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Large collaborative software engineering projects are interesting examples for evolving
complex systems. The complexity of these systems unfolds both in evolving software

structures, as well as in the social dynamics and organization of development teams.

Due to the adoption of Open Source practices and the increasing use of online support
infrastructures, large-scale data sets covering both the social and technical dimension

of collaborative software engineering processes are increasingly becoming available. In

the analysis of these data, a growing number of studies employs a network perspective,
using methods and abstractions from network science to generate insights about software

engineering processes. Featuring a collection of inspiring works in this area, with this
topical issue, we intend to give an overview of state-of-the-art research. We hope that

this collection of articles will stimulate down-stream applications of network-based data

mining techniques in empirical software engineering.
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1. Introduction

Large collaborative software engineering projects are interesting examples for evolv-

ing complex systems. The complexity of these systems unfolds in the complex code

structures being developed, but also in the complex social structures emerging in

teams of collaborating developers. Through the adoption of Open Source Software

(OSS) practices and the wide-spread use of online support infrastructures and so-

cial coding platforms, the complex nature of software development can increasingly

be studied based on massive data sets. This has not only resulted in a surge of

data-driven, quantitative studies in the field of empirical software engineering ; it

has also generated a huge interest in mining the wealth of relational data that can

be extracted from those data sets on collaborative software engineering, and study

it from a complex networks or network science perspective.

The topical issue at hand is devoted to such works, which address the complex

technical, social and socio-technical aspects of team-based software development. It

provides a thought-provoking overview of state-of-the-art research taking a network

perspective to address problems in empirical software engineering.

In this editorial, we take an opportunity to briefly summarize some of the most

significant challenges and opportunities of applying network science methods to data

from software engineering processes, which are well-represented in the selection of

works collected in this topical issue. Clearly, in the context of an editorial, we can at

most cover selected topics and examples that set the stage for the works contained in

this topical issue. Therefore, our selection should not be mistaken for an exhausting

review of the much larger body of existing works in this area.

2. The Technical Dimension of Software Engineering

In the context of software engineering, methods from network science can first be

applied to technical aspects of software projects. A particularly common approach is

based on the extraction of data on the structure and evolution of software artifacts

which are created by developers. This can be achieved by mining the development

repositories in particular code and configuration management repositories such as

SVN, Git etc.

Here, a network perspective can be applied to study evolving dependency struc-

tures that interconnect modular units of source code, such as methods, classes,

packages or libraries. Such a perspective facilitates both the development of theoret-

ical models of software evolution, as well as empirical analyses of software projects:

Theoretical models for the growth dynamics of such dependency networks can for

instance inform us about underlying growth mechanisms, the formation of network

motifs, or sustainable regimes in the evolution of software [23, 24, 21]. A network

perspective on dependency networks can further be used to evaluate software mod-

ularity, for instance to formulate models for the propagation of code changes. Such

models can then help us to better understand which dependencies play a crucial

role in the evolution of software [12].
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Apart from such modeling approaches, numerous examples of network-based

empirical analyses of software structures exist. A number of statistical analyses

of dependency networks defined both at the class- and package-level of object-

oriented source code have highlighted similarities as well as differences to complex

networks emerging in other domains [14, 15, 13, 17]. Community structures in class

dependency networks were studied for instance in [22], highlighting their importance

for the design of modular software structures. A similar approach was used in [29]

to quantitatively assess the congruence between package structures designed by

software engineers for the organization of code and the natural cluster structures

emerging in dependency networks. The resulting network-analytic measure not only

provides insights into the evolution of software projects, it also can be used to assist

project managers and developers in refactoring efforts [32].

Besides such statistical analyses at the macroscopic level, a microscopic analysis

of individual nodes can provide us with further insights about software. Applying

centrality measures to package dependency networks can for instance help us to

decide which OSS packages to use in a software project [13]. It has also been shown

that node-level measures applied to class dependency networks can be used for

the automated prediction of software defects [20, 1]. Similarly, a network perspec-

tive on dependencies between requirements has recently been proposed to predict

integration errors in software projects [28].

Reflecting the broad set of activities in the field, this topical issue features several

works which study the technical dimension of software engineering projects from

a network perspective. In their article Recode: Software package refactoring via

community detection in bipartite software networks, Weifeng Pan and coauthors

study dependency networks of software artifacts. They show how a community

detection algorithm can be used to identify refactoring candidates that optimize the

package structure of software projects. A statistical analysis of software dependency

networks is also presented in the article Node mixing and group structure of complex

software networks contributed by Lovro Šubelj and coauthors. The authors study

clustering structures as well as correlations between the degrees of neighbouring

nodes, showing that dependency networks differ significantly from complex networks

found in other contexts. The important question how a network perspective can help

us to identify the most important pieces of source code is addressed by Phil Meyer

and coauthors in their article Identifying Important Classes of an Evolving Software

System Through K-core Decomposition: their results from an analysis of three Java

projects indicate that indeed network-analytic methods can be used to identify core

classes.
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3. The Social Dimension of Software Engineering

The works outlined above demonstrate that a network perspective on software ar-

tifacts can provide interesting insights into the output of collaborative software

engineering processes and its characteristics. However, social aspects emerging in

the communication, collaboration or coordination between developers and/or users

are an important additional source of complexity in software projects. How do

communication and coordination structures in development teams influence devel-

opment productivity or code quality? And how do collaboration structures in OSS

communities affect their resilience?

Again, such questions can be studied based on network representations of dyadic

relations inferred from recorded interactions between developers or users. Data on

evolving collaboration structures of large Open Source Software communities have

been studied in a number of works. Networks of OSS developers, which were assumed

to be connected whenever they have been active in the same project, were studied

in [19]. The authors find that the resulting networks share statistical similarities with

a number of social networks found in other contexts. The authors of [9] studied 120

OSS projects on SourceForge, highlighting a significant variation of centralization

across communities which indicates differences in their social organization.

Combining data from developer weblogs, mailing list archives and an online so-

cial network platform targeted at developers, the social network structure of OSS

developers was studied in [27]. The analysis of the resulting networks was used to

calibrate an agent-based model for OSS projects, aiming at replicating how devel-

opers chose projects. In [2], E-mail communication was used as the basis to con-

struct the communication networks of OSS community members, again highlighting

statistical similarities with the interaction networks found in other types of online

communities. Again using data on E-Mail communication, in [26, 25] models for the

growth of social structures in OSS communities were studied. The models combine

local and non-local network formation rules, thus highlighting a balance between

hierarchical and distributed collective social mechanisms in OSS communities.

The authors of [16] used commit logs to construct collaboration networks based

on the co-editing of files in a number of OSS projects. Established measures from so-

cial network analyses were then applied to categorize OSS projects, and study the

evolution of their collaboration structures. Similar macroscopic, network-analytic

measures were used to investigate the evolving social organization of OSS commu-

nities in [29]. The results highlight different organizational regimes which affect the

performance and resilience of communities [31]. In [30], a microscopic analysis of

the position of community members in collaboration networks was used to predict

which bug reports will eventually be fixed, thus pointing at applications of social

network analysis in the design of online support infrastructures.

Traditionally, works studying the social dimension of software engineering pro-

cesses have focused on the important role played by the network structure of collabo-

rations, communication or task allocation. Extending this notion, more recent works
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have started to additionally study the content of exchanges made within a particu-

lar network structure [11]. The results indicate that a combination of network-based

methods with a study of content of communication exchanges allows us to better

understand the performance of software development teams.

Two of the articles in this topical issue specifically address the social dimension of

software engineering processes. In their article Communication in innovation com-

munities: An analysis of 100 open source projects, Markus Geipel and collaborators

take a network perspective on communication flows between users and developers

in Open Source Software communities. Using a large-scale data set on 100 OSS

projects, they find that users dominate the communication in the associated com-

munities. Considering this important role of users, an interesting further question

is which of these users are likely to become involved in development tasks. This

question is addressed by Qi Xuan and collaborators. In their article Ranking devel-

oper candidates by social links they study communication networks of OSS projects,

applying different methods to predict which of the users eventually become mem-

bers of the development team. The results suggest that well-known network-based

ranking schemes can be used to identify developer candidates, thus highlighting

that communication networks carry significant amounts of information about the

motivation and skills of community members in OSS projects.

4. Socio-Technical Studies of Software Engineering

So far we have covered works that address either the technical or the social di-

mension in isolation. However, software projects are socio-technical systems. The

combination of the two dimensions is thus a further source of complexity, and car-

ries significant information. After all, it is a team of developers which shapes the

architecture of a software. And similarly, this architecture affects which develop-

ers have to coordinate their work, thus shaping the organizational structures of

the development team. The resulting intuition that social structures and software

architectures co-evolve can be traced back more than 50 years to Melvin Edward

Conway, thus often being paraphrased as “Conway’s law”. In more general terms,

the related “mirroring hypothesis” states that the governance structures of an or-

ganization directly affect the modular structures of the products that they develop.

The availability of fine-grained data on both social interactions and software

structures has recently allowed to study this phenomenon from a quantitative per-

spective. Again the network perspective has proven to be valuable in this context.

The authors of [18] use a network-based approach to test the mirroring hypothe-

sis both in commercial and Open Source software development. They find strong

evidence for the fact that the modular organization of software structures is cou-

pled with the structure of the social organizations by which they were developed.

A number of works have thus utilized two-mode networks capturing both software

dependencies and collaboration structures at the same time. In [8] such an approach

was used to study socio-technical congruence, referring to the level of congruence
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between software dependencies and coordination patterns. The authors find that the

degree of socio-technical congruence affects both software development performance

and software quality [8, 7]. In particular, high levels of socio-technical congruence

were found to significantly reduce the resolution time of modification requests as

well as the rate of software failures.

Both the dependency network as well as a network capturing the assignment

of tasks to developers have been studied in [3], showing that a socio-technical per-

spective can help to predict software defects with higher accuracy. In [10] a similar

socio-technical network perspective was used to analyze and visualize the different

organizational patterns in projects. Apart from serving as interesting empirical stud-

ies, a socio-technical perspective on software engineering can be fruitfully applied to

facilitate coordination in development teams. Building on the idea of socio-technical

congruence, recent works have thus studied how fine-grained data on dependency

structures and the association between developers and software constructs can be

used to identify coordination needs in real-time [5, 4, 6].

Representing a particularly challenging problem, we are happy that two works

in this topical issue have addressed socio-technical aspects in collaborative software

engineering. In their article Modeling distributed collaboration on GitHub, Nora Mc-

Donald and coauthors study data on five OSS projects from gitHub. They par-

ticularly address the question how the use of collaboration mechanisms offered by

this popular online collaboration platform affects both the social organization and

the success of software projects. As such, their work addresses a socio-technical

dimension, highlighting how design decisions in the development of collaboration

platforms influence the emerging social structures in software projects. A large-scale

data set featuring 360, 000 OSS projects hosted on SourceForge is analyzed by

Frank Schweitzer and coauthors in their work How do OSS projects change in num-

ber and size? A large-scale analysis to test a model of project growth. The authors

show that the growth rate of collaborative projects can be modeled by an established

statistical model of firm growth, which balances two antagonistic forces of develop-

ers joining existing projects vs. founding new projects. As such, this work highlights

the potential of interdisciplinary research in the modeling of socio-technical aspects

of software engineering.

5. Conclusion

The works in this topical issue impressively demonstrate the various ways in which

network-based methods can be utilized to study research questions relevant to em-

pirical software engineering. However, with more and more massive data sets from

social coding platforms like SourceForge or gitHub becoming available, they can

necessarily only mark the beginning of a fruitful field of research. Much remains to

be discovered and we hope that this topical issue stimulates further studies which

provide us with interesting insights into the technical and social dimension of com-

plex software engineering processes.
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