
December 14, 2015 14:12 WSPC/INSTRUCTION FILE paper

Advances in Complex Systems
c© World Scientific Publishing Company

A COMPLEX NETWORKS PERSPECTIVE ON COLLABORATIVE

SOFTWARE ENGINEERING

MARCELO CATALDO

EMC Corporation
New York City, NY, USA

mcataldo@alumni.cmu.edu

INGO SCHOLTES

ETH Zurich

Chair of Systems Design

Weinbergstrasse 56/58
CH-8092 Zurich, Switzerland

ischoltes@ethz.ch

GIUSEPPE VALETTO

Fondazione Bruno Kessler

Via Sommarive, 18

Trento, Italy
valetto@fbk.eu

Received (received date)

Revised (revised date)

Large collaborative software engineering projects are interesting examples for evolving
complex systems. The complexity of these systems unfolds both in evolving software

structures, as well as in the social dynamics and organization of development teams.

Due to the adoption of Open Source practices and the increasing use of online support
infrastructures, large-scale data sets covering both the social and technical dimension

of collaborative software engineering processes are increasingly becoming available. In

the analysis of these data, a growing number of studies employs a network perspective,
using methods and abstractions from network science to generate insights about software

engineering processes. Featuring a collection of inspiring works in this area, with this
topical issue, we intend to give an overview of state-of-the-art research. We hope that

this collection of articles will stimulate down-stream applications of network-based data

mining techniques in empirical software engineering.

1

Prep
rin

t 



December 14, 2015 14:12 WSPC/INSTRUCTION FILE paper

2 Marcelo Cataldo, Ingo Scholtes, Giuseppe Valetto

1. Introduction

Large collaborative software engineering projects are interesting examples for evolv-

ing complex systems. The complexity of these systems unfolds in the complex code

structures being developed, but also in the complex social structures emerging in

teams of collaborating developers. Through the adoption of Open Source Software

(OSS) practices and the wide-spread use of online support infrastructures and so-

cial coding platforms, the complex nature of software development can increasingly

be studied based on massive data sets. This has not only resulted in a surge of

data-driven, quantitative studies in the field of empirical software engineering ; it

has also generated a huge interest in mining the wealth of relational data that can

be extracted from those data sets on collaborative software engineering, and study

it from a complex networks or network science perspective.

The topical issue at hand is devoted to such works, which address the complex

technical, social and socio-technical aspects of team-based software development. It

provides a thought-provoking overview of state-of-the-art research taking a network

perspective to address problems in empirical software engineering.

In this editorial, we take an opportunity to briefly summarize some of the most

significant challenges and opportunities of applying network science methods to data

from software engineering processes, which are well-represented in the selection of

works collected in this topical issue. Clearly, in the context of an editorial, we can at

most cover selected topics and examples that set the stage for the works contained in

this topical issue. Therefore, our selection should not be mistaken for an exhausting

review of the much larger body of existing works in this area.

2. The Technical Dimension of Software Engineering

In the context of software engineering, methods from network science can first be

applied to technical aspects of software projects. A particularly common approach is

based on the extraction of data on the structure and evolution of software artifacts

which are created by developers. This can be achieved by mining the development

repositories in particular code and configuration management repositories such as

SVN, Git etc.

Here, a network perspective can be applied to study evolving dependency struc-

tures that interconnect modular units of source code, such as methods, classes,

packages or libraries. Such a perspective facilitates both the development of theoret-

ical models of software evolution, as well as empirical analyses of software projects:

Theoretical models for the growth dynamics of such dependency networks can for

instance inform us about underlying growth mechanisms, the formation of network

motifs, or sustainable regimes in the evolution of software [23, 24, 21]. A network

perspective on dependency networks can further be used to evaluate software mod-

ularity, for instance to formulate models for the propagation of code changes. Such

models can then help us to better understand which dependencies play a crucial

role in the evolution of software [12].

Prep
rin

t 



December 14, 2015 14:12 WSPC/INSTRUCTION FILE paper

A Complex Networks Perspective on Collaborative Software Engineering 3

Apart from such modeling approaches, numerous examples of network-based

empirical analyses of software structures exist. A number of statistical analyses

of dependency networks defined both at the class- and package-level of object-

oriented source code have highlighted similarities as well as differences to complex

networks emerging in other domains [14, 15, 13, 17]. Community structures in class

dependency networks were studied for instance in [22], highlighting their importance

for the design of modular software structures. A similar approach was used in [29]

to quantitatively assess the congruence between package structures designed by

software engineers for the organization of code and the natural cluster structures

emerging in dependency networks. The resulting network-analytic measure not only

provides insights into the evolution of software projects, it also can be used to assist

project managers and developers in refactoring efforts [32].

Besides such statistical analyses at the macroscopic level, a microscopic analysis

of individual nodes can provide us with further insights about software. Applying

centrality measures to package dependency networks can for instance help us to

decide which OSS packages to use in a software project [13]. It has also been shown

that node-level measures applied to class dependency networks can be used for

the automated prediction of software defects [20, 1]. Similarly, a network perspec-

tive on dependencies between requirements has recently been proposed to predict

integration errors in software projects [28].

Reflecting the broad set of activities in the field, this topical issue features several

works which study the technical dimension of software engineering projects from

a network perspective. In their article Recode: Software package refactoring via

community detection in bipartite software networks, Weifeng Pan and coauthors

study dependency networks of software artifacts. They show how a community

detection algorithm can be used to identify refactoring candidates that optimize the

package structure of software projects. A statistical analysis of software dependency

networks is also presented in the article Node mixing and group structure of complex

software networks contributed by Lovro Šubelj and coauthors. The authors study

clustering structures as well as correlations between the degrees of neighbouring

nodes, showing that dependency networks differ significantly from complex networks

found in other contexts. The important question how a network perspective can help

us to identify the most important pieces of source code is addressed by Phil Meyer

and coauthors in their article Identifying Important Classes of an Evolving Software

System Through K-core Decomposition: their results from an analysis of three Java

projects indicate that indeed network-analytic methods can be used to identify core

classes.

Prep
rin

t 



December 14, 2015 14:12 WSPC/INSTRUCTION FILE paper

4 Marcelo Cataldo, Ingo Scholtes, Giuseppe Valetto

3. The Social Dimension of Software Engineering

The works outlined above demonstrate that a network perspective on software ar-

tifacts can provide interesting insights into the output of collaborative software

engineering processes and its characteristics. However, social aspects emerging in

the communication, collaboration or coordination between developers and/or users

are an important additional source of complexity in software projects. How do

communication and coordination structures in development teams influence devel-

opment productivity or code quality? And how do collaboration structures in OSS

communities affect their resilience?

Again, such questions can be studied based on network representations of dyadic

relations inferred from recorded interactions between developers or users. Data on

evolving collaboration structures of large Open Source Software communities have

been studied in a number of works. Networks of OSS developers, which were assumed

to be connected whenever they have been active in the same project, were studied

in [19]. The authors find that the resulting networks share statistical similarities with

a number of social networks found in other contexts. The authors of [9] studied 120

OSS projects on SourceForge, highlighting a significant variation of centralization

across communities which indicates differences in their social organization.

Combining data from developer weblogs, mailing list archives and an online so-

cial network platform targeted at developers, the social network structure of OSS

developers was studied in [27]. The analysis of the resulting networks was used to

calibrate an agent-based model for OSS projects, aiming at replicating how devel-

opers chose projects. In [2], E-mail communication was used as the basis to con-

struct the communication networks of OSS community members, again highlighting

statistical similarities with the interaction networks found in other types of online

communities. Again using data on E-Mail communication, in [26, 25] models for the

growth of social structures in OSS communities were studied. The models combine

local and non-local network formation rules, thus highlighting a balance between

hierarchical and distributed collective social mechanisms in OSS communities.

The authors of [16] used commit logs to construct collaboration networks based

on the co-editing of files in a number of OSS projects. Established measures from so-

cial network analyses were then applied to categorize OSS projects, and study the

evolution of their collaboration structures. Similar macroscopic, network-analytic

measures were used to investigate the evolving social organization of OSS commu-

nities in [29]. The results highlight different organizational regimes which affect the

performance and resilience of communities [31]. In [30], a microscopic analysis of

the position of community members in collaboration networks was used to predict

which bug reports will eventually be fixed, thus pointing at applications of social

network analysis in the design of online support infrastructures.

Traditionally, works studying the social dimension of software engineering pro-

cesses have focused on the important role played by the network structure of collabo-

rations, communication or task allocation. Extending this notion, more recent works

Prep
rin

t 



December 14, 2015 14:12 WSPC/INSTRUCTION FILE paper

A Complex Networks Perspective on Collaborative Software Engineering 5

have started to additionally study the content of exchanges made within a particu-

lar network structure [11]. The results indicate that a combination of network-based

methods with a study of content of communication exchanges allows us to better

understand the performance of software development teams.

Two of the articles in this topical issue specifically address the social dimension of

software engineering processes. In their article Communication in innovation com-

munities: An analysis of 100 open source projects, Markus Geipel and collaborators

take a network perspective on communication flows between users and developers

in Open Source Software communities. Using a large-scale data set on 100 OSS

projects, they find that users dominate the communication in the associated com-

munities. Considering this important role of users, an interesting further question

is which of these users are likely to become involved in development tasks. This

question is addressed by Qi Xuan and collaborators. In their article Ranking devel-

oper candidates by social links they study communication networks of OSS projects,

applying different methods to predict which of the users eventually become mem-

bers of the development team. The results suggest that well-known network-based

ranking schemes can be used to identify developer candidates, thus highlighting

that communication networks carry significant amounts of information about the

motivation and skills of community members in OSS projects.

4. Socio-Technical Studies of Software Engineering

So far we have covered works that address either the technical or the social di-

mension in isolation. However, software projects are socio-technical systems. The

combination of the two dimensions is thus a further source of complexity, and car-

ries significant information. After all, it is a team of developers which shapes the

architecture of a software. And similarly, this architecture affects which develop-

ers have to coordinate their work, thus shaping the organizational structures of

the development team. The resulting intuition that social structures and software

architectures co-evolve can be traced back more than 50 years to Melvin Edward

Conway, thus often being paraphrased as “Conway’s law”. In more general terms,

the related “mirroring hypothesis” states that the governance structures of an or-

ganization directly affect the modular structures of the products that they develop.

The availability of fine-grained data on both social interactions and software

structures has recently allowed to study this phenomenon from a quantitative per-

spective. Again the network perspective has proven to be valuable in this context.

The authors of [18] use a network-based approach to test the mirroring hypothe-

sis both in commercial and Open Source software development. They find strong

evidence for the fact that the modular organization of software structures is cou-

pled with the structure of the social organizations by which they were developed.

A number of works have thus utilized two-mode networks capturing both software

dependencies and collaboration structures at the same time. In [8] such an approach

was used to study socio-technical congruence, referring to the level of congruence

Prep
rin

t 



December 14, 2015 14:12 WSPC/INSTRUCTION FILE paper

6 Marcelo Cataldo, Ingo Scholtes, Giuseppe Valetto

between software dependencies and coordination patterns. The authors find that the

degree of socio-technical congruence affects both software development performance

and software quality [8, 7]. In particular, high levels of socio-technical congruence

were found to significantly reduce the resolution time of modification requests as

well as the rate of software failures.

Both the dependency network as well as a network capturing the assignment

of tasks to developers have been studied in [3], showing that a socio-technical per-

spective can help to predict software defects with higher accuracy. In [10] a similar

socio-technical network perspective was used to analyze and visualize the different

organizational patterns in projects. Apart from serving as interesting empirical stud-

ies, a socio-technical perspective on software engineering can be fruitfully applied to

facilitate coordination in development teams. Building on the idea of socio-technical

congruence, recent works have thus studied how fine-grained data on dependency

structures and the association between developers and software constructs can be

used to identify coordination needs in real-time [5, 4, 6].

Representing a particularly challenging problem, we are happy that two works

in this topical issue have addressed socio-technical aspects in collaborative software

engineering. In their article Modeling distributed collaboration on GitHub, Nora Mc-

Donald and coauthors study data on five OSS projects from gitHub. They par-

ticularly address the question how the use of collaboration mechanisms offered by

this popular online collaboration platform affects both the social organization and

the success of software projects. As such, their work addresses a socio-technical

dimension, highlighting how design decisions in the development of collaboration

platforms influence the emerging social structures in software projects. A large-scale

data set featuring 360, 000 OSS projects hosted on SourceForge is analyzed by

Frank Schweitzer and coauthors in their work How do OSS projects change in num-

ber and size? A large-scale analysis to test a model of project growth. The authors

show that the growth rate of collaborative projects can be modeled by an established

statistical model of firm growth, which balances two antagonistic forces of develop-

ers joining existing projects vs. founding new projects. As such, this work highlights

the potential of interdisciplinary research in the modeling of socio-technical aspects

of software engineering.

5. Conclusion

The works in this topical issue impressively demonstrate the various ways in which

network-based methods can be utilized to study research questions relevant to em-

pirical software engineering. However, with more and more massive data sets from

social coding platforms like SourceForge or gitHub becoming available, they can

necessarily only mark the beginning of a fruitful field of research. Much remains to

be discovered and we hope that this topical issue stimulates further studies which

provide us with interesting insights into the technical and social dimension of com-

plex software engineering processes.

Prep
rin

t 



December 14, 2015 14:12 WSPC/INSTRUCTION FILE paper

A Complex Networks Perspective on Collaborative Software Engineering 7

Acknowledgements

The guest editors would like to express their gratitude to all authors as well as

to the anonymous reviewers. Without your much appreciated contributions, this

topical issue would not have been possible.

Bibliography

[1] Bhattacharya, P., Iliofotou, M., Neamtiu, I., and Faloutsos, M., Graph-based anal-
ysis and prediction for software evolution, in Proceedings of the 34th International
Conference on Software Engineering, ICSE ’12 (IEEE Press, Piscataway, NJ, USA,
2012), ISBN 978-1-4673-1067-3, pp. 419–429, http://dl.acm.org/citation.cfm?id=
2337223.2337273.

[2] Bird, C., Gourley, A., Devanbu, P., Gertz, M., and Swaminathan, A., Mining email
social networks, in Proceedings of the 2006 International Workshop on Mining Soft-
ware Repositories, MSR ’06 (ACM, New York, NY, USA, 2006), ISBN 1-59593-397-2,
pp. 137–143, doi:10.1145/1137983.1138016, http://doi.acm.org/10.1145/1137983.
1138016.

[3] Bird, C., Nagappan, N., Gall, H., Murphy, B., and Devanbu, P., Putting it all together:
Using socio-technical networks to predict failures, in Software Reliability Engineering,
2009. ISSRE ’09. 20th International Symposium on (2009), ISSN 1071-9458, pp. 109–
119, doi:10.1109/ISSRE.2009.17.

[4] Blincoe, K., Valetto, G., and Damian, D., Do all task dependencies require coordina-
tion? the role of task properties in identifying critical coordination needs in software
projects, in Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013 (ACM, New York, NY, USA, 2013), ISBN 978-1-4503-
2237-9, pp. 213–223, doi:10.1145/2491411.2491440, http://doi.acm.org/10.1145/

2491411.2491440.
[5] Blincoe, K., Valetto, G., and Goggins, S., Proximity: A measure to quantify the

need for developers’ coordination, in Proceedings of the ACM 2012 Conference on
Computer Supported Cooperative Work, CSCW ’12 (ACM, New York, NY, USA,
2012), ISBN 978-1-4503-1086-4, pp. 1351–1360, doi:10.1145/2145204.2145406, http:
//doi.acm.org/10.1145/2145204.2145406.

[6] Blincoe, K. C., Timely and Efficient Facilitation of Coordination of Software De-
velopers’ Activities, Ph.D. thesis, Drexel University, Philadelphia, PA, USA (2014),
aAI3613734.

[7] Cataldo, M. and Herbsleb, J., Coordination breakdowns and their impact on devel-
opment productivity and software failures, Software Engineering, IEEE Transactions
on 39 (2013) 343–360.

[8] Cataldo, M., Herbsleb, J. D., and Carley, K. M., Socio-technical congruence: A frame-
work for assessing the impact of technical and work dependencies on software develop-
ment productivity, in Proceedings of the Second ACM-IEEE International Symposium
on Empirical Software Engineering and Measurement, ESEM ’08 (ACM, New York,
NY, USA, 2008), ISBN 978-1-59593-971-5, pp. 2–11, doi:10.1145/1414004.1414008,
http://doi.acm.org/10.1145/1414004.1414008.

[9] Crowston, K. and Howison, J., The social structure of free and open source software
development, First Monday 10 (2005).

[10] De Souza, C., Froehlich, J., and Dourish, P., Seeking the source: software source
code as a social and technical artifact, in Proceedings of the 2005 international ACM
SIGGROUP conference on Supporting group work (ACM, 2005), pp. 197–206.

Prep
rin

t 



December 14, 2015 14:12 WSPC/INSTRUCTION FILE paper

8 Marcelo Cataldo, Ingo Scholtes, Giuseppe Valetto

[11] Ehrlich, K. and Cataldo, M., The communication patterns of technical leaders: impact
on product development team performance, in Proceedings of the 17th ACM confer-
ence on Computer supported cooperative work & social computing (ACM, 2014), pp.
733–744.

[12] Geipel, M. M. and Schweitzer, F., Software change dynamics: evidence from 35 java
projects, in Proceedings of the the 7th joint meeting of the European software engineer-
ing conference and the ACM SIGSOFT symposium on The foundations of software
engineering (ACM, 2009), pp. 269–272.

[13] Kohring, G., Complex dependencies in large software systems, Advances in Complex
Systems 12 (2009) 565–581.

[14] LaBelle, N. and Wallingford, E., Inter-Package Dependency Networks in Open-Source
Software, eprint arXiv:cs/0411096 (2004).

[15] Li, D., Han, Y., and Hu, J., Complex network thinking in software engineering,
in Computer Science and Software Engineering, 2008 International Conference on,
Vol. 1 (2008), pp. 264–268, doi:10.1109/CSSE.2008.689.

[16] Lopez-Fernandez, L., Robles, G., Gonzalez-Barahona, J. M., et al., Applying social
network analysis to the information in cvs repositories, in International Workshop on
Mining Software Repositories (IET, 2004), pp. 101–105.

[17] Louridas, P., Spinellis, D., and Vlachos, V., Power laws in software, ACM Trans.
Softw. Eng. Methodol. 18 (2008) 2:1–2:26.

[18] MacCormack, A., Baldwin, C., and Rusnak, J., Exploring the duality between prod-
uct and organizational architectures: A test of the “mirroring” hypothesis, Research
Policy 41 (2012) 1309–1324.

[19] Madey, G., Freeh, V., and Tynan, R., The open source software development phe-
nomenon: An analysis based on social network theory, AMCIS 2002 Proceedings
(2002) 247.

[20] Nguyen, T., Adams, B., and Hassan, A., Studying the impact of dependency network
measures on software quality, in Software Maintenance (ICSM), 2010 IEEE Inter-
national Conference on (2010), ISSN 1063-6773, pp. 1–10, doi:10.1109/ICSM.2010.
5609560.

[21] Tessone, C. J., Geipel, M. M., and Schweitzer, F., Sustainable growth in complex
networks, EPL (Europhysics Letters) 96 (2011) 58005.

[22] Šubelj, L. and Bajec, M., Community structure of complex software systems: Analysis
and applications, Physica A: Statistical Mechanics and its Applications 390 (2011)
2968 – 2975.

[23] Valverde, S. and Solé, R. V., Logarithmic growth dynamics in software networks,
EPL (Europhysics Letters) 72 (2005) 858.

[24] Valverde, S. and Solé, R. V., Network motifs in computational graphs: A case study
in software architecture, Physical Review E 72 (2005) 026107.

[25] Valverde, S. and Solé, R. V., Self-organization versus hierarchy in open-source social
networks, Physical Review E 76 (2007) 046118.

[26] Valverde, S., Theraulaz, G., Gautrais, J., Fourcassié, V., and Solé, R. V., Self-
organization patterns in wasp and open source communities, Intelligent Systems,
IEEE 21 (2006) 36–40.

[27] Wagstrom, P., Herbsleb, J., and Carley, K., A social network approach to free/open
source software simulation, in Proceedings First International Conference on Open
Source Systems (2005), pp. 16–23.

[28] Wang, J., Li, J., Wang, Q., Yang, D., Zhang, H., and Li, M., Can requirements
dependency network be used as early indicator of software integration bugs?, in Re-
quirements Engineering Conference (RE), 2013 21st IEEE International (2013), pp.

Prep
rin

t 



December 14, 2015 14:12 WSPC/INSTRUCTION FILE paper

A Complex Networks Perspective on Collaborative Software Engineering 9

185–194, doi:10.1109/RE.2013.6636718.
[29] Zanetti, M. S., Sarigöl, E., Scholtes, I., Tessone, C. J., and Schweitzer, F., A quanti-

tative study of social organisation in open source software communities, in 2012 Im-
perial College Computing Student Workshop, ICCSW 2012, September 27-28, 2012,
London, United Kingdom (2012), pp. 116–122, doi:10.4230/OASIcs.ICCSW.2012.116,
http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.116.

[30] Zanetti, M. S., Scholtes, I., Tessone, C. J., and Schweitzer, F., Categorizing bugs
with social networks: A case study on four open source software communities, in
Proceedings of the 2013 International Conference on Software Engineering, ICSE ’13
(IEEE Press, Piscataway, NJ, USA, 2013), ISBN 978-1-4673-3076-3, pp. 1032–1041,
http://dl.acm.org/citation.cfm?id=2486788.2486930.

[31] Zanetti, M. S., Scholtes, I., Tessone, C. J., and Schweitzer, F., The rise and fall of a
central contributor: dynamics of social organization and performance in the gentoo
community, in Cooperative and Human Aspects of Software Engineering (CHASE),
2013 6th International Workshop on (IEEE, 2013), pp. 49–56.

[32] Zanetti, M. S., Tessone, C. J., Scholtes, I., and Schweitzer, F., Automated soft-
ware remodularization based on move refactoring: A complex systems approach,
in Proceedings of the 13th International Conference on Modularity, MODULARITY
’14 (ACM, New York, NY, USA, 2014), ISBN 978-1-4503-2772-5, pp. 73–84, doi:
10.1145/2577080.2577097, http://doi.acm.org/10.1145/2577080.2577097.

Prep
rin

t 




