for

cooperation resulting from both solutions, domination of z(1) = TFT and coexis-
tence of z(1) = TFT and z(3) = ALL-C. As we see, for ng = 4, the cooperative
basin d only has about the same size as the basin of attraction for defection a, that
mean that about half of the possible initial conditions will lead to a population
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Fig. 10. Relative size, Eq. (C.4) of the basins of attraction shown in Fig. 9. The left bars (shaded
area) refer to ng = 4 (Fig. 9 left), while the right bars (black area) refer to ng → ∞ (Fig. 9 right).
Thus, the change indicates the influence of ng on the size of the basins of attraction.

of defecting agents, at the end. Only for ng → ∞ the size of the defection basin
becomes insignificant as compared to the cooperative basin. This again explains
the role of ng in influencing cooperation.

Appendix D. Threshold Frequencies for Three and Four Strategies

In Sec. 4.3, we computed the critical conditions for the outbreak of cooperation
(fK

thr, m
K) in the presence of only two strategies, ALL-D and TFT. If we consider

the two additional strategies ALL-C and A-TFT, Eq. (3), these critical conditions
change dependent on the initial values of the four strategies and their distribution

3 4 5 6 7 8

K

0

0.02

0.04

0.06

0.08

0.1

m
K

2 strategies
3 strategies
4 strategies

3 4 5 6 7 8

K

0.05

0.06

0.07

0.08

0.09

0.1

f thK
/K

2 strategies
3 strategies
4 strategies

Fig. 11. (left) Threshold fK
thr versus number of islands K. (right) Migration rate m versus number

of islands K. Migration can only promote cooperation if the number of islands is K ≤ 7.

1250059-25

A
dv

s.
 C

om
pl

ex
 S

ys
t. 

20
12

.1
5.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
W

IS
S 

FE
D

E
R

A
L

 I
N

ST
IT

U
T

E
 O

F 
T

E
C

H
N

O
L

O
G

Y
 Z

U
R

IC
H

 (
E

T
H

) 
on

 1
0/

20
/2

0.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



June 8, 2012 9:43 WSPC/S0219-5259 169-ACS 1250059

F. Schweitzer and L. Behera

on the different islands. Thus, instead of a complete investigations we only discuss
the following sample configurations with

∑
s f

(s)
k (0) = 1:

(i) three strategies, TFT, ALL-D, ALL-C. f
(1)
1 (0) > 0, f

(2)
1 (0) = 1 − f

(1)
1 (0),

f
(3)
2 (0) = 1, f

(2)
k (0) = 1 with k ≥ 3.

(ii) four strategies, TFT, ALL-D, ALL-C, A-TFT. f
(1)
1 (0) > 0, f

(2)
1 (0) = 1 −

f
(1)
1 (0), f

(3)
2 (0) = 1, f

(4)
3 = 1, f

(2)
k (0) = 1 with k ≥ 4.

These initial conditions imply that K ≥ 3. The results of extensive calculations
of the relative effort fK

thr/K and the critical migration rate mK are shown in Fig. 11
and can be compared to the two strategy case, Eq. (17).

Again, we notice that the relative effort to invade other islands by agents playing
TFT is nonmonotonously dependent on K and always stays below the threshold
values observed without migration, as given in Sec. 2.4, Appendix C. Regarding
the impact of the different strategies on the outbreak of cooperation, we see that
in the presence of ALL-C ALL-D benefits more than TFT in terms of payoff which
raises the threshold frequency. However, adding A-TFT benefits ALL-D less than
adding ALL-C, which lowers the threshold frequency. This explains why the curve
for the four strategy case is in between the curves corresponding to two and three
strategies. From Fig. 11(right) the optimal migration rate is found to be almost
constant for three and four strategies in contrast to the two strategy case.
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