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Abstract. Despite recent advances in the study of temporal networks, the analysis of time-stamped net-
work data is still a fundamental challenge. In particular, recent studies have shown that correlations in the
ordering of links crucially alter causal topologies of temporal networks, thus invalidating analyses based
on static, time-aggregated representations of time-stamped data. These findings not only highlight an
important dimension of complexity in temporal networks, but also call for new network-analytic meth-
ods suitable to analyze complex systems with time-varying topologies. Addressing this open challenge,
here we introduce a novel framework for the study of path-based centralities in temporal networks. Study-
ing betweenness, closeness and reach centrality, we first show than an application of these measures to
time-aggregated, static representations of temporal networks yields misleading results about the actual
importance of nodes. To overcome this problem, we define path-based centralities in higher-order aggregate
networks, a recently proposed generalization of the commonly used static representation of time-stamped
data. Using data on six empirical temporal networks, we show that the resulting higher-order measures
better capture the true, temporal centralities of nodes. Our results demonstrate that higher-order aggregate
networks constitute a powerful abstraction, with broad perspectives for the design of new, computationally
efficient data mining techniques for time-stamped relational data.

1 Introduction

The network perspective has provided valuable insights
into the structure and dynamics of numerous complex sys-
tems in nature, society and technology. However, most of
the complex systems studied from this perspective are not
static, but rather exhibit time-varying interaction topolo-
gies in which elements are only linked to each other at
specific times or during particular time intervals. While
the topological characteristics resulting from which ele-
ments are linked to which other elements have been stud-
ied extensively, the importance of the additional temporal
dimension resulting from when these links occur has be-
come clear only recently. And despite an increasing volume
of research, its full impact on the properties of complex
systems and on the evolution of dynamical processes still
eludes our understanding [1,2].

Addressing this open issue, different strands of re-
search have focused on the question how different types
of temporal characteristics of complex networked systems
– such as the activation times of nodes, the inter-event
times between links, the duration and/or concurrency of
interactions, or the order in which these interactions oc-
cur – affect the properties of temporal networks as well
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as dynamical processes evolving on them. For a couple of
systems, it was shown that inter-event times follow heavy-
tailed distributions which in turn significantly influence
the speed of processes like spreading and diffusion [3–13].

Apart from the timing of interactions, the order in
which these interactions occur is another important char-
acteristic of temporal networks. Not only does the order-
ing of interactions crucially affect causality in temporal
networks, it has also been shown to dramatically shift
the evolution of dynamical processes compared to what
we would expect based on a static, time-aggregated per-
spective [14–18]. Some of these works have further taken
a modeling perspective, highlighting that real-world tem-
poral network data exhibit non-Markovian characteristics
in the sequence of links which are not in line with the
Markovianity assumption that is (implicitly) made when
studying static representations of time-varying complex
networks. Neglecting these non-Markovian characteristics
not only leads to wrong results about dynamical pro-
cesses, it also leads to wrong centrality-based rankings
of nodes, as well as misleading results about community
structures [16–18].

The main reason why an analysis of static, time-
aggregated networks yields misleading results about the
properties of temporal networks is that the ordering of
links can alter path structures in temporal networks com-
pared to what we would expect based on their static
topology. Precisely, in static networks the presence of two
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links (a, b) and (b, c) connecting nodes a to b and b to c
necessarily implies that a path from a via b to c exists.
However in a temporal network, for a to be able to in-
fluence c the link (a, b) must occur before the link (b, c)
and thus the presence of a path depends on the ordering
of links. This simple example highlights that the mere or-
dering of links in temporal networks can introduce an ad-
ditional temporal-topological dimension that can neither
be understood from the analysis of static, time-aggregated
representations, nor from the analysis of inter-event times
or node activity distributions [15].

Highlighting the important consequences introduced
by the specific ordering of links in real-world temporal
networks, in this article we study how this ordering affects
path-based centrality measures in temporal networks. The
main contributions of our work are as follows:

1. Building on the concept of time-respecting paths with
a maximum time difference between consecutive links
as previously discussed in references [1,19], we in-
troduce three different notions of path-based tempo-
ral node centralities which emphasize the additional
temporal-topological dimension that is introduced due
to the ordering of links in temporal networks. In partic-
ular, we formally define temporal variations of between-
ness, closeness and reach centrality and demonstrate
how they can be computed based on the topology of
shortest time-respecting paths emerging in temporal
networks.

2. Calculating these temporal centrality measures for six
empirical data sets, we quantify to what extent a rank-
ing of nodes based on temporal centralities coincides
with a ranking of nodes based on the same measures,
however calculated based on the corresponding static,
time-aggregated networks. From our results we con-
clude that, possibly due to non-Markovian characteris-
tics previously highlighted in references [15,17], a static
analysis of node centralities yields misleading results
about the importance of nodes with respect to time-
respecting paths.

3. Generalizing the usual time-aggregated static per-
spective on temporal networks, we further develop
the second-order time-aggregated representations in-
troduced in reference [17], obtaining higher-order time-
aggregated representations which can be conveniently
analyzed using standard network-analytic methods.
Notably, despite being static representations of tem-
poral networks, we show that these higher-order repre-
sentations allow to incorporate those order correlations
that have been shown to influence the causal topologies
of temporal networks.

4. We finally define generalizations of static between-
ness, closeness and reach centrality based on a second-
order aggregate representation of temporal networks.
Using six data sets on temporal networks, we show
that these second-order generalizations of centralities
constitute highly accurate approximations for the true
temporal centrality of nodes calculated based on the
detailed time-respecting path structures in temporal
networks.

The remainder of this article is structured as follows: in
Section 2 we first introduce basic concepts such as our
notion of temporal networks, time-aggregated and time-
unfolded representations of temporal networks, as well as
time-respecting paths with maximum time differences be-
tween consecutive links. In Section 3 we introduce the
framework of higher-order time-aggregated networks, a
simple abstraction of temporal networks that takes into
account the statistics of time-respecting paths up to a
given length. In Section 4 we finally define three tempo-
ral centrality measure which account for the temporal-
topological characteristics introduced by the shortest
time-respecting path structures in real-world temporal
networks. Comparing the importance of nodes accord-
ing to (i) temporal centralities, (ii) centralities calculated
based on a commonly used static, time-aggregated rep-
resentation, and (iii) second-order centralities calculated
based on a static, second-order time-aggregated represen-
tation, we show that higher-order aggregate networks pro-
vide interesting perspectives for the analysis of temporal
networks. We finally conclude our article by a summary
of key contributions and a discussion of open issues and
future work.

2 Temporal networks and time-respecting
paths

In this section, we formally introduce the basic concepts
and definitions used throughout our work. In particular,
we define the notion of a temporal network used through-
out this article, as well as time-respecting paths which
are the basis for the notions of distances and path-based
centralities in temporal networks which will be used in
subsequent sections.

2.1 Temporal, time-aggregated and time-unfolded
networks

We define a temporal network GT = (V, ET ) as a tuple
consisting of a set of nodes V and a set ET ⊆ V ×V ×[0, T ]
of time-stamped links (v, w; t) ∈ ET for an observation pe-
riod [0, T ]. Importantly, we assume discrete time stamps
t ∈ [0, T ] and time-stamped links (v, w; t) which indicate
the presence of the link (v, w) at time t. This “instanta-
neous” definition particularly does not allow links to be
assigned a duration, i.e. we cannot directly assign links a
time interval during which they exist. However, we can
nevertheless represent links that persist for some time in-
terval [tstart, tend] by assuming some small unit of discrete
time Δt and adding multiple time-stamped links (v, w; t)
at time stamps t = tstart, tstart +Δt, tstart +2Δt, . . . , tend.
These assumptions naturally lend themselves to real-world
time-stamped data sets, which are typically obtained
based on some sort of sampling, whose sampling frequency
defines the smallest unit of time Δt.

For illustrative purposes it is often useful to be able
to visualize temporal networks. Throughout this article,
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(a) (b) (c)

Fig. 1. Time-unfolded and weighted static, time-aggregated representation of two temporal networks G1 (a) and G2 (b).
(c) Weighted, time-aggregated representation of both G1 and G2.

we will use so-called time-unfolded networks, a simple and
intuitive static representation of temporal networks which,
in different variants, has been used in a number of previous
works [15,17,20,21]. The key idea of this two-dimensional
static representation is to arrange all nodes on a hori-
zontal dimension, while unfolding time to an additional
vertical dimension as illustrated in Figure 1. For an ob-
servation period [0, . . . , T ] and a given Δt we can then
add temporal copies of all nodes for all possible time steps
kΔt (for k = 0, 1, . . .). For simplicity, in the following we
assume Δt = 1, which allows us to denote the temporal
copies of a node v as vt, vt+1, vt+2, . . .. The main benefit of
this construction is that it allows us to represent a time-
stamped link (v, w; t) by means of a static link (vt, wt+1)
connecting the temporal copies vt and wt+1 of node v and
node w, respectively. The intuition behind this notation is
that a quantity residing at node v at time t can move to
node w via a time-stamped link (v, w; t), arriving there at
the next time step t + 1. Two simple examples for time-
unfolded static representations of two different temporal
networks with five nodes and eight time-stamped links are
shown in Figures 1a and 1b.

Despite the recent development of methods to study
temporal networks, the most wide-spread way to study
time-stamped network data is to aggregate all time-
stamped links into a static, time-aggregated network G =
(V, E). This means that, given a temporal network GT =
(V, ET ), two nodes v, w ∈ V are connected in the static
network whenever a time-stamped link exists at any
time stamp, i.e., (v, w) ∈ E if (v, w; t) ∈ ET for any
t ∈ [0, T ]. Additional information about the statistics
of time-stamped links in the underlying temporal net-
work can be preserved by considering a weighted time-
aggregated network, in which weights ω(v, w) indicate the
number of times time-stamped links (v, w; t) have been
active during the observation period. I.e., we consider a

weighted time-aggregated network with a weight function
ω : E → N defined as:

ω(v, w) :=
∣
∣
{

t ∈ [0, T ] |(v, w; t) ∈ ET
}∣
∣ .

Figure 1c shows the weighted, time-aggregated networks
corresponding to the two temporal networks shown in
Figures 1a and 1b. These simple examples highlight the
important fact that different temporal networks are con-
sistent with the same weighted, time-aggregated network.
This is due to the fact that in the time-aggregated net-
work we lose all information on both the timing and the
ordering of links in the temporal network.

2.2 Time-respecting paths

Importantly, both the timing and the ordering of links
influence path structures in temporal networks. In par-
ticular, in the context of temporal networks we must
consider time-respecting paths, an extension of the con-
cept of paths in static network topologies which addi-
tionally respects the timing and ordering of time-stamped
links [1,19,22]. For the remainder of this paper, we define a
time-respecting path between a source node v and a target
node w to be any sequence of time-stamped links

(v0, v1; t1), (v1, v2; t2) . . . , (vl−1, vl; tl)

such that v0 = v, vl = w and the sequence of time-stamps
is increasing, i.e. t1 < t2 . . . < tl. The latter condition on
the ordering of links is particularly important since it is
a necessary condition for causality. This means that for
any temporal network a node a is able to influence node c
based on two time-stamped links (a, b) and (b, c) only if
link (a, b) has occurred before link (b, c). A simple example
for a time-respecting path (a, c; 1), (c, d; 5) can be seen in
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Figure 1a, where the time-unfolded representation of the
temporal network G1 is illustrated.

At this point, it is important to note that, different
from the usual notion of paths in static networks, the
question whether a time-respecting path exists between
two nodes requires to specify a start time t0 ≤ t1. In the
example of Figure 1a we observe a time-respecting path
(a, c; t1 = 1), (c, d; t2 = 5) between node a and d, which
can only be taken if we consider paths starting at node a at
time t0 = 1. If instead we were to ask for a time-respecting
path between a and d starting at node a at time t0 = 5,
our only choice would be the path (a, c; 10), (c, d; 11).

2.3 Time-respecting paths with a maximum
time difference

In the definition of a time-respecting path above, we have
required that the sequence of time stamps of the links con-
stituting the path must be increasing. Clearly, this condi-
tion is rather weak since it makes no assumptions what-
soever about the time difference between two consecutive
time-stamped links on a time-respecting path. As such, for
the mere existence of a time-respecting path in a tempo-
ral network evolving over a period of years, it is actually
not important whether the time difference between two
consecutive links is a few seconds or a few years.

However, we typically study time-respecting path
structures because they constitute the substrate for the
evolution of dynamical processes which have intrinsic time
scales that are much smaller than the period during which
we observe a temporal network. In the study of time-
respecting paths, it is thus often reasonable to impose
a maximum time difference δ, i.e. we limit the tempo-
ral gaps between two consecutive time-stamped links that
are considered to contribute to a time-respecting path to
a maximum of δ [1,19]. In this case, rather than requir-
ing a mere increasing sequence of time-stamps, we demand
that the condition 0 < ti+1−ti ≤ δ must be fulfilled for all
i = 1, . . . , l − 1. For a maximum time difference of δ = 1,
we thus limit ourselves to the study of time-respecting
paths for which all time-stamped links occur at immedi-
ately consecutive time stamps. As another limiting case,
we can consider δ = ∞, which means that we impose no
further condition apart from the requirement that the se-
quence of time stamps of links on a time-respecting path
is increasing. Revisiting the example of Figure 1a, we ob-
serve that the time-respecting path (a, c; 1), (c, d; 5) only
exists if we allow for a maximum time difference δ = 4,
while for all δ < 4 the only time-respecting path between
the nodes a and d is (a, c; 10), (c, d; 11).

2.4 Shortest and fastest time-respecting paths

Let us now formally define the length of time-respecting
paths in a temporal network, which will allow us to define
the notion of shortest time-respecting paths used through-
out our work. Due to the additional temporal dimension,

the length of a time-respecting path

(v0, v1; t1), . . . , (vl−1, vl; tl)

can be studied both from a topological and a temporal
perspective. Following the usual terminology, we call the
number l of time-stamped links on a time-respecting path
the (topological) length of the path. We further call the
time difference tl − t1 + 1 the duration of the path. Here
the increment by one accounts for the duration of the final
link (vl−1, vl; tl), i.e. for the fact that any process starting
at node v0 at time t1 will only reach node vl at time tl+1.

Having defined both the length and duration of time-
respecting paths, it is now trivial to define the short-
est time-respecting path between two nodes v and w as
the time-respecting path with the smallest (topological)
length. In analogy, we define the fastest time-respecting
path as the time-respecting path with the smallest (tem-
poral) duration. Following our previous comment about
the necessity to define a start time t0 for a time-respecting
path, it is clear that the shortest or fastest time-respecting
path can only be found unambiguously with respect to a
given start time t0, i.e. at different times during the evolu-
tion of a temporal network the same pair of nodes can be
connected by different shortest or fastest time-respecting
paths.

2.5 Transitivity of paths in static and temporal
networks

Let us conclude this preliminary section by highlighting
important differences between paths in static networks
compared to time-respecting paths in temporal net-
works, that result from the ordering and timing of links.
Let us first highlight that paths in static networks are
transitive. This means that from the presence of two
paths (v0, v1), . . . , (vk−1, vk) and (vk, vk+1), . . . , (vl−1, vl)
between v0 and vk and between vk and vl respectively,
we can conclude that a path (v0, v1), . . . , (vl−1, vvl

) be-
tween nodes v0 and vl necessarily exists1. This transitiv-
ity has the important mathematical consequence that the
entries in the kth power Ak of the adjacency matrix A
of a static network topology count all possible paths of
length k between all possible pairs of nodes. Furthermore,
transitivity of paths is the basis for a wealth of algebraic
network-analytic methods such as spectral partitioning,
the analysis of dynamical processes based on eigenvectors
and eigenvalues, or the computation of centrality measures
that are based on eigenvalue problems.

Notably, the property of transitivity of paths in
static networks does not extend to time-respecting
paths in temporal networks. Here, two time-respecting
paths (v0, v1; t1), . . . , (vk−1, vk; tk) and (vk, vk+1; tk+1),
. . . , (vl−1, vl; tl) only translate into a time-respecting path
between v0 and vl if tk < tk+1 and, assuming that we
impose a maximum time difference δ, if 0 < tk+1 − tk ≤ δ.

1 Note though that this transitive path may or may not be
the shortest path between the two nodes.
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The simple observation that transitivity of paths holds
in static networks, while it does not necessarily hold in
temporal networks implies that by an analysis of static,
time-aggregated networks, we may overestimate transi-
tivity in temporal networks. We can again illustrate this
using our simple example of Figure 1, which shows two
temporal networks G1 and G2 that are both consistent
with the same (weighted) time-aggregated network shown
in Figure 1c. Here, judging from the presence of a path
(a, c), (c, d) in the time-aggregated network, we may think
that a time-respecting path connecting node a to d ex-
ists in the underlying temporal network. Looking at the
two temporal networks G1 and G2 shown in Figures 1a
and 1b respectively, we see that at least for small values
for the maximum time difference δ (such as δ = 1) a corre-
sponding time-respecting path only exists in the temporal
network G1, while it is absent in G2.

3 Higher-order aggregate networks

In the previous section we have seen that for large max-
imum time differences δ we expect the shortest time-
respecting paths to be rather similar to the shortest paths
in a static, time-aggregated representation. This is an in-
tuitive result since, by using large maximum time differ-
ences δ, we apply an implicit “aggregation” of time stamps
which may nevertheless be far apart in the temporal di-
mension. At the same time, we observe that for small val-
ues of δ the temporal characteristics of the network result
in time-respecting path structures that are markedly dif-
ferent from those in the static, time-aggregated network.
As argued above, this implies that dynamical processes
which evolve at time scales similar to that of the temporal
network will be significantly affected by these path struc-
tures. It further questions the usefulness of path-based
centrality measures that are computed based on the com-
monly used time-aggregated representation of temporal
networks.

In this section, we introduce higher-order time-
aggregated networks, a simple yet powerful abstraction of
temporal networks which can be used to address some of
the aforementioned problems. It can be seen as a sim-
ple generalization of the usual first-order time-aggregated
representation introduced in Section 2, and it has recently
been shown to provide interesting insights about the evo-
lution of dynamical processes in temporal networks [17].

3.1 kth order aggregate networks

The key idea behind this abstraction is that the com-
monly used time-aggregated network is the simplest pos-
sible time-aggregated representation whose weighted links
capture the frequencies of time-stamped links. Consider-
ing that each time-stamped link is a time-respecting path
of length one, it is easy to generalize this abstraction to
higher-order time-aggregate networks in which weighted
links capture the frequencies of longer time-respecting
paths. For a temporal network GT = (V, ET ) we thus

formally define a kth order time-aggregated (or simply
aggregate) network as a tuple G(k) = (V (k), E(k)) where
V (k) ⊆ V k is a set of node k-tuples and E(k) ⊆ V (k)×V (k)

is a set of links. For simplicity, we call each of the k-tuples
v = v1 − v2 − . . .− vk (v ∈ V (k), vi ∈ V ) a kth order node,
while each link e ∈ E(k) is called a kth order link. We fur-
ther assume that a kth order link (v, w) between two kth
order nodes v = v1−v2−. . .−vk and w = w1−w2−. . .−wk

exists if they overlap in exactly k − 1 elements such that
vi+1 = wi for i = 1, . . . , k − 1. Resembling so-called De
Bruijn graphs [23], the basic idea behind this construc-
tion is that each kth order link (v, w) represents a pos-
sible time-respecting path of length k in the underlying
temporal network, which connects node v1 to node wk via
k time-stamped links

(v1, v2 = w1; t1), . . . , (vk = wk−1, wk; tk). (1)

In analogy to the weights in a usual (first-order) aggre-
gate representation, we further define the weights of such
kth order links by the frequency of the underlying time-
respecting paths in the temporal network. Considering
a maximum time difference δ and two kth order nodes
v = v1 − v2 − . . .− vk and w = w1 −w2 − . . .−wk we thus
define

ω(v, w) := |P (v, w, δ)|
where

P = {(v1, v2 = w1; t1), . . . , (vk = wk−1, wk; tk) : 0
< ti+1 − ti ≤ δ},

is the set of all time-respecting paths in the temporal net-
work that (i) consist of the sequence of links indicated in
equation (1), and (ii) are consistent with a given maximum
time difference of δ.

The higher-order aggregate network construction in-
troduced above has a number of advantages. First and
foremost, it provides a simple static abstraction of a tem-
poral network which can be studied by means of stan-
dard methods from (static) network analysis. Each static
path of length l in a kth order aggregate network can be
mapped to a time-respecting path of length k+ l−1 in the
original network. Importantly, and different from a first-
order representation, kth order aggregate networks allow
to capture non-Markovian characteristics of temporal net-
works. In particular, they allow to represent temporal net-
works in which the kth time-stamped link (vk = wk−1, wk)
on a time-respecting path depends on the k − 1 previous
time-stamped links on this path. With this, we obtain a
simple static network topology that contains information
both on the presence of time-stamped links in the underly-
ing temporal network, as well as on the ordering in which
sequences of k of these time-stamped links occur.

3.2 Example: second-order aggregate networks

In the following, we illustrate our approach by construct-
ing second-order aggregate representations of the two tem-
poral networks G1 and G2 shown in Figure 1. Both G1
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(a) (b)

Fig. 2. Second-order aggregate networks G(2) corresponding
to the two temporal networks shown in Figure 1. (a) Temporal
network G1. (b) Temporal network G2.

and G2 are consistent with the same first-order time-
aggregated network. We can easily generate second-order
time-aggregated networks of the two temporal networks
by extracting all time-respecting paths of length two (and
assuming a given maximum time difference δ). For sim-
plicity, in the following we limit our study to δ = 1. For
the temporal network G1 shown in Figure 1a, we observe
the following four different time-respecting paths of length
two:

(a, c; 1), (c, e; 2)
(b, c; 4), (c, d; 5)
(b, c; 7), (c, e; 8)

(a, c; 10), (c, d; 11).

Based on the definition of links and link weights outlined
above, we thus obtain the following four weighted second-
order links:

ω(a − c, c − e) = 1
ω(b − c, c − d) = 1
ω(b − c, c − e) = 1
ω(a − c, c − d) = 1.

The resulting second-order network is depicted in Fig-
ure 2a Applying the same methodology to the temporal
network G2 shown in Figure 1b we obtain the following
four time-respecting paths of length two

(a, c; 1), (c, e; 2)
(b, c; 4), (c, d; 5)
(b, c; 7), (c, d; 8)

(a, c; 10), (c, e; 11),

from which we obtain the following two weighted second-
order links:

ω(a − c, c − e) = 2
ω(b − c, c − d) = 2.

The resulting second-order aggregate network is shown in
Figure 2b. Here we observe that, even though the two tem-
poral networks G1 and G2 only differ in the order of two
time-stamped links, the resulting second-order aggregate
network is markedly different. The second-order network
of G1 indicates time-respecting paths connecting node a

to both nodes e and d (both paths passing via node c).
In particular, this corresponds to the connectivity that
we would expect based on the transitivity of static paths
in the first-order aggregate network shown in Figure 1c.
The second-order network shown in Figure 2b reveals that
the transitive path (a, c), (c, d) in the first-order aggregate
network does not translate to a time-respecting path in
the temporal network G2.

Clearly, the second-order aggregate networks illus-
trated above are only a special, particularly simple type
of general, higher-order aggregate networks. Nevertheless,
in the following section we will demonstrate that it con-
tains important information about the causal topology of
temporal networks which can help us in the analysis of
temporal networks.

In what follows, we will thus provide an in-depth study
of second-order aggregate representations of six empiri-
cal data sets that will be introduced in the following sec-
tion. Here, we will particularly focus on the question how
second-order aggregate networks can foster the calculation
of approximate measures for path-based node centralities
in temporal networks.

4 Temporal node centralities in second-order
aggregate networks

Having introduced the abstraction of higher-order aggre-
gate networks in Section 3, let us now demonstrate the
use of a second-order aggregate representation for the
study of path-based centralities in temporal networks.
We will study this question using the following six, pub-
licly available empirical data sets representing different
types of temporal networks: (AN) covers time-stamped
antenna-antenna interactions inferred from a filming of
ants in an ant colony [24]; (EM) represents time-stamped
E-Mail exchanges between employees in a manufactur-
ing company [25]; (HO) covers time-stamped proxim-
ity interactions between patients and medical staff in
a hospital [26]; (RM) is based on time-stamped social
interactions between students and academic staff at a uni-
versity campus [27]; (LT) has been reconstructed from
data on passenger itineraries in the London Tube metro
system available through the Rolling Origin and Destina-
tion Survey of the Transport of London [28], and (FL) was
constructed based from data on flight itineraries of pas-
sengers on domestic flights in the United States available
from the Bureau of Transportation Statistics [29]. A de-
tailed description about the processing of these data sets
and the extraction of time-stamped network data is avail-
able in reference [17], which is why we omit an elaborate
discussion here.

Regarding the choice of a reasonable maximum time
difference δ for the notion of shortest time-respecting
paths as discussed in Section 2, we emphasize that the
choice of this parameter needs to be adapted to the inher-
ent time scale of the network evolution in each of the six
data sets individually. In general, such a choice is non-
trivial as it heavily influences (i) whether or not pairs
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of nodes can reach each other, and (ii) to what extent
temporal characteristics influence the structures of time-
respecting paths. In particular, for too small choices of δ
the definition of time-respecting paths is likely to be too
restrictive and almost no paths will be found [1,19]. Con-
trariwise, the choice of a too large value for δ results in
the fact that we effectively “aggregate” the time-stamped
sequence of links, thus discarding information about the
detailed ordering and timing of links. For our analysis,
for each of the six data sets individually, we have thus
chosen the minimum parameter δ for which we still ob-
tain a topology of time-respecting paths that is strongly
connected, thus ensuring that we can compute reason-
able measures of path-based centralities while retaining
as much of the temporal characteristics as possible (c.f.
details in Ref. [17]).

In the remainder of this section, we will focus our
analysis on three widely adopted path-based notions of
centrality, namely (i) betweenness, (ii) closeness and (iii)
reach centrality. The rationale behind this choice is that
all of these three measures can easily be computed based
on paths in time-aggregated networks, while they addi-
tionally facilitate a straight-forward extension to temporal
networks based on the notion of shortest time-respecting
paths (c.f. similar extensions studied in Refs. [1,20,21]).
In the following, we first formally define the temporal be-
tweenness, closeness and reach centrality of nodes. We
then compute the resulting measures for all nodes based
on the actual shortest time-respecting paths in the time-
stamped link sequences in our six data sets (and us-
ing the individually determined maximum time differ-
ence δ). The resulting centrality scores are considered as
the ground-truth against which we then compare the cen-
trality scores resulting from the application of the same
centrality measures to (i) the commonly used (first-order)
time-aggregated representation, and (ii) a second-order
aggregate network representation of the corresponding
temporal network.

4.1 Temporal betweenness centrality

We first address the question to what extent the temporal
betweenness centrality of nodes in a temporal network can
be approximated by means of static betweenness centrali-
ties calculated based on static, time-aggregated represen-
tations. To this end, we first formally define the temporal
betweenness centrality of a node in a temporal network.
According to the common definition, the (unnormalized)
betweenness centrality of a node v is simply calculated
as the total number of shortest paths passing through
node v [30]. Highlighting the fact that we can directly
apply this measure to first-order time-aggregated net-
works, we thus define the first-order betweenness centrality
BC(1)(v) of a node v as:

BC(1)(v) :=
∑

u�=v �=w

|P (1)(u, w; v)|, (2)

where P (1)(u, w; v) denotes the set of those shortest paths
from node u to w in a static network that pass through
node v.

Applying this idea to temporal networks, a straight-
forward way to define the temporal betweenness centrality
of a node is to count all shortest time-respecting paths
passing through it. However, and as mentioned in Sec-
tion 2, temporal networks introduce the complication that,
in order to unambiguously define shortest time-respecting
paths, we need to include a start time t0 starting from
which time-respecting paths are to be considered. For each
pair of nodes u, v and each start time t0 we can thus di-
rectly define an instantaneous distance function for a tem-
poral network as:

disttemp(u, v, t0) := len(p), p ∈ P temp(u, v, t0), (3)

where P temp(u, v, t0) denotes the set of shortest time-
respecting paths from u to v that start at time t0 (and
which are consistent with a given maximum time differ-
ence δ). Based on this instantaneous definition of short-
est time-respecting paths, we can further define a distance
function that gives the minimum distance across any start
time as follows:

disttemp(u, v) := min
t0

disttemp(u, v, t0). (4)

With this we can further define the set of shortest time-
respecting paths across all start times as:

P temp(u, v) : =
⋃

t0

{p ∈ P temp(u, v, t0)|len(p)

= disttemp(u, v)}, (5)

i.e. we only consider those (instantaneous) shortest time-
respecting paths whose lengths correspond to the mini-
mum shortest time-respecting length across all possible
start times. We can now define the temporal between-
ness centrality BCtemp(v) of a node v in analogy to
equation (2) as:

BCtemp(v) :=
∑

u�=v �=w

|P temp(u, w; v)|, (6)

where P temp(u, w; v) denotes the set of those shortest
time-respecting paths across all start times which connect
node u to w and which pass through node v.

Let us illustrate this definition using the temporal net-
works shown in Figures 1a and 1b. Applying the static
betweenness centrality as defined in equation (2) to the
first-order aggregate network shown in Figure 1c, we find
that for node c we have BC(1)(c) = 4, while for all other
nodes we have a betweenness centrality of zero. Again as-
suming δ = 1, for the temporal betweenness centrality of
node c in network G1 shown in Figure 1a, we find that
indeed four shortest time-respecting paths pass through
node c, i.e. we have BCtemp(c) = 4 while we again have a
zero temporal betweenness centrality for all other nodes.
Notably, in this particular case the temporal betweenness
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Table 1. Pearson and Kendall-Tau rank correlation coefficients between temporal betweenness centrality (ground truth) and
betweenness centrality calculated based on the first-order aggregate network and the second-order aggregate network. Values in
parentheses indicate the p-value.

BCtemp
∼ BC(1) BCtemp

∼ BC(2)

Pearson Kendall-Tau Pearson Kendall-Tau

E-Mail (EM) 0.80 (3.29e-22) 0.73 (8.36e-26) 0.97 (7.52e-60) 0.74 (1.11e-26)

Ants (AN) 0.82 (3.49e-16) 0.64 (2.05e-13) 0.80 (1.96e-14) 0.59 (1.94e-11)

Hospital (HO) 0.93 (2.39e-23) 0.81 (1.18e-17) 0.96 (2.36e-30) 0.87 (5.55e-20)

RealityMining (RM) 0.95 (2.83e-30) 0.62 (7.28e-12) 0.93 (3.74e-26) 0.75 (1.12e-16)

London Tube (LT) 0.85 (2.58e-37) 0.66 (1.22e-29) 0.87 (3.28e-42) 0.71 (9.32e-34)

Flights (FL) 0.99 (6.91e-108) 0.66 (9.09e-26) 0.99 (2.66e-98) 0.65 (4.25e-25)

centralities of nodes correspond to the betweenness cen-
tralities of nodes calculated based on the first-order time-
aggregated network. This happens because all paths in the
first-order aggregate network have a counterpart in terms
of a shortest time-respecting path.

However, in Section 2 we have seen that, in general,
shortest time-respecting paths in temporal networks may
not coincide with shortest paths in the (first-order) time-
aggregated network. As a consequence, the temporal be-
tweenness centralities of nodes may differ from the first-
order betweenness centralities calculated from a static,
first-order aggregate representation. This can be seen for
the temporal network G2 shown in Figure 1b. Based on
the temporal sequence of time-stamped links, here we find
only two different shortest time-respecting paths passing
through node c, namely one connecting node a via c to e
and a second one connecting node b via c to d. The two
additional shortest time-respecting paths found in G1 are
absent in G2, therefore in G2 node c has a temporal be-
tweenness centrality BCtemp(c) = 2, thus being, at least
from the perspective of temporal betweenness centrality,
less important than in G1.

In the following we study the question to what ex-
tent first-order betweenness centralities can be used as a
proxy for the temporal betweenness centralities of nodes
in our six data sets of real-world temporal networks. In
particular, we study this question in the following way:
For each node v in the six data sets we calculate (i) the
first-order betweenness centrality BC(1)(v) based on the
first-order aggregate network, as well as (ii) the (ground
truth) temporal betweenness centrality BCtemp(v) based
on actual shortest time-respecting paths in the tempo-
ral network. We then assess the correlation between both
measures by computing the Pearson correlation coefficient
(as well as the corresponding p-value) for the sequence of
paired values (BC(1)(i), BCtemp(i)) for all nodes i ∈ V .

Since centrality scores of nodes in networks are often
used and interpreted in a relative fashion, we further per-
form an additional analysis that accounts for variations
in the actual centrality values, which however may not
affect the relative importance of nodes. For this, we first
rank nodes according to their temporal and first-order be-
tweenness centralities respectively. We then calculate the
Kendall-Tau rank correlation coefficient in order to quan-
titatively assess to what extent nodes are ranked similarly

according to both notions of centrality (even though the
actual centrality values for these nodes may differ).

The results of this analysis are shown in the left column
of Table 1, in which we report both the Pearson as well as
the Kendall-Tau rank correlation coefficients between the
temporal and the first-order betweenness centralities of
nodes for each of the six data sets introduced above. Here,
a first interesting result is that both the Pearson and the
Kendall-Tau rank correlation coefficients exhibit a large
variation between 0.80 and 0.99, as well as 0.62 and 0.81,
respectively. The results indicate that, depending on the
characteristics of the underlying temporal network, tem-
poral betweenness centralities can be reasonably well ap-
proximated by first-order betweenness centrality for some
data sets (e.g., for (FL), (HO), (RM)) while such an ap-
proximation should be taken with caution for other data
sets.

Based on these results it is reasonable to ask if we
can better approximate temporal centrality, especially for
those data sets where the correlation between the first-
order and the temporal betweenness centrality is compa-
rably weak. In Section 3 we have argued that the gen-
eralization of higher-order aggregate networks allows to
construct static representations of temporal networks that
capture both temporal and topological characteristics that
emerge from the ordering of links and the statistics of
time-respecting paths. Focusing on a second-order repre-
sentation, in the remainder of this section we will study to
what extent second-order aggregate networks can be used
in the analysis of temporal node centralities.

Importantly, such an analysis is facilitated by the fact
that second-order aggregate networks are static networks,
which allows for a straight-forward application of standard
centrality measures to the second-order topology. In the
case of second-order aggregate networks, applying stan-
dard centrality measures we obtain centrality values for
higher-order nodes (v, w), each of the higher-order nodes
being a k-tuple of nodes in the first-order network. In or-
der to arrive at a centrality measure for the original (first-
order) nodes, we thus must project this measure to the
level of nodes in the first-order network.

Luckily, this can be done in a simple way which we out-
line in the following: For a second-order network G(2) =(

V (2), E(2)
)

, let us first define a second-order distance
function dist(2)(v, w) which, for each pair of first-order

http://www.epj.org


Eur. Phys. J. B (2016) 89: 61 Page 9 of 15

Fig. 3. Simple example for a second-order aggregate network.

nodes v, w ∈ V (1), gives the length of a shortest path
based on the topology of the second-order aggregate net-
work as:

dist(2)(v, w) := min
x,y∈V (2)

x=v−∗
y=∗−w

L(2)(x, y) + 1, (7)

where L(2)(x, y) denotes the length of a shortest path be-
tween the second-order nodes x, y ∈ V (2). The rationale
behind this definition is that in the second-order aggregate
network, we can have multiple shortest paths with differ-
ent lengths between different second-order nodes, which
nevertheless map to paths between a single pair of first-
order nodes. As an example, consider the two first-order
nodes a and d in the simple second-order network shown
in Figure 3. Here we observe that, from the perspec-
tive of second-order nodes, both (a − b, b − d) as well as
(a − b, b − c), (b − c, c − d) are shortest paths (between
different pairs of nodes) in the second-order network with
lengths L(2)(a − b, b − d) = 1 and L(2)(a − b, c − d) = 2
respectively. However, from the perspective of first-order
nodes both of these second-order paths connect node a to
node d (via paths of length 2 and 3, respectively). Using
the definition from equation (7) thus allows us to cor-
rectly calculate the second-order distance between a and
d as dist(2)(a, d) = L(2)(a − b, b − d) + 1 = 2.

The above definition of a second-order distance func-
tion now allows us to define a second-order betweenness
centrality BC(2)(v) of a node v based on equation (2). For
this, we simply count all second-order shortest paths be-
tween two nodes u and w which (i) pass through node
v, and (ii) whose length corresponds to the second-order
distance dist(2)(u, v). Formally, we define

BC(2)(v) : =
∑

x �=y∈V

u−x∈V (2)

y−w∈V (2)

|{p ∈ P (2)(u − x, y − w; v) : len(p)

= dist(2)(u, w)}|, (8)

where, in analogy to P (1)(u, w; v) above,

P (2)(u − x, y − w; v)

denotes the set of all shortest paths in the second-order
network that connect node u − x to y − w and that pass
through a first-order node v.

With this, we have defined a second-order betweenness
centrality which allows to calculate node centralities in a
way that incorporates the causal topology as captured by
the second-order aggregate network. Let us again illus-
trate this approach using the simple examples shown in
Figure 1. For the temporal network G1 we can compute a
second-order betweenness centrality based on the second-
order network shown in Figure 2a. Here we observe a to-
tal of four shortest paths between pairs of nodes in the
second-order network, namely:

(a − c, c − e),
(a − c, c − d),
(b − c, c − d),
(b − c, c − e).

For each node in the first-order network, we can now count
the number of second-order shortest paths that they are
on, obtaining B(2)(c) = 4 while B(2)(x) = 0 for all nodes
x �= c. In this particular case, the second-order between-
ness centrality values exactly correspond both to the tem-
poral as well as the first-order betweenness centralities.
Again, this is different for the temporal network G2 shown
in Figure 1b. Considering the second-order aggregate net-
work shown in Figure 2b, we only find the following two
shortest paths in the second-order aggregate network

(b − c, c − d)
(a − c, c − e)

thus obtaining BC(2)(c) = 2. Here, we find that while the
second-order betweenness centralities in G2 corresponds
to the temporal betweenness centralities, they differ from
those calculated from the first-order aggregate network.
The reason for this is that in the example G2 shortest
time-respecting paths of length two differ from what we
would expect based on the first-order network.

We emphasize that the exact correspondence between
the second-order and the temporal betweenness centrali-
ties in the examples discussed above is because we have no
shortest time-respecting paths of length three or longer,
whose presence could differ from what we expect based on
the second-order network. To what extent this affects the
applicability of second-order aggregate networks in real-
world scenarios is not clear and thus requires a further in-
vestigation. In the following, we thus study to what extent
second-order betweenness centrality can be used to ap-
proximate the temporal betweenness centralities of nodes
in the six real-world data sets studied above. For this, we
first construct a second-order aggregate network as intro-
duced in Section 3. We then calculate the betweenness cen-
trality values BC(2)(v) of all nodes v as described above,
comparing the resulting centralities with the (ground-
truth) temporal betweenness centralities BCtemp(v).

The results of this analysis are shown in the right col-
umn of Table 1. Here we find that for most of the data sets,
second-order betweenness centralities are correlated with
the true, temporal betweenness centralities in a stronger
way than the corresponding first-order approximation of
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betweenness centrality. For the (EM) data sets capturing
E-Mail exchanges between employees in a manufacturing
company, we observe an increase of the Pearson correla-
tion coefficient ρ from 0.80 to 0.97, while the associated
Kendall-Tau rank correlation coefficient τ increases rather
mildly from 0.73 to 0.74. We attribute this to the fact
that the second-order aggregate network better captures
the structures of time-respecting paths in the temporal
network compared to the first-order network. For the two
data sets (HO) and (LT) we observe a similar increase
both in the Pearson and the Kendall-Tau rank correlation
coefficients, while the values remain largely unchanged for
the (FL) data set. In particular, for the latter data set the
first-order betweenness centrality already exhibits a corre-
lation coefficient of 0.99 which indicates that in this partic-
ular case temporal characteristics do not significantly al-
ter the structure of shortest time-respecting paths. For the
two data sets (AN) and (RM) we observe a small decrease
in the Pearson correlation values for the second-order ap-
proximation. Notably, for (RN) the decrease from 0.97 to
0.95 is accompanied by an increase of the Kendall-Tau co-
efficient from 0.62 to 0.75. This indicates that, even though
the actual values of second-order betweenness centralities
may be less correlated with temporal betweenness cen-
tralities than the first-order betweenness centralities, the
second-order betweenness centralities provides us with a
significantly better perspective on the relative importance
of nodes.

Finally, for the (AN) data set we note that both the
Pearson and the Kendall-Tau rank correlation coefficients
are worse for the second-order betweenness centralities.
While the interesting question in what respect the tempo-
ral characteristics of (AN) differ from those of the other
temporal networks remains to be investigated in more de-
tail, we expect this result to be related to non-stationary
properties. We particularly observe that some of the nodes
(i.e. ants) are only active during certain phases of the ob-
servation period. This imposes a natural ordering of inter-
actions which particularly prevents nodes which are only
active during an early phase to be reachable from nodes
which are only active at a later phase.

4.2 Temporal closeness centrality

Let us now turn our attention to closeness centrality,
which captures a node’s average distance to all other nodes
in a network. For a directed, static (first-order aggregate)
network the closeness centrality of a node v is commonly
defined as:

ClC(1)(v) =
∑

u�=v

1

dist(1)(u, v)
, (9)

where the distance function dist(1)(u, v) denotes the dis-
tance, i.e. the length of a shortest path, from node u to v
in the first-order aggregate network.

We can easily define a temporal version of close-
ness centrality based on the temporal distance function
disttemp(u, v) which we have defined in equation (4) in the

context of temporal betweenness centrality. Here, we re-
mind the reader that the function disttemp(u, v) captures
the minimum length of a shortest time-respecting path
across all possible start times t0. Using this temporal dis-
tance function, we can apply the standard definition in
equation (9) and define the temporal closeness centrality
of a node v in a temporal network as:

ClCtemp(v) =
∑

u�=v

1
disttemp(u, v)

. (10)

Let us again illustrate this definition using the temporal
networks shown in Figure 1. Node e in the temporal net-
work G1 shown in Figure 1a can be reached from nodes a
and b via two shortest time-respecting paths of length
two, as well as from node c via a shortest time-respecting
path of length one. For the temporal closeness central-
ity, we thus find ClCtemp(e) = 2. It is easy to confirm
that this corresponds to the first-order closeness central-
ity of node e. Again a mere reordering of links can change
the closeness centralities of nodes, as can be seen in the
temporal network G2 shown in Figure 1b. Here, we see
that node e can only be reached from node a via a short-
est time-respecting path of length two, as well as from
node c via a shortest time-respecting path of length one.
For node e in the temporal network G2 we thus find a tem-
poral closeness centrality ClCtemp(e) = 1.5, highlighting
that it is, at least from the perspective of closeness cen-
trality, less “important” than in the temporal network G1.

Considering the example above we see that, due to the
ordering and timing of links, first-order closeness central-
ities can be a misleading proxy for the temporal closeness
centralities of nodes in temporal networks. In the follow-
ing we thus again empirically study this question using
our six data sets on temporal networks. We again use the
temporal closeness centralities ClCtemp(v) of nodes as the
ground truth, then studying whether temporal closeness
centralities can reasonably be approximated by first-order
closeness centralities ClC(1)(v). The results of this analy-
sis are shown in the left column of Table 2, which reports
the observed Pearson and Kendall-Tau rank correlation
coefficients for each of the six data sets.

We observe again that the answer to the question of
how well temporal closeness centralities can be approxi-
mated by first-order static closeness centralities depends
on the actual data set. The lowest Pearson correlation co-
efficient of 0.91 is obtained for the (FL) and the (AN)
data sets, while the highest Pearson correlation coefficient
of 0.98 is obtained for (LT). The lowest Kendall-Tau rank
correlation coefficient is 0.75 for (AN), while the highest
value of 0.87 is achieved for (LT). We further observe that,
compared to betweenness centralities, we generally obtain
conceivably larger correlation values between temporal
and first-order closeness centralities. This can intuitively
be explained by the fact that, while temporal betweenness
centralities are influenced by the actual structure of short-
est time-respecting paths, temporal closeness centralities
are merely influenced by their lengths. We thus expect
temporal closeness centrality to be insensitive to charac-
teristics of temporal networks that change the structure
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Table 2. Pearson and Kendall-Tau rank correlation coefficients between temporal closeness centrality (ground truth) and
closeness centrality calculated based on the first-order aggregate network and the second order aggregate network. Values in
parentheses indicate the p-value.

ClCtemp
∼ ClC(1) ClCtemp

∼ ClC(2)

Pearson Kendall-Tau Pearson Kendall-Tau
E-Mail (EM) 0.93 (4.74e-44) 0.79 (4.96e-30) 0.98 (2.52e-71) 0.92 (1.54e-40)
Ants (AN) 0.91 (1.67e-24) 0.75 (1.54e-17) 0.96 (2.05e-35) 0.83 (4.80e-21)

Hospital (HO) 0.96 (2.09e-29) 0.83 (1.88e-18) 0.99 (1.46e-40) 0.90 (1.76e-21)
RealityMining (RM) 0.96 (1.03e-33) 0.77 (1.99e-17) 0.99 (1.64e-51) 0.89 (5.30e-17)
London Tube (LT) 0.98 (1.33e-91) 0.87 (2.57e-49) 0.98 (3.26e-92) 0.87 (1.07e-49)

Flights (FL) 0.91 (3.35e-46) 0.81 (1.88e-18) 0.97 (4.57e-75) 0.93 (9.57e-50)

of paths but not their lengths, hence explaining the larger
correlation coefficients.

Let us now study whether we can better approxi-
mate temporal closeness centralities using a generaliza-
tion which is calculated based on the static, second-order
aggregate representation of a temporal network. For this
we first introduce how closeness centralities of nodes can
be calculated based on a second-order aggregate network.
We recall that in equation (7) we have defined a second-
order distance function dist(2)(v, w) which provides us
with the distance between (first-order) nodes based on
shortest paths in a second-order aggregate network. This
distance function allows us to directly define a second-
order closeness centrality ClC(2)(v) as:

ClC(2)(v) =
∑

u�=v

1

dist(2)(u, v)
, (11)

i.e. for each node v in a network, we simply sum the inverse
of the distances to all nodes according to the topology of
the second-order aggregate network.

Again, we illustrate the notion of second-order close-
ness centrality using the two illustrative examples of tem-
poral networks shown in Figure1. Figure 2a shows the
second-order aggregate network corresponding to the tem-
poral network G1 shown in Figure 1a. Here we find that
the second-order node c−e can be reached via two shortest
paths

(b − c), (c − e)
(a − c), (c − e)

of length one from the second-order nodes b− c and a− c.
Furthermore, we have an additional second-order “path”
of length zero from node c− e to itself. Using the second-
order distance function as defined in equation (7), we thus
infer the following values:

dist(2)(b, e) = 2

dist(2)(a, e) = 2

dist(2)(c, e) = 1

from which we calculate the second-order closeness cen-
trality of node e as ClC(2)(c) = 2.

Again, in this particular example the second-order
closeness centrality corresponds both to the temporal and

the first-order closeness centrality. This is different in
the second-order network shown in Figure 2b, which cor-
responds to the temporal network G2 shown in Figure 1b.
Here, we find that the second-order node c−e can only be
reached via a single shortest path (a− c), (c−e) as well as
via an additional second-order “path” of length zero from
e − c to itself. From this, we can calculate the following
second-order distances

dist(2)(a, e) = 2

dist(2)(c, e) = 1

and for the second-order closeness centrality of node e

we thus obtain ClC(2)(c) = 1.5, which coincides with the
temporal closeness of node e in the underlying temporal
network G2.

Using the the second-order closeness centrality intro-
duced above, let us now study the correlations between
the temporal and the second-order closeness centralities
of nodes in our six data sets. The results of this analysis
are shown in the right column of Table 2. For five of the
six data sets we observe significantly larger correlation co-
efficients than those reported for the first-order closeness
centrality in Table 2. The largest increase of the Pearson
correlation coefficient from 0.91 to 0.97 is achieved for
the (FL) data set, while we observe no improvement of
the (already large) Pearson correlation coefficient of 0.98
for (LT). We further observe significant increases in the
Kendall-Tau rank correlation coefficients for all of the
studied data sets, except for (LT) for which it remains
the same. For the ranking of nodes in (EM), we find that
a ranking based on second-order closeness centralities in-
creases the Kendall-Tau rank correlation with the ground
truth temporal centralities from 0.79 to 0.92, thus bet-
ter representing the relative importance of nodes in the
temporal network.

4.3 Temporal reach centrality

Concluding this section we finally study reach centrality,
another notion of path-based centrality that captures the
number of nodes that can be reached from a node via
paths up to given maximum length s [31]. For static net-
works, such as a first-order aggregate network, we define
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the first-order reach centrality of a node v as:

CoC(1)(v, s) :=
∑

w∈V

Θ(dist(1)(v, w) − s), (12)

where Θ(·) is the Heaviside function, dist(1)(v, u) is the
length of a shortest path from node v to u in the static,
first-order network, and s is a parameter specifying up
to which length paths should be considered. Clearly, the
reach centrality CoC(1)(v, s = 1) of a node v is equal to its
out-degree while CoC(1)(v, s = ∞) is equal to the subset
of nodes to which v is connected via directed paths of any
length.

A temporal reach centrality can again easily be defined
based on the notion of shortest time-respecting paths, as
well as the temporal distance function disttemp(v, w) de-
fined in equation (4). Here, for a given maximum time
difference δ and a given value s, we are interested in how
many different nodes can be reached via shortest time-
respecting paths which have at most length s. In analogy
to equation (12), we can thus define the temporal reach
centrality CoCtemp(v) of a node v as:

CoCtemp(v, s) :=
∑

w∈V

Θ(disttemp(v, w) − s). (13)

We want to highlight that with this definition of reach
centrality, we focus on the temporal-topological charac-
teristics introduced by the ordering of links, which is why
base our definition on the shortest rather than the fastest
time-respecting paths.

It is finally easy to see that a second-order reach cen-
trality can be defined in analogy to second-order closeness
centrality. For this, all we have to do is to replace the
distance function in equation (12) by our previously de-
fined second-order distance function, thus obtaining the
following definition:

CoC(2)(v, s) :=
∑

w∈V

Θ(dist(2)(v, w) − s). (14)

Using a value of s = 2, we again exemplify these definitions
using our two illustrative examples. Let us first calculate
the first-order reach centrality of node a based on the first-
order aggregate network shown in Figure 1c. Here we find
that there are paths of at most length s = 2 from node
a to the three nodes c, d and e, from which we conclude
CoC(1)(a, s = 2) = 3. For the temporal reach centrality of
node a in the temporal network G1 shown in Figure 1a,
we observe that there are time-respecting paths of at most
length s = 2 from node a to the three nodes c, e and d.
We hence conclude CoCtemp(a, s = 2) = 3, finding that
for G1 the temporal reach centrality again corresponds to
the first-order reach centrality. Again, this is not the case
for the temporal network G2 shown in Figure 1b. Here,
node a is only connected to the nodes c and e via time-
respecting paths of up to length two, which means that
we have CoCtemp(a, s = 2) = 2.

For the second-order reach centrality of node a in the
temporal network G1 let us now consider the second-
order aggregate network shown in Figure 2a. Based on

the shortest paths in the second-order network, we first
find that the node a − c is connected to two nodes c − d
and c − e via shortest paths of length one. Furthermore,
we find an additional shortest path of length zero which
connects the second-order node a−c to itself. Again, using
our second-order distance function dist(2) here we find the
distances

dist(2)(a, c) = 1

dist(2)(a, e) = 2

dist(2)(a, d) = 2,

from which we conclude that three nodes c, e and d can
be reached via paths of length at most two. From this we
calculate the second-order reach centrality of node a in G1

as CoC(2)(a, s = 2) = 3. Applying the same arguments to
the example network G2 and the corresponding second-
order aggregate network shown in Figure 2b, for the same
three nodes we find the following second-order distances:

dist(2)(a, c) = 1

dist(2)(a, e) = 2

dist(2)(a, d) = ∞.

We thus obtain a second-order reach centrality of
CoC(2)(a, s = 2) = 2 which corresponds to the tempo-
ral reach centrality of node a in G2.

In the following, we use the temporal reach centrality
defined above as ground truth, while studying how well it
can be approximated by first-order and second-order reach
centralities calculated from the first- and second-order
time-aggregated networks respectively. Different from the
analyses for betweenness and closeness centralities, here
we must additionally account for the fact that the reach
centrality can be calculated for different values of the max-
imum path length s. This implies that the Pearson corre-
lation coefficient ρ and the Kendall-Tau rank correlation
coefficient τ must be calculated for each value of s individ-
ually. The results of this analysis are shown in Figure 4,
which shows the obtained values for ρ and τ for the corre-
lations between (i) the temporal and the first-order reach
centralities (black lines), and (ii) the temporal and the
second-order reach centralities (cyan lines) for each of the
six data sets introduced above. Thanks to our choice of
the maximum time difference δ, for all of our data sets
both the underlying first- and second-order networks are
strongly connected. Assuming that D is the diameter of
the corresponding aggregate network, for all s ≥ D we
thus necessarily arrive at a situation where the reach cen-
tralities of all nodes are identical. For the results in Fig-
ure 4 this implies that for any s > D the correlation values
are undefined since the first- (or second-)order centralities
of all nodes are the same. We thus only plot the correla-
tion coefficients τ and ρ for s < D, in which case they are
well-defined.

For s = 1, the only time-respecting paths consid-
ered consist of single links, and thus the temporal reach
centralities by definition exactly correspond to the reach
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Fig. 4. Pearson ρ and Kendall τ correlation coefficients between the temporal and the first-order reach centralities (black lines)
and the temporal and the second-order reach centralities (cyan lines) for (a) the Ants data set (AN), (b) the E-Mail data set
(EM), (c) the Hospital data set (HO), (d) the Reality Mining dataset (RM), (e) the Flights data set (FL), and (f) the London
Tube data set (LT). Inset: zoom to the area where there is a small deviation between values for the case of the London Tube
data set.

centralities calculated from the first- and second-order
topologies. Consequently, for s = 1 we have τ = 1 and
ρ = 1 both for the first- and the second-order reach cen-
trality. For s = 2 there is, again by definition, no difference
between the temporal and the second-order reach centrali-
ties however the correlation values for the first-order reach
centrality decreases since the first-order aggregate net-
work does not accurately represent the structure of time-
respecting paths of length two. For values s > 2, ρ and τ
decrease both for the first and the second-order centrali-
ties since neither representation can accurately represent
time-respecting paths with lengths s > 2. However the re-
sults also highlight the important fact that second-order
reach centralities better approximate temporal reach cen-
tralities for all values of s > 2.

We conclude this section by providing detailed results
for the specific value of s = 3. The choice of a parameter
s > 2 means that for the second-order reach centrality we
will not trivially obtain correlation values of 1 because we
would only consider time-respecting paths of length two
which are captured in the second-order aggregate network.
However, since the diameter of the first-order aggregate
network for two of our systems (RM and HO) is equal
to three, we can only report results on the correlations
between the temporal and the first-order reach centralities
for four data sets. The results for the first-order reach
centrality with s = 3 are shown in in Table 3.

Remarkably, for the (LT) data sets we observe a per-
fect correlation with the temporal reach centrality, which
means that for this data set reach centralities are seem-
ingly not affected by the temporal characteristics of the
system. This is different for (FL), for which we observe
a small Pearson correlation of ρ = 0.41, with an asso-
ciated τ = 0.27. These results show that, for the (FL)
data set, temporal characteristics of the data do not al-

low temporal reach centralities to be approximated based
on the first-order aggregate network. For the second-order
reach centralities shown in the right columns of Table 3,
we observe a significant increase in both the Pearson and
the Kendall-Tau correlation coefficients for all of the data
sets, except for (LT). The largest increase of the Pearson
correlation coefficient is again obtained for (EM), increas-
ing from 0.61 to 0.94 with an associated increase of the
Kendall-Tau correlation coefficient from 0.60 to 0.81. We
thus conclude that again, second-order reach centralities
better capture the true (temporal) importance of nodes
than a simple first-order approximation.

5 Conclusion

In this article, we introduce a framework for the analy-
sis of path-based notions of node centrality in temporal
networks. We consider temporal versions of three path-
based centrality measures which highlight the influence
of the temporal-topological dimension introduced by the
specific timing and ordering of time-stamped links in tem-
poral networks. Using six data sets on real-world temporal
networks, we study to what extent static notions of be-
tweenness, closeness and reach centrality differ from their
temporal counterparts. While for some data sets node
centralities in the (first-order) time-aggregated, static net-
work can be used as reasonable proxies for temporal cen-
tralities, our results show that for other data sets this
is not the case. Here we find that an analysis of time-
aggregated static networks that neglects the time dimen-
sions yields misleading results about the importance of
nodes.

In order to overcome these limitations, we utilize
higher-order aggregate networks, a simple yet powerful
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Table 3. Pearson and Kendall-Tau rank correlation coefficients between temporal reach centrality (ground truth) and reach
centrality for s = 3 calculated based on the first-order aggregate network and the second-order aggregate network. Values in
parentheses indicate the p-value.

CoCtemp
∼ CoC(1) CoCtemp

∼ CoC(2)

Pearson Kendall-Tau Pearson Kendall-Tau

London Tube (LT) 1.00 (4.65e-168) 1.00 (9.32e-64) 1.00 (1.92e-173) 1.00 (7.00e-64)

Ants (AN) 0.72 (8.23e-11) 0.59 (1.38e-11) 0.96 (9.50e-36) 0.86 (6.40e-23)

E-Mail (EM) 0.61 (3.17e-11) 0.60 (3.55e-18) 0.94 (2.74e-44) 0.81 (1.52e-31)

RealityMining (RM) NA NA 0.68 (3.76e-09) 0.66 (2.78e-13)

Hospital (HO) NA NA 0.80 (7.95e-13) 0.74 (7.23e-15)

Flights (FL) 0.41 (4.68e-06) 0.27 (1.46e-05) 0.62 (1.44e-13) 0.73 (6.53e-31)

generalization of the commonly used time-aggregated
static perspective on time-stamped network data which
has originally been introduced to study dynamical pro-
cesses in reference [17]. The basic idea of this construc-
tion is that a kth order aggregate network captures the
statistics of time-respecting paths of length k, thus facili-
tating a higher-order analysis that incorporates both the
topology and the ordering of links in temporal networks.
We demonstrate the power of this framework through the
definition of second-order centralities which can easily be
calculated based on shortest paths in a second-order ag-
gregate network. Despite the fact that these centralities
can easily be calculated based on a simple static network
structure, we find that the resulting second-order central-
ity measures better capture the true temporal centralities
of nodes in the underlying temporal networks.

Closing this article, we finally highlight a number of
open issues which we plan to consider in future work.

First and foremost, all of our results have been ob-
tained based on simple unweighted notions of centrali-
ties, even though both the first-and second-order aggre-
gate networks considered in our work naturally provide
weighted links. Insofar, our results are based on an ap-
proach that does not incorporate full information about
path statistics which is preserved by our higher-order ag-
gregate network abstraction. We thus expect a future ex-
tension to weighted higher-order aggregate networks to
capture the true temporal centralities of nodes even more
closely.

Moreover, while we can in principle define higher-order
networks of any order k, in our work we have focused on
second-order representations and the corresponding gen-
eralizations of path-based centralities. The choice to limit
our study to k = 2 is mainly due to available data which,
for the six temporal networks studied in this work, are
not guaranteed to provide meaningful statistics for time-
respecting paths with larger lengths k that are the basis
for a kth order aggregate network. Under what conditions
higher-order aggregate networks with orders of k > 2 can
help us to obtain even better approximations for tempo-
ral centralities is thus an open question that we will study
in the future. Despite these open issues, we consider the
fact that the simple second-order centrality measures in-
troduced in our work already yield good approximations

of the underlying temporal centralities a promising aspect
of our framework.

As argued in Section 3, the construction of higher-
order aggregate networks crucially depends on the notion
of time-respecting paths. As such, a sensible choice of the
maximum time difference δ – i.e., the maximum difference
allowed between the time stamps of any two consecutive
links that form a time-respecting path – is of particular
importance. Depending on the temporal distribution of
time-stamped links, choosing a δ that is too small may
result in a negligible number of time-respecting paths,
thus rendering the system in question (temporally) dis-
connected. Similarly, the choice of too large values for δ
effectively leads to time-respecting paths that are indepen-
dent of the precise timing and ordering of time-stamped
links, thus effectively coarse-graining time and discard-
ing temporal information. In general, the optimum choice
of δ depends on (i) temporal characteristics of the tempo-
ral network under investigation, and (ii) the time scale of
the dynamical processes one is interested in. In this study,
we have used a rather simple and heuristic method, defin-
ing δ as the smallest value that still renders the system
strongly connected in a temporal sense. In future work, a
more principled approach which, e.g., inherently couples
the choice of δ to a characterization of inter-event time
statistics would be desirable.

Finally, an important general question that arises in
the analysis of time-stamped network data is under which
conditions a time-aggregated analysis is sufficient, as op-
posed to a detailed analysis of time-stamped links and
time-respecting paths. Thanks to their simplicity, compu-
tational efficiency, and the availability of software tools,
time-aggregated analyses of static node centralities are
popular and widely used throughout different disciplines.
However, the results of our analysis, as well as of simi-
lar studies on dynamical processes, community structures
and node centralities [14,15,17,18] show that order corre-
lations in real-world temporal networks crucially influence
causality, thus potentially rendering such static analyses
invalid. Through a calculation of temporal node central-
ities these temporal correlations can be included in the
analysis of time-stamped data. However, especially for
larger values of the maximum time difference δ, the ex-
traction of all shortest time-respecting paths imposes com-
putational costs that can be prohibitive for large data sets.

http://www.epj.org


Eur. Phys. J. B (2016) 89: 61 Page 15 of 15

A particular benefit of our approach is that the calculation
of second-order centrality measures is computationally
efficient as it merely requires (i) the extraction of time-
respecting paths of length two in the time-stamped data,
and (ii) the calculation of shortest paths in a static second-
order network. Therefore, we argue that our approach is
a simple and efficient (static) approximation of temporal
centralities which, compared to a calculation of first-order
centralities, nevertheless provides significant additional in-
sights into the temporal dimension of complex systems.

In summary, our results show that higher-order aggre-
gate networks constitute a powerful abstraction for the
study of temporal networks. Apart from an analysis of
path structures and node centralities, as well as analytical
studies of dynamical processes considered in reference [17],
we argue that this framework provides broad perspectives
for the development of novel, computationally efficient
data mining techniques for time-stamped relational data.
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