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We study the performance of various agent strategies in an artificial investment scenario.
Agents are equipped with a budget, x(t), and at each time step invest a particular
fraction, q(t), of their budget. The return on investment (RoI), r(t), is characterized by
a periodic function with different types and levels of noise. Risk-avoiding agents choose
their fraction q(t) proportional to the expected positive RoI, while risk-seeking agents
always choose a maximum value qmax if they predict the RoI to be positive (“everything

on red”). In addition to these different strategies, agents have different capabilities to
predict the future r(t), dependent on their internal complexity. Here, we compare “zero-
intelligent” agents using technical analysis (such as moving least squares) with agents
using reinforcement learning or genetic algorithms to predict r(t). The performance of
agents is measured by their average budget growth after a certain number of time steps.
We present results of extensive computer simulations, which show that, for our given
artificial environment, (i) the risk-seeking strategy outperforms the risk-avoiding one,
and (ii) the genetic algorithm was able to find this optimal strategy itself, and thus
outperforms other prediction approaches considered.

Keywords: Risk; investment strategies; genetic algorithm.

PACS Nos.: 05.40.-a, 89.65.Gh.

1. Introduction

In the course of this paper, we investigate a model in which agents with differ-

ent strategies participate in an simple investment scenario with noisy returns.1 We

use this setup to approach the question how the (internal) complexity of agents

†Corresponding author.
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enhances their performance in a hard-to-predict environment. In the field of arti-

ficial intelligence and complex systems, one can distinguish between two types of

agents: first, agents which only react on external changes (also known as “zero-

intelligence agents”2,3) and second, agents which have a complex internal architec-

ture (e.g., “belief-desire-intention agents”). Despite these clear differences in agent

architecture, it is difficult to determine what influence these properties have on the

overall performance of the agents. In order to study this question in a controlled en-

vironment, we have chosen an investment model with noisy returns, to compare the

performance of simple and complex agents. To which extent is worthwhile to equip

an agent with complex learning mechanisms instead of having a reactive response

to exogenous returns?

As a necessary step to study more complex scenarios, we are interested in an

initial study of the performance of different agent architectures/investment strate-

gies in the following simple setup: each agent has a certain budget x(t) and is able

to invest a certain fraction of its budget on a market. The gain or loss it makes

depends on the market return, or return on investment (RoI). In other words, at

each time step t, the agent adjust its risk propensity, the fraction of its budget

that it is willing to invest on the market, denoted by q(t), thereby controlling gains

and losses resulting from the RoI, denoted by r(t). We assume that only the past

and current values of r(t) are known to the agent; it does not know the dynamics

governing future values of r(t). Agents observe the market through the value of r(t)

and, based on analysing a set of past r(t) values, they predict future r(t) values

and determine their behavior on that market through specifying q(t).

In this simple model, we consider agents that invest independently in the market,

i.e., there is no interaction or communication with other agents. Also, there is no

feedback of the investments done by agents on the market return. In other words,

the environment of the agents is not influenced by their investments. This is a

crucial assumption which makes our model different from other attempts to model

real market dynamics, e.g., as for financial markets.4–6 Consequently, we do not

construct and investigate a market model; rather, our focus lies on investigating

what are good and what are bad strategies — in a rather artificial and controlled

market environment (see also Sec. 4). Regarding the relevance of our results for real

financial markets, see also our comments in the concluding Sec. 7.

The essence of the model is captured in Fig. 1:

(a) plots the returns in percent of a real stock item over the range of about two

years. This illustrates the range and shape of values of returns of a real-world

stock item.

(b) illustrates the dynamics of the model: r(t), the market return, influences the

strategies agents have to adjust q(t), the risk propensity.

In this particular model, we do not consider the influence that adjusted risk

propensity has on the market return, i.e., the influence of q(t) on r(t).

The challenge for the agents thus is twofold: first, agents have to predict r(t)

as accurately as possible, and second, they have to adjust q(t) to the proper values
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Fig. 1. (a) Real returns of a stock item (in this example, the stock was AAA, the Altana Group)
in percent over time (01/05/2002–01/03/2004). r(t) was computed for a current price p(t) as
follows: r(t) = log p(t) − log p(t − 1). (b) The dynamics of the market as indicated by the market
return r(t) and the strategy as defined by the invested budget q(t). Note that our model does not
consider the feedback of investments on the market dynamics (dashed line).

as quickly as possible. This is a complex and difficult task since most investment

environments are uncertain and fluctuating. Choosing to avoid risk and investing

too little may lead to small gains, and choosing to take risk and investing too much

may lead to large losses.

The task of finding an appropriate strategy that controls the risk and balances

between these two extrema is by far not trivial. Methods from technical analysis,

such as estimations based on moving averages or moving least squares (see also

Sec. 3.2) try to approximate the behavior of the environment and, based on that

approximation, determine the most appropriate investment at a particular time.

In the theory of risk, several authors assume that individuals choose among assets

based on the mean return and on the variance of the return.7–9 Others have focused

their attention to the important task of how to measure risk, which lead to different

types of measures.10,11 In general, these measures are based on the risk aversion of

a decision maker having the choice to receive a random or a non-random amount.

A typical scenario to study investment strategies is to let an agent choose be-

tween investing in a risk-free asset or in a risky asset.11,12 It was shown12 that

sometimes it may be more reasonable to invest in a risk-free asset as a means to

transfer wealth over time. However, assuming a model with no consumption,13 those

agents investing in risk-free assets will be driven out of the market in the long run

by agents investing in a risky asset. When dealing with risky assets, it is typically

assumed that the agent considers the expected return and its volatility as indicators

for the investment strategy.8

For the sake of simplicity, in this paper we assume that the agent’s behavior is

risk-neutral in the sense that the agent estimates only the expected return, r(t),

and does not consider risk measures such as the volatility. Based on the estimation

of r(t), the decision to increase or decrease the investment fraction of the risky asset
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should be taken. Hence, the two terms “risk-seeking” and “risk-avoiding” refer only

to the choice of the investment fraction, q(t).

The remainder of this paper is organised as follows: In the next section, Sec. 2,

we present the details of the investment model, the properties and abilities of an

agent acting/investing in this environment. Following that, Sec. 3 presents some

of the strategies that an agent can use to control its risk propensity and Sec. 4

presents the properties of the return on investment (RoI) that we are considering;

Sec. 5 illustrates the optimal parameter adjustment for the presented strategies

and their derivation; Sec. 6 compares the different investment strategies. This is

done by means of simulations where the average total budget of agents using each

investment strategy is obtained for a large a number of trials. Finally, in Sec. 7, we

present our conclusions.

2. Model

In this model, agents are characterised by the following two variables:

(1) their budget x(t), which is a measure of their “wealth” or “liquidity”, and

(2) the strategy that they employ in order to control the fraction of the budget q(t)

to invest at each time step.

In other words, at each time step t, an agent invests a portion q(t)x(t) of its budget.

The investment yields a gain or a loss, determined by the value of r(t). Being

a fraction of the investment budget, q(t), is, of course, restricted to the interval

between [0, 1]. However, in our model we further restrict it to be from the interval

[qmin, qmax] where we choose qmin = 0.1 and qmax = 1.0. This implies that, at each

time step t, there is a minimal investment of 0.1 of the budget, and a maximal

investment of the entire budget.

We can then define the dynamics for the budget of agents x(t) as

x(t + 1) = x(t)[1 + r(t)q(t)] (1)

where r(t) is the market return at the previous time step t. The market return

function r(t) is restricted to the range of [−1, 1]. A value of r(t) = −1 corresponds

to a total loss of the invested fraction of the budget q(t) and r(t) = 1 corresponds

to a gain equivalent to the invested fraction. Thus, an agent can, at any time step

t, loose its complete budget (for q(t) = 1 and r(t) = −1), but also double its budget

(for q(t) = 1 and r(t) = 1). In principle, there is no upper boundary for r(t), r(t) = 1

was chosen to obtain a mean of zero for r(t) which allows us to better understand

the basic dynamics of this model. We emphasize again that, in our model, the aim

is not a most realistic simulation of the market return, but a comparison of different

agent strategies. The difficulty for the agents lies in properly predicting the next

value of r(t) and then adjusting q(t) fast enough.

Note that the restriction of r(t) to the range of [−1, 1] is not a realistic as-

sumption for a real market. There, some r(t) will also fall into the range [−1, 1]
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— these are rare, extreme events that occur, e.g., in cases of stock market bubbles

and crashes. However, normally, returns will be in the range of [−1, 1], e.g., as the

ones of the stock depicted in Fig. 1. As we would like to focus on the questions of

choosing appropriate agent strategies in environments with noisy, periodic returns,

it is reasonable to exclude such rare, extreme events and assume a restriction of

r(t) to the range of [−1, 1].

In the next two sections, we will outline the agent strategies (Sec. 3) and return

on investment (Sec. 4) that we consider.

3. Agent Strategies

As explained before, we are interested in how the market dynamics, r(t), affect the

different investment strategies of the agent, q(t). It is very important to realise that

the market dynamics — while affecting each agent’s q(t) — are not known to the

agents. That is, at time t, each agent only receives the actual value of the Return

on Investment (RoI) and adjusts its risk propensity accordingly, without having a

complete knowledge about the dynamics of r(t). The agent may, of course, have

some bounded memory about past RoI that could be used for predictions of future

RoI. However, the agent has to gather information about the ups and downs of

the RoI and to draw its own conclusions from this information by itself. Therefore,

the agent will perform better in the environment if it is able to guess the market

dynamics.

In the following, we present a selection of strategies that can be applied by

agents. We distinguish a reference strategy, which serves as a frame of reference

to compare and evaluate the performance of other strategies, as well as technical

analysis-based and machine learning-based strategies. Usually (there are exceptions,

as will be discussed in the following), a strategy consists of two components: a

prediction component and an action component. For such strategies, the prediction

component predicts a variable in the system — in this case, the next value of r(t)

— and the action component then defines an action upon the prediction of the

variable — in this case, it defines the appropriate value for q(t).

3.1. Reference strategy

In order to compare different strategies, we need a point of reference against which

the performance of each strategy can be measured. The reference strategy that we

are using is the most simple strategy possible, i.e., that an agent always assumes a

constant risk-propensity value q0 at every time step t:

q(t) = q0 = const. (2)

Since the value of q(t) is always fixed, this is not really a “strategy”, but it plays

a role in more physics-inspired investment models.1,14,15 We use this strategy to

compare it with more complex strategies. Note that this reference strategy requires

no knowledge on the RoI.
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3.2. Technical analysis

The following simple strategies for risk adjustment are based on “technical anal-

ysis”.16 Technical analysis tries to deduce information about the dynamics of r(t)

by looking at trends (averages, variances, higher order moments) of the RoI values

over a range of time. This assumes that an agent has a bounded memory of size

M to record previous RoI; this information is then processed in different ways to

predict the next RoI. In the following, we consider two strategies from the field of

technical analysis: the first strategy is based on calculating moving averages (MA)

on previous RoI, while the second strategy uses moving least squares (MLS) on

previous RoI, r(t), over a fixed period of time, M . Both of them can be regarded

as “zero-intelligence” strategies, as agents do not do any reasoning or learning.

3.2.1. Moving averages

The moving averages technique computes r̂MA(t), an estimate of the next r(t), as

the average of the previous M values of r(t):

r̂MA(t) =
1

M

t−1
∑

n=t−M

r(n) (3)

3.2.2. Moving least squares

The moving least squares technique fits a function to the data of the previous M

values of r(t) to estimate the next r(t). In our case, we choose this function to be

a linear trend-line, which is found by minimising the distance to the data points

of r(t). Based on the previous M values of r(t), the squared estimation error εr is

defined as:

εr(t) =
1

M

t
∑

n=t−M+1

[r(n) − r̂MLS(n)]2 (4)

where r̂MLS(t) is the predicted RoI based on the linear regression trend-line, defined

as:

r̂MLS(t′) = m(t)t′ + b(t) for t−M ≤ t′ ≤ t . (5)

Now, the best fitting values m and b are obtained by minimising the squared error

estimation, Eq. (4). From ∂εr/∂m = 0 and ∂εr/∂b = 0, we get, as it is well known:

m(t) =
M

∑t

n=t−M+1 nr(n)− (
∑t

n=t−M+1 n)(
∑t

n=t−M+1 r(n))

M
∑t

n=t−M+1 n2 − (
∑t

n=t−M+1 n)2
, (6)

b(t) =
1

M

[

t
∑

n=t−M+1

r(n) −m(t)

t
∑

n=t−M+1

n

]

. (7)
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These two strategies use different approaches to estimate future r(t); it remains to

define the corresponding adjustment of the risk propensity: here, we consider two

possibilities. First, a risk-seeking (RS) and, second, a risk-avoiding (RA) approach.

In the risk-seeking approach, the value of qRS(t) is defined as follows for r̂(t) ∈

{r̂MA(t), r̂MLS(t)}, i.e., for r̂(t) being an MA or MLS estimate of r(t):

qRS(t) =

{

qmin r̂(t) ≤ 0

qmax r̂(t) > 0
(8)

where qmin, qmax ∈ [0, 1] and qmin < qmax. In other words, agents invest qmin if the

next value of r(t) is predicted to be negative or zero, and agents invest qmax if the

next value of r(t) is predicted to be positive.

In the risk-avoiding approach, the value of qRA(t) is defined as follows for r̂(t) ∈

{r̂MA(t), r̂MLS(t)}, i.e., for r̂(t) being an MA or MLS estimate of r(t):

qRA(t) =











qmin r̂(t) ≤ qmin

r̂(t) qmin < r̂(t) < qmax

qmax r̂(t) ≥ qmax

(9)

where qmin, qmax ∈ [0, 1] and qmin < qmax. Here, the respective q(t) is set to the

predicted r(t) (with appropriate adjustments to ensure that q(t) = qmin whenever

r̂(t) ≤ qmin and q(t) = qmax whenever r̂(t) ≥ qmax) — agents only invest a fraction

of the budget which corresponds in size to the expected return.

3.3. Machine learning approaches

Another class of strategies for risk adjustment is based on more complex agent

information processing capabilities from the field of machine learning. In this paper,

we consider two such approaches: one based on an incremental update rule (IUR),

which is a form of reinforcement learning, and the other based on a genetic algorithm

(GA), which is a form of evolutionary learning.

3.3.1. Incremental update rule

The following machine learning approach is based on the incremental update rule,

an application of reinforcement learning.17 The idea of reinforcement learning is

that an agent continuously uses a reward signal to adjust its own performance.

In our scenario, the values of the return are the reward signal; at each step, the

agent computes the error between the predicted and the actual value of the return

and uses this error to adjust the estimation of the following return. The general

incremental update rule from reinforcement learning is defined as follows:

NewEst ← OldEst + StepSize[Target −OldEst ] . (10)

OldEst and NewEst are the old and new estimates for the quantity of interest. So,

Target-OldEst gives the error of the current estimation, which is weighted by the
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factor StepSize. This is, a new estimate is computed by taking the old estimate and

adjusting it by the error of the current estimate. NewEst has to be updated at each

time step. Applying Eq. (10) to our model, we find the following instance of the

incremental update rule:

r̂IUR(t + 1) = r̂IUR(t) + γ[r(t)− r̂IUR(t)] . (11)

Consequently, OldEst and NewEst are the old and new estimates for the return,

r̂IUR(t) and r̂IUR(t + 1); furthermore, r(t) − r̂IUR(t) is the error of the current

estimate. Because of its recursive definition, the incremental update rule considers

an infinite history of returns — of course, the weight of a value depends on its

age and its impact fades over time. We chose r̂IUR(0) = 0 as the initial value of

r̂IUR(t). Different values of γ lead to different performance of the algorithm; in other

words, for small γ, the adjustment of the estimate will be small, and for large γ,

the adjustment of the estimate will be large. It is important to choose an optimal

value for γ in order to be able to compare the algorithm with other algorithms; in

the next section, we will discuss this in more detail. Finally, it remains to specify

what action to do given a particular estimate for the next return; we again define

a risk-seeking and a risk-avoiding approach, similar to Eqs. (8) and (9) for the MA

and MLS strategies:

In the risk-seeking approach, qRS(t) is defined as follows for r̂IUR(t):

qRS(t) =

{

qmin r̂IUR(t) ≤ 0

qmax r̂IUR(t) > 0
(12)

and in the risk-avoiding approach, qRA(t) is defined as follows for r̂IUR(t):

qRA(t) =











qmin r̂IUR(t) ≤ qmin

r̂IUR(t) qmin < r̂IUR(t) < qmax

qmax r̂IUR(t) ≥ qmax

(13)

where, for both definitions, qmin, qmax ∈ [0, 1] and qmin < qmax.

It is important to note that reinforcement learning and the incremental update

rule are not identical; rather, reinforcement learning describes a group of machine

learning approaches and the incremental update rule is one instance of these ap-

proaches.

We note eventually that a different representation of γ in Eq. (11) could be used

to study some aspects of the prospect theory of decision-making. This theory takes

into account that decisions are made based on changes from a certain reference

point, i.e., humans for example decide differently for profits and for losses, as they

cognize losses twice as large as profits.18–21 This, however, is not the target of the

present investigations.

3.3.2. Genetic algorithm

Genetic algorithms (GA) are a technique from the field of artificial intelligence

which finds approximate solutions to problems. Genetic algorithms belong to the

In
t. 

J.
 M

od
. P

hy
s.

 C
 2

00
8.

19
:9

71
-9

94
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

W
IS

S 
FE

D
E

R
A

L
 I

N
ST

IT
U

T
E

 O
F 

T
E

C
H

N
O

L
O

G
Y

 Z
U

R
IC

H
 (

E
T

H
) 

on
 0

9/
29

/2
0.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



July 22, 2008 10:50 WSPC/141-IJMPC 01266

Risk-Seeking Versus Risk-Avoiding Investments 979

class of evolutionary algorithms. Genetic algorithms are based on modelling so-

lutions to a problem as a population of chromosomes; and the chromosomes are

candidate solutions to the problem which gradually evolve to better solutions to

the problem. The following is a description of the instance of a genetic algorithm

which we apply to our scenario:

Let j = 1, . . . , C be a chromosome with population size C. Each chromosome

j is an array of genes, gjk (k = 0, . . . , G − 1). The values of the genes are real

numbers.22 In our model, each chromosome j represents a set of possible strategies

of an agent, so the gjk refers to possible values for the risk propensity q.

In the beginning, each gjk is assigned a random value: gjk ∈ (qmin, qmax). Each

chromosome j is then evaluated by a fitness function, fj(τ), which is defined as

follows:

fj(τ) =
G−1
∑

k=0

r(t)gjk ; k ≡ t mod G . (14)

In our model, the fitness is determined by the gain/loss that each strategy gjk

yields depending on the RoI, r(t). Since the fitness of a chromosome must to be

maximised, negative r(t) lead to very small values of gjk , i.e., a low risk propensity,

whereas positive r(t) lead to larger values of gjk. This lets us consider the product

of r(t)gjk as a performance measure of a chromosome.

The values of gjk are always multiplied by different r(t) values — i.e., depending

on t. For the chromosome, we define a further time scale τ in terms of generations. A

generation is completed after each gjk is multiplied by a RoI from consecutive time

steps, t. This means that the index k refers to a particular time t in the following

manner: k ≡ t mod G, which means k = t̂ ∈ {1, G}, with t = t̂+ τG, τ = 0, 1, 2, . . ..

After time τ , the population of chromosomes is replaced by a new population of

better fitting chromosomes with the same population size C. This new population

is determined in the following manner: After calculating the fitness of each chromo-

some according to Eq. (14), we find the best chromosomes from the old population

by applying elitist and tournament selection of size two:

• Elitist selection considers the best s percentage of the population which is found

by ranking the chromosomes according to their fitness. The best chromosomes

are directly transferred to the new population.

• Tournament selection is done by randomly choosing two pairs of two chromo-

somes from the old population and then selecting from each pair the one with

the higher fitness. These two chromosomes are not simply transferred to the

new population, but undergo a transformation based on the genetic operators

crossover and mutation, as follows: A single-point crossover operator finds the

cross point, or cut point, in the two chromosomes beyond which the genetic ma-

terial from two parents is exchanged, to form two new chromosomes. This cut

point is the integer part of a random number drawn from a uniform distribution

pc ∈ U(1, G).

In
t. 

J.
 M

od
. P

hy
s.

 C
 2

00
8.

19
:9

71
-9

94
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

W
IS

S 
FE

D
E

R
A

L
 I

N
ST

IT
U

T
E

 O
F 

T
E

C
H

N
O

L
O

G
Y

 Z
U

R
IC

H
 (

E
T

H
) 

on
 0

9/
29

/2
0.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



July 22, 2008 10:50 WSPC/141-IJMPC 01266

980 J. E. Navarro-Barrientos, F. E. Walter & F. Schweitzer

After the crossover, a mutation operator is applied to each gene of the newly formed

chromosomes. With a given mutation probability pm ∈ U(0, 1), a gene is to be

mutated by replacing its value by a random number from a uniform distribution

U(qmin, qmax). After the cycle of selection, crossover and mutation is completed,

we eventually arrive at a new population of chromosomes that consists of a per-

centage of the best fitted chromosomes from the old population plus a number of

new chromosomes that ensure further possibilities for the evolution of the set of

strategies.

Given the optimised population of chromosomes representing a set of possible

strategies, the agent still needs to update its actual risk propensity, qi(t). This

works as follows: at time t = τ , the agent takes the set of strategies gjk from the

chromosome j with the highest fitness in the previous generation. Given G = T ,

this means that the agent for each time step of the upcoming cyclic change chooses

the appropriate risk propensity by computing the following:

qGA(t) = gjk , with j = arg

(

max
j=1,...,C

fj

)

; t ≡ k mod G (15)

This concludes the overview of the different agent strategies applied in our scenario.

In the following section we will adjust the respective parameters of each of these

strategies so that they are optimal. This is crucial for a comparison of the different

agent strategies — only strategies that perform at their best can be compared.

4. Return on Investment

Given the assumptions stated, we have to provide a function for r(t) which is

independent of q(t). In some of the models previously studied in the literature,23

the influence of the market is simply treated as random, i.e., r(t) is a random

number drawn from a uniform distribution in the interval [−1, 1].

However, it is known that for returns with a uniform distribution centered

around the origin and agents which do not have any information on future market

returns, this situation will lead the agents to a complete loss of their budget. This

is a well-known property of multiplicative stochastic processes.1 The only way to

make a profit on the return is by having a certain knowledge on future returns of

the market. This requires both that there exist correlations in the market return

function, and that the agents are able to resolve and use those correlations to make

correct predictions. Consequently, we choose to introduce correlations in our market

return r(t) under the form of a seasonal or periodic signal.

We study two different market return functions that depend on a noise level

σ1,2; for σ1,2 = 0, they correspond to a pure sine wave function with frequency w

and for σ1,2 = 1, they are completely uncorrelated:

rPhase(t) = sin(wt + σ1πξ) , (16)

rAmplitude(t) = (1− σ2) sin(wt) + σ2ξ (17)

In
t. 

J.
 M

od
. P

hy
s.

 C
 2

00
8.

19
:9

71
-9

94
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

W
IS

S 
FE

D
E

R
A

L
 I

N
ST

IT
U

T
E

 O
F 

T
E

C
H

N
O

L
O

G
Y

 Z
U

R
IC

H
 (

E
T

H
) 

on
 0

9/
29

/2
0.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



July 22, 2008 10:50 WSPC/141-IJMPC 01266

Risk-Seeking Versus Risk-Avoiding Investments 981

-1

-0.5

0

0.5

1

r(
t)

0 50 100 150 200 250 300
t

-1

-0.5

0

0.5

1

r(
t)

(a)

-1

-0.5

0

0.5

1

r(
t)

0 50 100 150 200 250 300
t

-1

-0.5

0

0.5

1

r(
t)

(b)

Fig. 2. Plots of the return functions r(t), Eq. (16) for: (a) two different phase noise levels: σ1 = 0.1
(top) and σ1 = 0.5 (bottom); (b) two different amplitude noise levels: σ2 = 0.1 (top) and σ2 = 0.5
(bottom).

where ξ is distributed uniformly in the interval [−1, 1], i.e., ξ ∈ U(−1, 1). There are

two types of noise that can occur with such a sine wave function — noise on the

phase and noise on the amplitude. We consider both cases: the first function can

be seen as a periodic market return signal with phase noise (determined by σ1),

the second as a periodic market return signal with amplitude noise (determined by

σ2). In our simulations, we chose the arbitrary value of T = 100 for the period of

the sine wave. Figure 2 shows plots for these two kinds of return functions with

different noise levels. Note that periodic returns with a periodicity changing over

time are invested recently as well.24

The noise parameter σ1,2 gives us a way of controlling the noise in the RoI,

thereby allowing us to evaluate the various strategies for different scenarios, ranging

from a completely clear signal with no noise at all (for σ1,2 = 0) to a noise-only

signal (for σ1,2 = 1). This makes it possible for us to determine how well multiple

strategies perform for different types and levels of noise and what impact the type

and level of noise has on a single strategy.

Agents have no knowledge about future market returns; of course, they do not

know the functions that determine r(t). Thus, the only way for agents to maximize

their gain and minimize their losses is by making a correct prediction of the fu-

ture market return and choosing the appropriate investment action. Conceptually,

we can separate an agent’s strategy into two components: a prediction component

and an action component. The prediction algorithm estimates the future values of

the market return and the action algorithm determines the best action based on

the predicted results.

We study the performance of the different algorithms or strategies that are

explained in Sec. 3. We define the performance of an agent employing a particular

strategy as being the average growth of the budget x(t) of the agent collected after

a certain number of time steps. We choose to take this average over t = T = 100

time steps, T being the period of the sine wave. The reason for this particular choice
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Fig. 3. Probability distribution of the RoI, r(t), Eq. (16), for: (a) phase noise σ1 = {0.1, 0.5, 0.9}
and (b) amplitude noise σ2 = {0.1, 0.5, 0.9}.

is that, for a constant investment action and a return function with no noise, this

average value will have zero standard deviation. In contrast, if we do the averaging

of the growth over all the time steps there will be a non-zero standard deviation

associated with the sine wave. In Sec. 6, we compare the performance of the different

strategies.

In order to interpret the results that we obtain and present in this paper, it

is useful to understand some properties of the two different return functions. Two

properties are of particular interest: the absolute average value of the return, and

the correlation between the sign of two consecutive returns.

For the sake of completeness, we show the probability distribution of the RoI

in Fig. 3. For the probability distributions of r(t) with phase noise, we see that

there is a higher probability for values close to −1 and 1, and a lower probability

for values close to 0. Note that this is the same distribution that is found for a

sine wave with no noise at all. For phase noise, the value of σ1 has no effect —

the distributions are virtually identical. For the probability distributions of r(t)

with amplitude noise, we observe a probability distribution which is a combination

of the probability distribution of a sine wave without noise (caused by the sine

wave) and a uniform probability distribution (caused by the noise). For higher

levels of noise, the convolution of probability distributions more closely resembles

the uniform distribution, and for lower levels of noise, the convolution of probability

distributions more closely resembles the sine wave distribution. For amplitude noise,

the value of σ2 is crucial and different values lead to different distributions. Note

that the distribution of the returns for phase noise is independent of the level of

noise, whereas for the RoI with amplitude noise there is a significant change as the

level of noise is increased.

Since the distribution of the RoI is independent of the noise level σ1 for phase

noise, it is expected that the average absolute RoI, Fig. 4, is constant with respect

to σ1 in the RoI. This, as we have explained, is not the case for the noise level σ2
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Fig. 4. Average absolute value of the RoI, r(t), Eq. (16), for phase noise (red, top line) and for
amplitude noise (black, bottom line).

for amplitude noise, where the average absolute RoI is varying with respect to σ2

in the RoI. For σ1 = 0 and σ2 = 0, the average absolute value of the RoI are equal.

Roughly, the average absolute value of the RoI with amplitude noise decreases for

σ2 < 0.6 and it increases for σ2 ≥ 0.6. This matches with the observations for the

probability distributions: there, for σ2 = 0.5, the values are concentrated around

r(t) = 0, leading to smaller 〈|r(t)|〉, and for σ2 = 0.1 and σ2 = 0.9, the values are

less concentrated around r(t) = 0, leading to larger 〈|r(t)|〉.

The average absolute RoI is of importance because its known from multiplica-

tive stochastic processes,1,14 that for a constant investment q(t) = q0 the better

performing constant strategies are the ones that invest the least possible amount.

In our model, the agents are forced to invest the minimum amount of qmin = 0.1.

Since q(t) is multiplied with r(t) in Eq. (1), the change in average absolute value of

r(t) has an impact similar to the change in q0 seen in the multiplicative stochastic

processes1 studied. This leads to changes in performance that are not necessarily

related with the performance of agents, and should be taken into account when

interpreting the results.

The correlation between the sign of two consecutive returns shows whether

it is possible to draw conclusions from the sign of r(t) on the sign of r(t + 1).

In Fig. 5 we show the distribution of the correlations of the RoI with respect to

two consecutive returns, r(t)r(t + 1). We can clearly see that for low levels of

noise there is bigger correlation between consecutive values. As the noise increases

this correlation diminishes until, finally, for high levels of noise, the returns are

completely uncorrelated.

Most of the algorithms studied are sensitive to correlations in consecutive RoI

with the same sign. We notice that between the returns with phase noise and
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Fig. 5. Distribution of the correlations of the RoI in time, r(t), Eq. (16), for: (a) phase noise
with σ1 = {0.1, 0.5, 0.9} and (b) amplitude noise with σ2 = {0.1, 0.5, 0.9}.

amplitude noise, correlations do not vary exactly in the same manner with noise.

In particular, it can clearly be seen that for σ1,2 = 0.5 the amplitude noise has

still more correlation than the phase noise. This difference can account for some

discrepancies seen between the performance of the agents for the two types of

market return functions.

5. Optimal Parameter Adjustment

In the previous sections, we have defined several different strategies that can be

applied by agents to determine when to invest which amount of money. In the

next section, we want to compare their performance in a periodic environment.

However, in order to make this comparison meaningful, we have to ensure that

we have adjusted the different parameters of the strategies properly. Only if the

strategies perform at their optimum, they can really be compared.

The procedure that we apply to adjust the optimal parameters is straightfor-

ward: we compare the performance — averaged over 105 periods — of each of the

algorithms for a range of possible parameters and then choose the optimal one. At

this point, it remains to define the notion of optimality: we have already defined

that we measure the performance of agents as the average of their budget growth

over a certain number of time steps. The optimal strategy is the strategy that per-

forms better than all the other strategies, i.e., the strategy that, on average, leads

to the greatest budget growth. Of course, for the measurement, each agent has to

be provided with enough time to gather the information necessary for the proper

calibration of the algorithm that it applies.

For the MA, MLS, and IUR strategies, there is only one parameter that requires

adjustment: either the memory size M (in the case of MA and MLS) or the step

size γ (in the case of IUR). This implies that for these strategies, it is possible to

choose the optimal value of the parameter by comparing the average budget 〈x(t)〉

for several possible values of the parameter, and then take the one which gives the
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Table 1. Optimal strategy parameters.

Algorithm Parameters

MA M = 5 (risk-seeking), M = 2 (risk-avoiding)

MLS M = 25 (both risk-seeking and risk-avoiding)

IUR γ = 0.5 (both risk-seeking and risk-avoiding)

GA C = 1000, pc = 0.7, pm = 0.01, s = 0.3

best results. For MA and MLS, we have considered memory sizes M ∈ [1, 50] and

for IUR, we have considered step sizes γ ∈ [0, 1].

For the GA strategy, there are, however, several parameters which require ad-

justment: the population size, C, the crossover probability, pc, the mutation prob-

ability, pm, and the elitism size, s. Consequently, the process of finding the optimal

combination of values for the parameters is not as trivial as for the other strategies.

The +CARPS (Multiagent System for Configuring Algorithms in Real Problem

Solving) tool25,26 was used during this step. This application uses autonomous, dis-

tributed, cooperative agents that search for solutions to a configuration problem,

thereby fine-tuning the meta-heuristic’s parameters. The agents in +CARPS apply

a Random Restart Hill-Climbing approach and they exchange their so-far best so-

lutions to the problem in the process. The intervals of definition, i.e., the intervals

in which the most acceptable GA configurations should lie, were set as follows:

C ∈ {50, 100, 200, 500, 1000}, pc ∈ [0.0, 1.0], pm ∈ [0.0, 1.0], and s ∈ [0.0, 0.5],

Table 1 shows the optimal parameters that we choose for the comparison of the

different strategies. Of course, the optimal parameters usually are not the same for

different types and levels of noise or for risk-seeking and risk-avoiding behavior, so

at times, a compromise between several alternative values for different situations

had to be found.

6. Results

In this section, we compare all strategies presented in this article for RoI with peri-

odicity T = 100 and different noise levels for both phase and amplitude noise. In our

comparison, we consider a set of agents, each one using one of the following strate-

gies: Q0 Eq. (2), MA Eq. (3), MLS Eq. (6), IUR Eq. (11), and GA Eq. (15). Note

that periodic returns with a periodicity changing over time are invested recently as

well.24

In our comparison, we make two assumptions: first, all agents receive the same

RoI at a particular time, i.e., the fact that some agents win or lose more than

others is influenced only by their different strategies to determine the correct risk-

propensity value; second, all agents use the optimal parameter values of their re-

spective strategies. Let us state again that only the past and current values of r(t)

are known to the agents; they do not know the dynamics governing future values

of r(t).
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We perform N = 100 trials of the same experiment, i.e., RoI with same parame-

ters, where at each end of a cycle of the RoI, i.e., for all t such that t mod T ≡ 0, an

average budget is obtained for each agent over the 100 trials. This is done for a large

number of time steps, i.e., t = 105. We vary the amplitude noise values, σ2 ∈ (0, 1),

while leaving the phase noise value constant, σ1 = 0, and we vary the phase noise

values, σ1 ∈ (0, 1), while leaving the amplitude noise value constant, σ2 = 0. For

the simulations which distinguish between a risk-seeking and a risk-avoiding action

upon a prediction of the RoI, we compute the average budget for both approaches.

This gives us four variants of the simulations: amplitude noise/risk seeking, phase

noise/risk seeking, amplitude noise/risk avoiding, and phase noise/risk avoiding.

6.1. Comparison

Figure 6 shows the result of the simulations by plotting the average budget resulting

from the different strategies against the noise level for each of the four variants of
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Fig. 6. Average budget over N = 100 trials, for agents using strategies Q0, MA, MLS, GA,
IUR and SW (square wave, to be introduced in Sec. 6.2), over t = 105 time steps. Agents use
optimal parameter values for RoI with periodicity, T = 100, and different noise levels: (a) different
amplitude noise values, σ2 ∈ (0, 1), and no phase noise, σ1 = 0 with a risk-seeking strategy; (b)
different phase noise values, σ1 ∈ (0, 1), and no amplitude noise, σ2 = 0 with a risk-seeking
strategy; (c) different amplitude noise values, σ2 ∈ (0, 1), and no phase noise, σ1 = 0 with a
risk-avoiding strategy, and (d) different phase noise values, σ1 ∈ (0, 1), and no amplitude noise,
σ2 = 0 with a risk-avoiding strategy.
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the simulations (amplitude noise/risk seeking in (a), phase noise/risk seeking in

(b), amplitude noise/risk avoiding in (c), and phase noise/risk avoiding in (d)).

For all variants of the simulations, the constant-risk strategy is the worst strat-

egy. The constant-risk strategy always puts a constant proportion of the budget at

stake. This money is won when the return is positive, but also lost when the return

is negative; even though 〈|r(t)|〉 = 0, this leads to a loss in budget over time, as

this is a well known property for multiplicative stochastic processes.

Furthermore, for all strategies, the average budget decreases with increasing

noise. That is the expected behavior: with increasing noise, the accuracy of the

predictions made by the agents decreases, and thus they cannot necessarily choose

the appropriate risk propensity in the action.

There are no significant crossovers of the performance of different strategies. In

general, this implies that if a strategy s1 performs better than a strategy s2 for a

given noise level σa (either on the phase or on the amplitude), s1 can be expected

to perform better than s2 for a different noise level σb. Consequently, the choice

of strategy is independent of the noise in the return — a good strategy is a good

strategy for all noise levels, and a bad strategy is a bad strategy for all noise levels,

too. However, for low noise levels, the GA is slightly outperformed by the other

strategies — this is due to the intrinsic stochastic nature of the algorithm; for the

same reason, this algorithm performs better for high noise levels. Note that the

experiments in this simulations are done for t = 105 time steps, which corresponds

also to the learning phase for the GA.

For phase noise, the average budget obtained is roughly comparable to that for

amplitude noise, although the differences between strategies are greater for phase

noise than for amplitude noise.

From the range of strategies employed, the simple strategies (MA, MLS, IUR)

were almost always outperformed by the complex one (GA). Other researchers3,27

have shown that this needs not necessarily be the case.

6.2. Optimal strategy

As a consequence of the comparison it is logical to investigate what would be the

optimal strategy in the given scenario. Given the fact that the GA performs best

of all the strategies, it makes sense to look at the q(t) as chosen by the GA for

r(t) over time, in order to analyse why the GA performs so well. Figure 7 plots

the values of r(t) and the corresponding q(t) as chosen by the GA against time

t for different noises and from different times tn on. From the graph, it is visible

that the behavior of the GA resembles a square wave function which is a type of a

ramp-rectangle function.

The ramp-rectangle (RR) function maps RoI that are uncertain to increas-

ing/decreasing risk-propensity values and RoI that are certainly positive or nega-

tive to a maximal or minimal risk-propensity value, respectively. The corresponding
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Fig. 7. Values of the return r(t) and the risk propensity q(t) as chosen by the GA for RoI with
different types of noise and for different times during the simulation: (a) amplitude noise, σ1 = 0,
σ2 = 0.5, tn ≈ 10 000, (b) amplitude noise, σ1 = 0, σ2 = 0.5, tn ≈ 100 000, (c) phase noise,
σ1 = 0.5, σ2 = 0, tn ≈ 10 000, (d) phase noise, σ1 = 0.5, σ2 = 0, tn ≈ 100, 000.

strategy is expressed as follows:

q(t + 1) =







































(

qmax − qmin

h1

)

t̂ + qmin if t̂ ∈ (0, h1)

qmax if t̂ ∈ [h1, h2]
(

qmax − qmin

h2 − h3

)

(t̂− h2) + qmax if t̂ ∈ (h2, h3)

qmin if t̂ ∈ [h3, h4]

. (18)

In this function, h1 (h3) sets the transition from an increasing (decreasing) ramp

function to a rectangle function and h2 (h4) sets the transition from a rectangle

function to a decreasing (increasing) ramp function. Moreover, for each time step, t,

the following congruence is used: t̂ ≡ t mod h4; this maps each time step t ∈ (0,∞)

to a time step in the ramp-rectangle function, t̂ ∈ (0, h4).

Furthermore, we assume that the differences between time steps when an agent

increases and decreases its risk propensity values are symmetric. This means that

the time difference ∆h between when the ramp function starts and stops to increase
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or decrease can be expressed as follows:

∆h = h1 = h3 − h2 (19)

which for ∆h = 1, means that agents use a Square Wave (SW) strategy. We are

particularly interested in this case of the ramp-rectangle function: it implies that

an agent invests qmax for time steps t̂ ∈ (0, T/2), and invests qmin for time steps

t̂ ∈ [T/2, T ]. This is the optimal strategy.

The GA approaches the optimal strategy: for all different noises, the risk propen-

sity q(t) chosen by the GA approximates the one that would have been chosen by

SW. Considering that the GA does not have an “a priori”-behavior defined, it is

interesting to realise that it finds the optimal strategy — investing the maximum

when, at a particular time t in the period, the probability of winning is higher than

loosing and vice versa — on its own.

Figure 7 illustrates this behavior. It plots the values of r(t) and the correspond-

ing q(t) as chosen by the genetic algorithm against time t for different noises and

from different times tn on. From this, it is clearly visible that the behavior of the GA

is very similar to the behavior of the SW, which is the optimal strategy. Comparing

Figs. 7(a) with 7(b) and 7(c) with 7(d), i.e., the same scenario, but at different

times tn1 = 10 000 and tn2 = 100 000, one can see that the q(t) chosen by the

GA approach the ones chosen by the SW more closely as time goes on — i.e., as

the GA has more time to evolve. Additionally, from the simulation results, it can

be observed the approximation of the SW by the GA is closer for low levels of noise

than for high levels of noise. This is the expected behavior.

6.3. “Everything on Red”

Furthermore, from the plots, we can observe that for low levels of noise, the risk-

seeking behavior clearly outperforms the risk-avoiding behavior: always investing

the maximum when a positive return is expected and investing the minimum when

a negative return is expected outperforms investing a quantity proportional to the

expected return. This may seem counter-intuitive — humans would probably choose

not to invest their complete budget when they know that there is a certain proba-

bility to lose it.

However, this behavior is explained as follows: consider r(t) to be periodic with

a period of T and, for the moment, assume that there is no noise, i.e., σ1 = 0 as well

as σ2 = 0. Then, the optimal strategy would be to invest the complete budget or

qmax during [0, T/2) and to invest nothing or qmin during [T/2, T ). This is because

it is certain — we assumed that there is no noise — that during the first half of

the period, [0, T/2), the value of r(t) will be positive and during the second half of

the period, [T/2, T ), the value of r(t) will be negative. No matter what the precise

values of r(t) are, once they are positive, this leads to a gain, and thus q(t) should

be as large as possible to maximise the gain; conversely, once the values of r(t)

are negative, this leads to a loss, and thus q(t) should be as small as possible or
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Fig. 8. Intervals of certainty and uncertainty: (a) shows r(t) with no noise and the corresponding
q(t) of the square wave (SW) strategy plotted against t and (b) shows r(t) with noise and the
different intervals for which different conclusions about the sign of the return can be drawn: (2)
and (5) are the intervals in which the sign of r(t) is certain to be positive or negative, respectively,
and (1), (3), (4), and (6) are the intervals in which the the sign of r(t) is uncertain.

zero to minimise the loss. In other words, for determining q(t), not the quantity of

the expected return matters, but whether the probability of the expected return being

positive is greater than the probability of the expected return being negative. This

explains why the risk-seeking behavior outperforms the risk-avoiding behavior for

periodic returns with no noise. The behavior of this strategy is shown in Fig. 8(a).

For periodic returns with noise, i.e., σ1 6= 0 or σ2 6= 0, the situation is quite

similar. Depending on the values of σ1 and σ2, there will be two intervals [0 +

ε, (T/2) − ε) and [(T/2) + ε, T − ε) such that during [0 + ε, (T/2) − ε), the value

of r(t) will — on average — be positive and such that during [(T/2) + ε, T − ε),

the value of r(t) will — on average — be negative, see Fig. 8(a). In these intervals,

the optimal strategy would again be to invest the complete budget or qmax and to

invest nothing or qmin, respectively. The value of ε, of course, depends on σ1 and

σ2, i.e., the more noise, the greater ε. Now, what still has to be considered are the

intervals [0, 0 + ε), [(T/2)− ε, (T/2) + ε), and [T − ε, T ). Because of the noise, it is

not possible to determine the exact sign of r(t) during these intervals.

However, it still is possible to say that — on average — the probability of

r(t) being positive is greater than the probability of r(t) being negative during

[0, 0 + ε) and [(T/2)− ε, T/2) and the probability of r(t) being negative is greater

than the probability of r(t) being positive during [T/2, (T/2) + ε) and [T − ε, T ).

Consequently, it makes sense to invest during [0, 0+ ε) and [(T/2)− ε, T/2) and not

to invest during [T/2, (T/2) + ε) and [T − ε, T ).

With such behavior, there will, however, be the situation that an agent invests

the complete budget, but the return is negative. In this type of situation, |r(t)|

depends on σ1 and σ2: for small σ1 and σ2, it will be small, too. Consequently, for

low levels of noise, the product of q(t)r(t) would be a small value, which signifies,

for r(t) < 0, a small loss, and for r(t) > 0, a small gain. Thus, even for q(t) = 1,
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the loss is bound to a proportion of the budget corresponding to the value of r(t).

This explains why the risk-seeking behavior outperforms the risk-avoiding behavior

for low levels of noise. For high levels of noise, the product of q(t)r(t) needs not

necessarily be a small value, which potentially signifies, for r(t) < 0, a large loss,

and for r(t) > 0, a large gain. Thus, an agent could potentially loose a significant

amount of its budget if it invests the complete budget; this is the reason why, for high

levels of noise, the risk-avoiding behavior outperforms the risk-seeking behavior.

This also provides a straightforward explanation why different algorithms using

the same rule to determine q(t) perform differently. Even though the best strategy

is to still invest the maximum when there is a slightly better probability that

r(t) > 0 than that r(t) ≤ 0, the algorithms fail to predict the exact probabilities of

r(t) > 0 and of r(t) ≤ 0 with good enough accuracy to determine how to properly

invest. In other words, the performance of the action depends on the accuracy of

the prediction; if the accuracy of the prediction is high, then the performance of the

action is good, and if the accuracy of the prediction is low, then the performance

of the action is bad, too. The GA does not exhibit this prediction-action behavior

and it is able to adjust better than the other strategies.

7. Discussion and Conclusions

In this paper, we have presented a number of strategies that can be applied by

agents in an investment market scenario with periodic returns and different types

and levels of noise. We have compared their performance — the respective average

budget growth over a certain number of time steps — and analysed the results. We

have made three main observations:

(1) The type of noise — whether the RoI has phase or amplitude noise — does

not have a significant influence on the performance of the algorithms, while

the level of noise certainly does — for increasing noise, we observe decreasing

performance.

(2) The GA performs best of all strategies for almost all scenarios; it discovers a

strategy which resembles a square wave strategy and which follows the principle

of always investing the complete budget or the maximum amount possible when

the expected return is positive and not investing anything or the least amount

possible when the expected return is negative.

(3) The best rule for investment is the risk-seeking behavior of always putting

the complete budget in an investment; this behavior clearly outperforms a risk-

avoiding behavior which humans would probably apply intuitively: whilst it may

seem intuitive to a human to invest an amount proportional to the expected

return, this is not the approach which yields the greatest budget growth over

time.

Consequently, returning to our original goal to find an answer to the ques-

tion of to which extent the internal complexity of agents influences their overall
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performance, we can state that, in our simple scenario, the agents with a complex

architecture outperform the agents with a simple architecture.

Although, with respect to the question above, the major focus on this paper is

more related to issues of computer science, one may also ask for the application of

the results in an economic context, in particular to financial markets. Surely, our

paper can be seen as a computational experiment on the performance of different

trading strategies in face of noisy market returns. In this context, the agent in our

model may have two possible preferences: liquidity preference12 and speculative

preference. That is based on the previous returns the agent has a preference to

keep cash or to invest in the market, respectively — which is modeled by the risk-

seeking and risk-avoiding behavior.

Apart from this, our model allows only a limited interpretation in the context

of financial markets, because a number of important features in these markets are

not covered or are even explicitely excluded, for the sake of a controlled simulation

setup:

Heterogeneity: Agents in our model are homogenous with respect to the strategy

employed, i.e., there is no variability in their individual strategies.7 In this

respect, the model is basically a “representative agent model”, which takes

into account only the limited information of the previous r(t). More elaborated

strategies, where agents are assumed to be fundamentalist or chartists28–30 are

also not considered here.

Interaction: Agents in our model do not interact with other agents. They rather

“learn” the dynamics of the market return, in order to predict it more accu-

rately. Important collective interactions in financial markets, such as herding

behavior, is neglected here, as well as interactions between (heterogeneous)

trading strategies.30 This implies the absence of emergent properties in our

model, as heterogeneity and interaction are indeed basic premises for the ex-

istence of emergent properties in financial markets.

Feedback: Agents in our model have no effect upon the market, and consequently

the price of an asset and the return on investment are treated as exogenous

variables. This is equivalent to the “atomistic market” assumption. Our model

also neglects the collective impact of all agents on the price and the return of

an asset. Other feedbacks on the market, such as agent’s expectations about

the market dynamics itself, are also not explicitely modeled here. Some artifi-

cial market models consider an endogeneous approach, where the returns are

generated by means of constant trading between heterogeneous agents.28,29

Microfoundation: Our model is lacking an adequate economic microfoundation

of the (representative) agent behavior. The terms “risk-avoiding” and “risk-

seeking” are used to denote the investment preference of the agent. However,

since decisions are always taken based on just the expected return, the behavior

of the agent has to be classified as “risk neutral” — risk-adverse agents indeed
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account also for the “variance” of returns in their decisions. Recent literature

in economics and finance presents a more realistic approach about behavior

toward risk.13,31

Multi − assets: Agents in our model can only invest in one (risky) asset, whereas

in financial markets multi-asset investments and portfolio strategies play the

most crucial role.8,32 Multi-asset optimal investment strategies for risky as-

sets were already discussed 50 years ago, with an interesting relation to gam-

bling.33 More recently, investment strategies to readjust portfolios34 have been

extended9 for a general distribution of return per capital. Similar to our model,

these contributions consider exogeneous returns which are drawn from a prob-

ability distribution or are modeled by a stochastic processes.
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