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Abstract

We analyse time series of CDS spreads for a set of major US and European institutions in a period overlapping the recent
financial crisis. We extend the existing methodology of e-drawdowns to the one of joint e-drawups, in order to estimate the
conditional probabilities of spike-like co-movements among pairs of spreads. After correcting for randomness and finite size
effects, we find that, depending on the period of time, 50% of the pairs or more exhibit high probabilities of joint drawups
and the majority of spread series are trend-reinforced, i.e. drawups tend to be followed by drawups in the same series. We
then carry out a network analysis by taking the probability of joint drawups as a proxy of financial dependencies among
institutions. We introduce two novel centrality-like measures that offer insights on how both the systemic impact of each
node as well as its vulnerability to other nodes’ shocks evolve in time.
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Introduction

Within the field of complex networks [1], the investigation of

financial networks is currently one of the emerging avenues [2,3],

also in view of the on-going global financial crisis.

A major issue concerns the assessment of the systemic

importance of nodes, especially in the face of partial information

on the network of dependencies. While financial contagion on

networks [4–6] differs in some important respects from the

epidemics spreading [7,8], in both processes the topological

structure of the network plays a crucial role in the collective

dynamics and therefore in the emergence of systemic risk. A body

of work focuses on networks reconstructed from correlations

among equity prices or return time series [9–12]. For instance, the

analysis of the minimum spanning tree provides insights into the

classification of stocks and the level of correlation depending on

the market phase. Correlation analysis suffers, however, from

some important limitations, the main one being that zero

correlation between two series does not imply that they are

independent (only the inverse is true). To overcome these

limitations, here we utilise a method based on the detection of

joint e-drawup, which allows us to estimate the probability that two

series exhibit a co-movement. An e-drawup is essentially a

persistent upward movement in a time series until a peak has

been reached, after which the time series experiences a decline (or,

has a ‘‘correction’’) that exceeds the amplitude e (see Methods).

Moreover, in contrast to equities, CDS prices reflect the default

probability of the reference entity and thus the network

constructed from CDS prices are more relevant in studying the

propagation of default risk.

Our approach can be applied to construct networks of

dependencies in other financial markets. In general, it applies to

all domains of networks in which links are, for any reason,

unobservable but the dynamics of the nodes reflect the depen-

dency structure. To summarise, the contributions of the paper are

the following. First, we build on the e-drawdown method [13] to

estimate the probability of joint e-drawups, which are essentially a

particular type of co-movements across time series. Based on this,

we estimate the level of the so-called interdependence and trend

reinforcement [14,15], in the system across different phases of the

market (see Figure 1). This finding is of interest in light of previous

theoretical work on the emergence of systemic risk [16]. Second,

we construct a network of interdependencies among institutions

and we introduce two novel centrality measures that allow for the

identification of systemically important nodes in the network. Our

approach enables the disentanglement of a structure that is, only

apparently, very homogenous. It also allows us to track how the

role played by nodes in the network evolve in time.

Results

Interdependence and trend reinforcement
Whilst interdependence can be seen as a form of risk

diversification which decreases individual risk, previous work

[16] has demonstrated that high interdependence leads, instead, to

higher systemic risk when coupled to a so-called trend reinforce-

ment [14]. We thus proceed to investigating the presence of

interdependence and trend-reinforcement in the CDS markets. In

our context, trend reinforcement refers to the tendency of an e-

drawup to be followed by another e-drawup in the same time

series. Interdependence refers, in contrast, to the existence of co-
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movements between two different time series (i.e. an e-drawup

followed by another one in a different time series). Here, we take

the frequency of e-drawup’s in i as an estimate of the probability

Pi that security i has an e-drawup. Similarly, for the frequency of

joint e-drawup’s we estimate Pij , i.e. probability that j experiences

an e-drawup given that i experiences an e-drawup. The expected

probability of joint drawup’s in the case of two statistically

independent time series is Pij~PiPj . Therefore, we take as an

estimate of interdependence between two financial institutions, the

deviation from such a case, i.e. Wij~Pij{PiPj . Finally, in order

to account for finite size effects, we consider only those values of

Wij that cannot be rejected based on a permutation test and we

reset to zero all the other values. In such test, each Wij value is

retained only if it is found to have less than 5% chance to come

from a distribution obtained after permuting the position in time

of all the e-drawup’s. For more details, see Correction for

Randomness in Section Materials and Methods. In the following,

we refer to this procedure when we say that values are statistically

significant at a 95% confidence interval.

We also account for a time lag t~0,1,2,3 days between the

drawup’s and we take the average of Wij across t values.

Analogously, we take as an estimate of the trend reinforcement for

institution i the deviation: Wii~Pii{PiPi and we treat it as

above. Notice that, because of the time lag t, Wij is not a

symmetric matrix. Notice also that a positive value of Wij does not

imply a causality relation between the movements of i and j, but

measures the dependence of j due from i in terms of a conditional

probability.

The distribution of Wij ’s and Wii’s are shown in Figure 2 a, b.

The histograms count only the non-zero values of Wij ’s and Wii’s

(i.e., as explained above, only those that are found to be

statistically significant at a 95% confidence interval, according to

the permutation test. We find statistically significant levels of trend

reinforcement, in about 50%, 72% and 80% of the nodes

(respectively in period 1, 2 and 3). The range of values of Wii

across periods 1, 2, and 3 are: 0:32+0:28, 0:36+0:29, and

0:19+0:14 respectively. In Figure 2 b), the curve for period 2 and

3 is mostly above the one for period 1. This means that the

number of nodes with a significant level of trend reinforcement

increases when the market moves from the first phase to the

following two, more volatile, phases. We also find statistically

significant levels of interdependence in 54%, 78% and 77% of

pairs of nodes in period 1, 2, 3, respectively. The range of values of

Wij across periods 1, 2, and 3 are: 0:21+0:12, 0:23+0:14, and

0:24+0:18, respectively. The histograms of Wij (see Figure 2 a)

show that periods 2 and 3 are characterised by higher frequencies.

In fact, 20% of pairs in period 2 and 19% pairs of nodes in period

3 exhibit values of Wij greater than the mean plus one standard

deviation of period 1. Moreover, while in period 1, nearly all

values of Wij are smaller than 0.5, in period 2 and 3 there is a tail

extending up to 1.

These findings show that interdependence and trend reinforce-

ment are indeed present in an important market such as the one

for CDS’s. Moreover, trend reinforcement increases from period 1

to period 2, and even more so does interdependence.

Network analysis and centrality
There is a growing body of works looking at CDS markets, and

more in general at derivative markets, as networks in order to

investigate the systemic importance of market players [17]. In light

of the previous section, in our context The CDS market can be

naturally mapped into a directed and weighted network in which

nodes represent institutions and edges represent interdependencies

among institutions. More precisely, whenever Wijw0 (recall that

we have retained only the values that are statistically significant,

see Materials and Methods), we assign a weighted edge with value

Wij from institution i to j. Since Wij is the probability that

conditional to i experiencing a draw-up, j also experiences a draw-

up with a time lag 0ƒtƒ3, it follows that the stronger the edge,

the stronger the impact that i has on j. When looking at the

properties of connectedness of the network, we find a significant

number of disconnected nodes in all three periods (81, 39, 39,

respectively). Remarkably, the rest of the nodes form only one

strongly-connected component (LSCC, see Materials and Meth-

ods) encompassing, respectively, 95, 137, 137 nodes in period 1, 2

and 3. The density of links (i.e. the number of links over the

number of possible links) in the LSCC is high in all the three

periods: 0.98,0.97, 0.97. This is reflected also in the average out

degree in the LSCC’s across the three periods, which is 90+8,

129+11, and 123+19. Finally, the average path length within the

LSCC’s is 1.04, 1.05 and 1.2, meaning that almost all the nodes in

the LSCC are first neighbours to each other. In such a structure,

each node has a direct impact on all the other nodes, and each of

these has a further impact on all the others. Intuitively, this finding

suggests that the financial distress at one node in the SCC can

quickly propagate to all the other nodes in the LSCC and keeps

reverberating through the many connections.

Centrality measures are used in order to understand the

systemic impact of nodes in a financial network, e.g. DebtRank

[6]. Here we want to focus on both the impact that a node makes

on the others as well as on the impact that all the others make on

it. The out- and in-degree of a node are the simplest measures of

centrality that hold a valuable interpretation here: A high out-

degree represents the ability of a node to affect many neighbours

when it experiences a draw-up; a high in-degree corresponds to a

node being affected by many nodes. Since the network is almost a

complete graph, based on the out-degree, all nodes are equally

systemically important and equally affected by the others. As an

alternative approach, based on the notion of feedback centrality,

for each node i we introduce a novel measure, called impact

centrality and denoted as ci, see Eqn. 1. The measure takes into

account, in a recursive way, the fact that a node is more

systemically important if it impacts many systemically important

Figure 1. Time series of credit default swaps throughout the
credit crisis. A plot of the CDS spread time series covering the
financial crisis of 2008. The data ranges from January 2002 to December
2011. We can observe three market phases. Most CDS spreads peak
around March 2009. The CDS prices are quoted in basis points (bp). The
purpose of this plot is to highlight the market regimes, rather than the
individual CDS spread evolution. Accordingly, the CDS spreads of all the
financial entities are plotted here.
doi:10.1371/journal.pone.0061815.g001
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nodes (see Materials and Methods). Symmetrically, we also

introduce the vulnerability centrality of a node i, denoted as bi, see

Eqn. 2. This measure captures, instead, the idea that a node is

more heavily vulnerable if it has strong dependencies from many

nodes which are in turn heavily vulnerable. In both cases, the

values are normalised between 0 and 1. In analogy to the random

walker for PageRank [18], both measures hold a physical

interpretation in terms of expected numbers of e-drawup’s. The

first is proportional to the expected number of e-drawup’s that

occur in the network, conditional to a first e-drawup at node i. The

second is proportional to the expected number of e-drawup’s that

occur in i, conditional to a first e-drawup occurring at all the other

nodes.

Figure 3 is a scatter plot of first-order impact centrality and first-

order vulnerability centrality of each firm, i.e. taking into account

only the immediate neighbours of each node (see Materials and

Methods). Values of both centrality measures are not normalized

here in order to compare them across different periods. The size of

the circles reflects the average debt level of each firm. As we can

see, some firms in period 1, eg. BOFA, exhibited a systemic impact

of approximately 30. This can be interpreted as: an e-drawup in

the CDS time series of a firm affects the CDS time series of an

expected number of 30 other market participants. In particular,

there is a group of institutions with similar values of both impact

and vulnerability between 20 and 30, which moreover also have

the highest debt levels. This suggests that a perturbation in their

debt levels would spread across a very large subset of the network.

Since the size of the debt of such institutions is the largest, a small

percentage change in their debt would cause a large change in the

distress of the debt issued by others firms in the network. In period

2, both impact and vulnerability centrality tend to increase and

almost double for many of the larger financial institutions, but this

general increase is very heterogenous. In period 3, many firms

decrease their debt, their impact and their vulnerability except a

small group institutions for which impact remains high. Notice

that the size, impact, and vulnerability centralities are not linearly

correlated, e.g. UBS in period 3 exhibits high impact but low

vulnerability, while at the same time, it experiences a drop in its

total size.

Figure 2. The distribution of non-zero values of interdependence Wij across the three periods. (a) The counts in periods 2 and 3 are
higher than in period 1. In addition, during periods 2 and 3 the distributions of Wij have longer tails compared to period 1. (b) The distribution of
non-zero values of trend reinforcement Wii across the three periods.
doi:10.1371/journal.pone.0061815.g002

Figure 3. Scatter plot of impacting versus vulnerability
centrality. Each institution in the CDS market is represented by three
dots depending on the period (blue, green, red refers to period 1, 2, 3,
respectively). The size of each node is determined by the average debt
of a financial institution relative to the maximum average debt of a
financial institution in a given period. Note that in this picture we
present the non-normalised values of systemic impact and vulnerability,
this exercise enables the comparison of node’s centrality measures
across periods. It can be seen that, while in period 1 most institutions
are located between the two dotted lines, in period 2 and 3 many of
them move to the top and bottom region. This means that ratio
between the two centrality measures varies with the market phase. Few
institutions of interest are labelled. For example, Bank of America
(BOFA) remains in the same region across the three periods. With
reference to the subsequent bow-tie construction used in Figure 4: The
scatter plot is divided into 3 regions. Nodes in the region above the line
riw3=2 correspond to the IN. Nodes in the region 2=3vriv3=2
correspond to the SCC. Nodes in the region riv2=3 correspond to the
OUT.
doi:10.1371/journal.pone.0061815.g003
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The period under observation although covering 10 years

represents a single observation of a crisis and cannot be used to

draw definitive conclusions on the emergence of crises in general.

However, recent works on systemic risk in financial networks have

shown that the number of links play an ambiguous role. Few links

are functional to diversify the individual risk. However, too many

links generate systemic risk if they co-exist with mechanisms that

either amplify the distress (such as in the case of contagion), or

simply increase the persistency of the distress in time (such as for

trend reinforcement) [16]. As we have seen, the CDS market

exhibits a core of more than 100 nodes, that is almost a fully

connected graph (i.e. with maximal degree) and where the weight

of the links represent in many cases strong interdependencies.

Moreover, the time series exhibit also a high level of trend

reinforcement. Thus, according to the theoretical results men-

tioned earlier, in such a situation, even small levels of amplification

can make the whole system very unstable. Notice that moving

from period 1 to period 2, the values of most CDS’s raised

dramatically, in many cases by one order of magnitude (see

Figure 1). This argument together with the finding described by

Figure 3 suggests as a possible intuitive narrative that the CDS

market was already potentially unstable in period 1, and that

period 2 represents an unraveling that sooner or later would have

happened anyway and that was mitigated by the intervention of

the lender of last resort.

Notice that it is generally thought that without the massive

intervention of the Federal Reserve (FED) through various emergency

programs that lasted from the fall of 2008 until the summer of

2009, [19] there would have been a melt-down of the whole

financial system. Indeed, previous findings based on different data

[6] estimate that in that period the default of a few institutions

would have triggered a systemic default.

Link Pruning and Bow-tie Extraction
While in- and out-degree remain very homogenous over time

and not very informative since the graph is very dense, the values

of both centrality measures are more broadly spread across the

range ½0,70� (see Figures S1, S2, S3 in File S1). If we focus on the

ratio between impacting and vulnerability centrality, ri~
bi

ci

, in the

scatter plot of Figure 3, it is possible to identify three regions

(above, between and below the dotted lines), corresponding to

three different roles of the nodes.

Nodes are located in the top region if they have a value riw3=2,

meaning that they impact the network 1.5 times more than they

are vulnerable to it. Symmetrically, nodes are in the bottom region

if riv2=3. Finally, nodes that appear in the middle region are

those that impact and are vulnerable to the network in a

comparable manner. According to this classification, while in

period 1 most institutions are located in the middle region, in

period 2 and 3 they progressively move to the top and the bottom

region. We observe that there are many nodes in the network that

not only have a high impacting centrality, but also a high

vulnerability centrality. From a systemic risk perspective it is

essential to study nodes that are prone to distress; however, from a

policymakers perspective it is also vital to monitor nodes that are

not only prone to distress, but that also have a high impacting

centrality as distress in such nodes could lead to a systemic

collapse.

The values of impact and vulnerability centralities spread out from

period 1 to period 2 and 3 (see Figures S1, S2, S3 in File S1). Thus,

in order to visually enhance the role of nodes that are mostly one

or the other we carry out the following link pruning procedure. In

each period, for nodes located in the top region, we remove all

their incoming links. Symmetrically, for those in the bottom

region, we remove all the outgoing links. Since the initial network

is strongly connected and dense, in this way, we obtain a bow-tie

structure (see Materials and Methods). The position of a node in

the bow-tie is related to its systemic importance. Indeed, the IN,

SCC and OUT component of the bow-tie correspond to the top,

middle and bottom regions of Figure 3, respectively (e.g. the nodes

in the IN are those that impact the network more than they are

vulnerable). Note that the bow-tie structure is constructed based on

the choice of impacting-vulnerability centrality, i.e. nodes with

riw3=2 are in the IN, nodes with 2=3vriv3=2 are in the SCC,

and nodes with riw2=3 are in the OUT. In fact, for any dw0,

where d[(0,1). The lines 1{d and 1zd would separate the nodes

into three regions. Thus, the choice of d is based on the level of

impacting-vulnerability centrality that is of interest. As an exercise

to verify the effect of d on emergence of a bow-tie structure in our

network, we perform as robustness analysis on d (see Figures S5,

S6, S7, S8, S9, S10, S11 in File S1) for more visualisations. Notice

that if a network is a directed SCC, and one truncates all incoming

links of nodes with riv1{d, and all outgoing links for nodes with

riw1zd. Then, it is not always the case that the filtered network

has a non-trivial SCC (see Figure S4 in File S1).

We then introduce a novel method for the visualisation of the

bow-tie (Figure 4). This enables the representation, at the same

time, of a network structure, the position of the nodes in the

various component of the bow-tie, as well as their level of

impacting centrality (see Table S2 in File S1). In Figure 4, the

circle represents the SCC, the top (bottom) section correspond to

the IN (OUT). E.g. within the SCC, more central nodes are

located towards the centre of the circle. The colour code and the

size of the dots also reflect their centrality, such that the red and

large dots are the most central (see caption of Figure 4). This

visualisation allows to track how individual institutions become

more or less central, or if they changed role across periods (see File

S1). In period 1, most of the nodes of the bow-tie are in the SCC

(85), with 4 and 6 in the IN and OUT respectively. Moreover,

most nodes in the centre of the SCC are banks and investment

banks, while insurance and real estate companies tend to be in the

periphery of the SCC (see File S1), This implies that in the normal

phase most of the nodes impact the network, and are vulnerable to

the network in a comparable manner. In period 2, the bow-tie

grows overall, but the SCC (97 nodes) grows proportionally less

than IN (19 nodes) and OUT (22 nodes). Of the 81 nodes that

were disconnected in period 1, twenty seven migrated to the SCC

(Figure 4). In period 3, the size of the bow-tie remains unchanged,

but the SCC shrinks by about a 50% (from 97 to 47 nodes), as a

result of a migration to the IN (37 nodes) and mostly to the OUT

(53 nodes) (see Table S1 in File S1). In particular, the nodes with

high impacting centrality are now all located in the IN and not,

anymore, in the SCC.

One should not forget that the original network is a strongly

connected graph and the bow-tie is obtained with a filtering.

Therefore, it is not the case that the nodes in the IN are not

connected among each other. This means that in case a few nodes

would have defaulted, the others would still have been heavily

affected. However, the observed migration of nodes implies that,

compared to the normal period, there has been an increasing

polarisation between nodes (IN) that predominantly impact the

network, and nodes (OUT) that predominantly are vulnerable to

the network.

The above analysis of impacting and vulnerability centralities,

and the bow-tie extraction allows us to move from an initial

picture in which all nodes seemed to be equally important from the

point of view of systemic risk, to a much more refined picture. In

CDS Networks: Too Interconnected to Be Stable?
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terms of systemic impact, we can now focus on a small subset of

the nodes, viz. nodes that have a high impacting centrality and are

located in the centre of the SCC, or in the top part of the IN. This

finding is corroborated by anecdotal evidence [20] about the role

of important actors of the credit crisis of 2008 (see File S1).

Conversely, the impacting centrality allows also to identify nodes

that suffer the most from an impact originating from the others.

Remarkably, there is no evidence of one or two nodes dominating

the others in terms of systemic importance. In contrast, we see that

in each period a set of about top 19 nodes have similar values of

centrality.

Materials and Methods

Data
Credit Default Swaps (CDS’s) are financial derivatives instruments

in which the seller provides the buyer protection against a credit

event of a reference entity (see File S1). Our aim is to analyse the

time series data of CDS prices, or spreads, of top US and

European financial institutions in the last years. The data,

acquired via a subscription to Bloomberg, consists of CDS spreads

of single name entities denominated in US dollars and in the Euro,

encompassing a total of 176 top firms in the financial sector, in the

period from 2nd January 2002 until 1st December 2011. As shown

in Figure 1, the time series display three distinct phases.

Accordingly, we divide the data into three parts: (1) January

2002–May 2006 (representative of a normal phase); (2) May 2006–

March 2009 (volatile with an upwards trend); (3) March 2009–

December 2011 (volatile with a downwards trend market

scenario). The motivation to do a period-wise analysis is to extract

the network structure before, during and after the crisis of 2008.

This data window covers a 2560 weekdays. e-drawups. For each

institution’s time series we detect what we call e-drawup’s. An e-

drawup is an extension of the notion of an e-drawdown [21]. It

refers to a persistent upward movement in a time series until a

peak has been reached, after which the time series declines (or, has

a ‘‘correction’’) by more than an amplitude e (see Figure 5a). Since

the CDS spread represents the cost of insurance, an e-drawup

signifies an increase in the default probability of that institution, as

perceived by the market.

We compute the e-drawup’s in each of the time series using the

following algorithm, which we describe using the example

illustrated in Figure 5a. Suppose, we start our analysis of an e-

drawup from the first green point from the left in Figure 5a. The

step are as follows: (1) We compute the local variation in the time

series for the last ten days, call it e. (2) compute local extrema. (3)

Figure 4. The network of the CDS reference entities from period 2. Each of the nodes represents a financial institution. Outgoing links from
nodes that are in the top, or the IN of the bow-tie structure represent the estimated potential impact of a financial institution to its neighbours (see
Materials and Methods). The nodes in the SCC are placed within a circle of radius one and centred at the origin. The distance of each node from the
centre is 1{Impacting centrality. The angle increases linearly from 0 to 2p. Thus, the closer a node is to the centre the higher is vulnerability-
impacting centrality. Similarly, nodes in the OUT and IN are placed between angles p=2- 5p=8 and 3p=2 - 13p=8 respectively. In addition, nodes in the
OUT and IN are placed with an offset of 1.1 from the origin. With the bow-tie representation we are able to visually compare the centrality of a node i
with node j. Also, with this visualisation we are able to extract a network of nodes that mostly impact the others, nodes that impact just as much as
they get vulnerable, and nodes that are only vulnerable to the other nodes in the network. The size and the colour of the node reflects vulnerability-
impacting centrality of a node (nodes with larger vulnerability-impacting centrality are in red). The colour assigned to links is based on where the
links point to in the network. Links originating from IN to the SCC are in bright blue. Links originating in the SCC to nodes in the SCC are in green.
Links that are originating in the SCC to the OUT are dull blue grey colour.
doi:10.1371/journal.pone.0061815.g004
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Goto first local minima, call it e-drawupcandidate (on day three,

Figure 5a). (4) Iterate to the set of local maxima and minima

(occurring on days 5 and 6 respectively, see Figure 5a). Compute

the difference between the maxima and the minima, call it correction

amplitude (correction amplitude refers to the decline in price followed

after an increase in price). (5) Update e by computing the local

variation of the last ten days. (6) If correction amplitude § e. Then, we

record the e-drawup on the day it occurs (day 7 in Figure 5a). And,

we update e-drawupcandidate. Otherwise, we iterate to the next

minima and goto the succeeding maxima and repeat steps above.

The choice of using 10 days to compute local variations was the

result of following preliminary analysis. We have computed

drawups for 50 time series using various numbers of days ranging

from 1 until 102. At one extreme we take all the local maxima in

the time series as drawups, which is not desirable (see Figure 5b).

At the other extreme the algorithm ignores too many drawups. e-

drawups in general can be validated by eye only and thus we could

not run an optimisation function that would maximise the number

of ‘‘true’’ drawups, as a function of the number of days chosen to

compute local variations. After a thorough visual inspection of 50

time series at various scales, we picked 10 days as the best choice of

the time window. Note that on weekends and holidays, the last

traded price is carried forward; however, we have verified that this

does not affect the e - drawup algorithm.

With the above procedure, we are able to detect the e-drawup’s

in the the time series data. Once we have detected the e-drawup’s

in i{th time series, we construct the vector vi for node i, whose

length is the same as the length of the time series, T . Also, vi(t)~1
if there was a drawup on day t in node i, and zero otherwise.

Co-movements. When market participants buy and sell

insurance on each other, their financial performances can become

interdependent (see File S1). Therefore, we are interested in

detecting joint upward movements in pairs of time series. In order

to detect co-movements we implement the following algorithm

(notice, that the resulting matrices of co-movements Pt
ij are square

but not symmetric):

(1) Select a given node i. (2) Loop from day t~1 till t~T and

compare each vi(t) with all vj(tzt) where j[f1,:::,Ng and

t[f0,1,2,3g. (3) If vi(t)~1 and vj(tzt)~1, then

countt~counttz1. (4) Update a matrix of counts of joint

drawup’s, i.e. Pt
ij~

countt

T
. (5) Repeat the steps (1)–(4) for all

node i.
Correction for Randomness and Finite Size: Statistical

Significance. In order to account for the co-movements that

could arise by chance, for each pair (i,j) we subtract the expected

number of co-movements in the case of independent events and

we obtain W t
ij~Pt

ij{Pt
i Pt

j . In order to correct for finite size

effects, we carry out a permutation test. For each pair (i,j) we

generate 100 permutations of the respective time series of e-

drawups. We compute the corresponding 100 values of W t,control
ij

and the value ~WWij
t,control

that corresponds to a 95% confidence

level. This means that if the empirical value W t
ij exceeds

~WWij
t,control

, it has less than 5% chance to come from the same

distribution. Accordingly, we keep the empirical value of W t
ij only

if it passes this test and otherwise we set it to 0. In the following,

when we say that only statistically significant links are retained, we

refer to the above filtering procedure.

Interpreting the Conditional Probability Matrix W. We

now average across values of t the filtered matrices, i.e.

Wij~
1

4

Xt~3

t~0
W t

ij . Notice that the quantity represented by Wij

is not a measure of causality. However, under the assumption that

the observed joint e-drawup frequencies are an approximation of

probabilities, each entry Wij of the matrix W has a precise

meaning: It is an estimate of the probability of an e-drawup in the

time series of j at a given day, conditional to an e-drawup in time

series of node i in the preceding 3 days and in the same day,

averaged over the days of the time delay.

Impacting and Vulnerability Centrality. In line with the

notion of feedback centrality (e.g., PageRank [18], see File S1), we

introduce the Impacting Centrality ci,

Figure 5. Illustration of the e-drawup methodology. (a) The * represents local extrema that were not detected as drawups. The red-dots
represent local maxima that were picked up as candidates for a e-drawup. The green-dots represent the local minima that were picked up for a e-
drawup. Compare the difference between the maxima and minima on days 5 and 6 respectively with e. Since, e greater than the difference, we iterate
to the next set of local maxima and minima on days 7 and 8, keeping day 3 as the day from when we count a e-drawup (b) The plot highlights the e-
drawup methodology applied to the time series of American International Group (AIG) and Merrill Lynch (MER).
doi:10.1371/journal.pone.0061815.g005
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ci~
X

j

~WWijc
(0)
j zb

X

j

~WWijcj ð1Þ

and the Vulnerability Centrality bi,

bi~
X

j

~WW
0
ijb

(0)
j zb

X

j

~WW
0
ijbj ð2Þ

In the definition above: c
(0)
j and b

(0)
j are the intrinsic centrality,

which for the sake of simplicity are set to 1; the matrices are

normalized so to be row-stochastic, ~WWij~Wij=
P

l Wlj ,

~WW
0
ij~W

0
iyj=
P

l W
0
lj , with W

0
denoting the transpose of W ; the

parameter b is a dampening factor which we set to 0:85 in line

with the PageRank [18] heuristic [18]. Eqn. 1 and 2 can be

analytically solved to yield the solution, c~( { ~WW0){1 ~WW0v and

b~( { ~WW){1 ~WWb. We can interpret the Impacting Centrality ci as

the extent to which a firm i impacts the network via direct

connections and, recursively, via indirect connections. Analogous-

ly, we can interpret the Vulnerability Centrality bi as the extent to

which a firm i gets impacted by the network via direct connections

and, recursively, via indirect connections.

In terms of physical analogy, in the case of PageRank [18], it is

known that the score of a node is proportional to the expected

number of visits of a random walker that is let free to navigate in

the network hopping randomly from a node to the successor

nodes. Notice that because of possible cycles in the network a

walker can visit a node many times and thus the expected number

of visits by random walkers can in general exceed the number of

walkers. We can map the visit of the random walker into the

occurrence of an e-drawup. The Impacting Centrality of a node i

is then proportional to the expected number of e-drawup’s

occurring across all nodes in the network, conditional to an initial

e-drawup at node i. Conversely, the Vulnerability Centrality of a

node i is proportional to the expected number of e-drawup’s

occurring at node i, conditional to an initial e-drawup at some

node j=i in the network.

Bow-tie structure. A bow-tie network is a directed network

consisting of four main parts, as follows. The Strongly Connected

Component (SCC): set of nodes such that each can reach any other

via a directed path; OUT: set of all nodes that can be reached,

directly or indirectly, from the SCC; IN: the set of all nodes that

reach the SCC directly or indirectly. The fourth and last component

of the bow-tie structure, Tubes and Tendrils (TT) represent the set

of all nodes that are not a part of the SCC; however, a node in the

TT can either be reached from the IN and/or OUT.

Link Pruning and Bow-tie Extraction. If a network is dense

and strongly connected it is difficult to understand who impacts

whom. We then proceed to the following link pruning. We compute

the ratio between the Impacting and the Vulnerability Centrality,

ri~
bi

ci

, see Eqn. 1 & 2. If riw3=2 then we remove all the incoming

links of the node i. This means that all nodes that exhibit riw3=2
will only have outgoing links after the pruning. Similarly, nodes that

exhibit riv2=3 get all their outgoing links removed. The remaining

nodes, i.e. such that 2=3vriv3=2 retain both the incoming and

outgoing links. With few exceptions, this link pruning procedure

extracts out of a dense strongly connected network a subnetwork

with a bow-tie structure. This is useful to highlight the role of a node.

Those nodes mainly impacting the others end up in the IN

component, after the pruning. Those nodes mainly vulnerable to

the others end up in the OUT. Those nodes being equivalently

impacting and vulnerable end up in the SCC.

Conclusion

We have analysed the e-drawup’s in the CDS’s time series for the

top US and EU institutions throughout the last 10 years. By

measuring the frequency of joint drawup’s in pairs of CDS time

series we have estimated the level of interdependence and trend

reinforcement in the market. According to previous theoretical

works on financial networks, the interplay of these two mechanisms

is deeply linked to the emergence of systemic risk. We have found

statistically significant levels of both interdependence and trend

reinforcement. Moreover, we see an increase of both in acute phases

of the crisis. The result suggests that high interdependence and

trend reinforcement together with high level of individual riskiness

are possible indicator of the level of systemic risk. Indeed, when

CDS spreads were at their peak in 2008, implying high risk of

individual default, movements in the spread of a few institutions

were very likely to be followed by movements in another and also in

the same institutions. This means distress in a few key players would

have likely propagated to many other players in the market.

Furthermore, we have carried out what to our knowledge is the

first study of the complex network of CDS interdependencies. In

order to investigate the systemic importance of individual nodes,

we have introduced two novel measures. The impacting centrality

captures, in a recursive way, how much a node impacts the

network. Symmetrically, the Vulnerability centrality captures how

much a node is vulnerable to the network. These two measures

enable the extraction of a bow-tie structure from the initial

network and to clarify the role of the nodes. In Basel III [22]

interconnectedness has been identified as one of the pillars to

identify Systemically Important Financial Institutions (SIFI). The

interconnectedness of an institution can be assessed by its ability to

impact other institutions and its vulnerability to the others in the

financial network. We show that in the CDS markets size, impact,

and vulnerability are not trivially correlated, at least not in the

volatile phase of the market, i.e. period 2. In the initial phase the

system is homogeneous with similar impact and vulnerability

centralities across players, while in the following periods there is an

increase in both impact and vulnerability centralities, but they do

increase in a heterogenous manner.

The specific findings of this analysis are relevant to the broad

audience interested in the issue of systemic risk and systemically

important financial institutions, including policy makers. More-

over, our approach is very general and applies to any set of time

series associated to units that operate in interaction. In particular,

it is of interest for those cases where the direct interaction between

units is not observable and the dependence has to be inferred from

the dynamics. In this respect, our paper contributes to a stream of

work on the observability and the reconstruction of complex

networks [23] .
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