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Synonyms

Features; Online shopping; Opinion spam;
Review spammer; Social networking; Spam
detection; Spam review; User-generated content;
Water army

Glossary

Features A set of attributes indicating the
spamming behavior

Review A malicious user who write

Spammer fraudulent reviews

Spam Identify spam reviews, users, or

Detection  groups

Spam A deceptive review to manipulate the
Review opinon about the product

Water A group of ghostwriters paid to post
Army fake reviews

Definition

The fake reviews target at promoting or demoting
the sale of products in e-commerce sites, and
attracting attention or triggering curiosity in social
networking sites, by creating and spreading pur-
poseful comments. Hence, the goal of spam detec-
tion is to identify spam objects, including review/
opinion spam, spam users, and spammer groups,
from reviews.

Introduction

Online reviews are actually a kind of user-gener-
ated content (UGC) and hence provide a voice for
customers to praise or criticize products, services,
and even offline shops. Nowadays, when one
wants to buy a product or eat out, most probably,
one will first read reviews about several online
shops or nearby restaurants. Then, one will select
one shop or restaurant that has a mass of positive
reviews to consume. Unsurprisingly, online
reviews are strongly correlated with product
sales (Forman et al. 2008). Driven by these finan-
cial incentives, an increasing number of biased or

© Springer Science+Business Media LLC, part of Springer Nature 2018
R. Alhajj, J. Rokne (eds.), Encyclopedia of Social Network Analysis and Mining,

https://doi.org/10.1007/978-1-4939-7131-2


https://doi.org/10.1007/978-1-4939-7131-2_161
https://doi.org/10.1007/978-1-4939-7131-2_100380
https://doi.org/10.1007/978-1-4939-7131-2_100806
https://doi.org/10.1007/978-1-4939-7131-2_100829
https://doi.org/10.1007/978-1-4939-7131-2_100997
https://doi.org/10.1007/978-1-4939-7131-2_101174
https://doi.org/10.1007/978-1-4939-7131-2_101230
https://doi.org/10.1007/978-1-4939-7131-2_101230
https://doi.org/10.1007/978-1-4939-7131-2_101231
https://doi.org/10.1007/978-1-4939-7131-2_101413
https://doi.org/10.1007/978-1-4939-7131-2_101451
https://doi.org/10.1007/978-1-4939-7131-2

1036

malicious reviews appear on e-commerce sites
(e.g., Amazon, eBay, and Taobao), online-to-
offline sites (e.g., Yelp and Dianping), and travel
booking sites (e.g., TripAdvisor, hotels.com, and
Ctrip). Some research reported that up to 6% of
reviews on sites like Yelp and TripAdvisor
may be deceptive (Ott et al. 2012), and roughly
8% URLs included in Twitter messages direct
users to scams, malware, and phishing sites
(Grier et al. 2010). These spam or misleading
reviews are seriously threatening the sustainable
development of online shopping and social
networking. Therefore, fake reviews have been
acknowledged as a critical challenge by both the
research community and the
industry.

Initially, the content of spam reviews is often
very similar with each other, since to create mul-
tiple fake reviews with different content is cost-
and time-consuming (Heydari et al. 2015). These
duplicate reviews can be easily generated and
propagated by bots. In earlier research, the spam
detection methods try to find similar content of a
set of reviews by using text mining, and thus the
reviews containing duplicate text could be identi-
fied as spam reviews (Jindal and Liu 2007a, b,
2008). Along this line, a great deal of content-
based spam detection techniques are subsequently
proposed (Ott et al. 2011; Lin et al. 2014a, b).
These techniques have defined a variety of lin-
guistic features based on review content and
employed various classification models for
detection.

Due to the rapid development of spam detec-
tion techniques, the spam objects to be detected
are also gradually expanded. More and more work
begins to detect spam users and even spammer
groups, rather than reviews themselves. The
nature of this problem has been clearly described
as a classification problem (Fayazi et al. 2015).
That is, most of the detection methods first try to
define a set of features for indicating the abnormal
spam behavior, and hence try to design a befitting
machine learning model to train a classifier
(Mukherjee et al. 2012, 2013a; Lam and Riedl
2004; Lim et al. 2010; Wang et al. 2011). It is
noteworthy that features about different targets
can usually be fused together. For example, to
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detect spam users might use the linguistic features
of review content (Mukherjee et al. 2013a). In
contrast, to identify a group of fake reviews
might use both the behavioral features of
reviewers and the characteristics of multiple
reviews (Mukherjee et al. 2012).

In recent years, crowdsourcing platforms have
emerged as the broker for intelligently guiding
large numbers of people to create fake reviews
on major e-commerce platforms in exchange of a
fee (Wu et al. 2015; Fayazi et al. 2015). As a
result, both fake reviews and their authors are
becoming more and more tricky, since fake
reviews are carefully written by different users
other than copying the existing fake reviews.
Meanwhile, these users are always legitimate,
i.e.,, having many true purchasing records and
releasing many true reviews, but they occasion-
ally create fake reviews when accepting the task
on crowdsourcing platforms to make a profit. So,
it is difficult to identify these spam reviews and
users in clever disguise by using features only. To
address this challenge, many recent studies
(Fakhraei et al. 2015; Fayazi et al. 2015; Wu
et al. 2013, 2015) propose to employ the relation
for defining new topological features or design
hybrid learning framework, in order to enhance
the detection performance.

Established in a large number of
abovementioned studies, this chapter has two
goals: first, it aims to draw a clear roadmap of
algorithms and ideas used for spam detection from
reviews; second, it aims to sketch several impor-
tant problems that are deserved for future
research.

Key Points

Almost all of existing work targets to detect three
kinds of fake or malicious objects (Heydari et al.
2015): review/opinion spam, spam users, and
spammer groups. Deceptive reviews are superfi-
cial components of hidden spammers. So, these
malicious targets to be detected are actually bound
up with each other. Meanwhile, the detection
techniques for three targets are also in common
with each other. The spam detection problem is
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usually modeled as a classification problem
(Fayazi et al. 2015), where the goal is to assign a
class label of spam or normal to a candidate object
o based on a classifier c:
¢ : 0 — {spam,normal}. (D
The object o might be a review, a user, or a
group of reviews/users. To effectively build the
classifier ¢, there exist several critical challenges
including: (i) to identify valid ground-truth train-
ing data, (ii) to construct discriminative features
based on various data sources, and (iii) to train the
classification model by using various machine
learning techniques.

Historical Background

Various spam comes with the development of
mainstream components of the Web. In the early
years, an extensive body of research is devoted to
identify, characterize, and prevent email spam
(Sahami et al. 1998; Pitsillidis et al. 2010). To
filter email spam, a number of techniques have
been developed including IP blacklisting, domain
and URL blacklisting, and filtering on email con-
tents. With the prevalence of Web search engines
that wusually adopt the link-based ranking
methods, e.g., HITS and PageRank, many tricks
have been attempted to boost page rankings (Zhou
and Pei 2009). This kind of spam is termed as Web
spam or spamdexing which is recognized as one
of the key challenges for search engine industry
(Cheng et al. 2011). So far, Web spam taxonomy
has been clearly delineated (Gyongyi and Garcia-
Molina 2005) and a vast number of detection
algorithms have been presented. The cited review
(Spirin and Han 2012) can help interested readers
understand the work on Web spam detection
quickly.

About 10 years ago, e-marketing sites as well
as social Web sites started to become important
components of the Web. Both kinds of sites rely
on user-generated content (UGC) that makes them
incredibly dynamic and temping targets for spam
(Heymann et al. 2007). In general, there are
mainly two kinds of spam content in e-commerce
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and social networking sites: (i) the malicious con-
tent with scams, malware, and phishing attacks
(Jagatic et al. 2007; Grier et al. 2010); (ii) the
purposeful comments or reviews for attracting
attention or promoting the ranking/sale of prod-
ucts (Lee et al. 2010; Chen et al. 2013; Liu et al.
2013). According to the analysis on Twitter spam
(Grier et al. 2010), the malicious content is usually
wrapped by a spam URL, which points to some
malicious pages, such as phishing websites, pages
hosting malicious software, or attempting to
exploit a user’s browser, and websites advertising
pharmaceuticals, software, or adult content. So,
detecting spam URLs is very similar to detect
email spam, and thus URL blacklisting becomes
an effective technique for monitoring and
detecting spam URLs.

The purposeful or unfair reviews try to delib-
erately mislead readers in order to promote or
demote some target products (Mukherjee et al.
2012). The opinion spam is more tricky than the
malicious content, since it is difficult to be judged
by a single metric, such as the spam URL pointing
to a malicious page. Indeed, detecting opinion
spam and its related spam users or groups needs
to construct multifold features based on review
contents and user behavior, and transform the
detection problem to a classification problem as
summarized by Eq. 1. In what follows, we shall
introduce the state-of-the-art methods in this area,
including three key points: (i) feature construc-
tion, (ii) detection algorithms, and (iii) training
data preparation.

Feature Construction

Finding right features largely determines the
detection performance. However, feature con-
struction is both data-specific and task-specific.
That is, a right feature should be computable on
the available data, and it can serve for the pre-
defined detection task. A wide range of features
that are likely linked with spamming have been
presented in the literature. These features can be
roughly summarized into four categories:
(i) review features, (ii) user features, (iii) group
features, and (iv) topological features. In this
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Identifying Spam in Reviews, Table 1 Representative features for reviews

Type Name | Polarity | Description Source
Behavior |Rank | L Rank order among all the reviews of product Jindal and Liu (2008)
DEV |H Deviation between rating of the review and the average Mukherjee et al.
rating. (2013a)
EXT H Extremity of rating: 1 for ratings {4,5}, 0 otherwise Rayana and Akoglu
(2015)
ETF H Early time frame: early review can increase impact (see | Mukherjee et al.
Eq. 2). (2013a)
ISR H Is singleton? If review is user’s sole review, then 1; Rayana and Akoglu
otherwise 0 (2015)
Text LEN L Review length in words Lietal (2011)
PP1 L Ratio of 1st person pronouns (“I,” “my,” etc) Lietal (2011)
oW L Ratio of objective words (by WordNet) Lietal (2011)
RCW |H Ratio of ALL-capitals words Lietal (2011)
RC H Ratio of capital words Lietal (2011)
SW H Ratio of sbjective words (by WordNet) Lietal (2011)
RES H Ratio of exclamation sentences containing “!” Lietal (2011)

section, we shall introduce a few universal fea-
tures in each category.

Review Features

The metadata of a review usually includes rating,
timestamps, and review text (Heydari et al. 2015;
Rayana and Akoglu 2015), which is helpful to
define review features. We categorized review
features in the literature (Jindal and Liu 2008;
Mukherjee et al. 2013a; Rayana and Akoglu
2015; Li et al. 2011) as behavior-based and text-
based, respectively. Meanwhile, we use the
“polarity” to indicate whether a high (H) or a
low (L) value is more suspicious for each feature.
Table 1 shows several representative features for
reviews. Most of them are self-explanatory, and
hence we omit detailed explanation for brevity.
Instead, we only introduce one feature: early time
frame (ETF).

A lot of evidence has shown that the early
reviews can greatly impact the users’ opinion on a
product, and hence spammers prefer writing early
reviews. The ETF is designed to capture this spam-
ming characteristic. Assuming r,, denote a review
written by user u for the product p, the ETF is

0. ifL(a,p) —A(p) >
ETF(ry,p) = { 1 _M otherwise
B ,
)

where L(a, p) is the posting time of 7, A(p) is the
p’s launch date, and J is a threshold. In
(Mukherjee et al. 2013a), 0 is suggested to be
7 months for Amazon data.

User Features
Similar to review features, we also list a set of
representative features for users in Table 2. Besides
behavior and text-based features, there is a new type
of features, i.e., social-based, to depict spamming
characteristic of users in social networking sites.
For instance, some users like entertainment stars
might buy a number of zombie fans to amplify her
influences on Weibo (Liu et al. 2013), and thus NFF
and RFF explained in Table 2 emerge as important
features. Furthermore, as reported in (Grier et al.
2010; Lee et al. 2010), users who often release
tweets containing URLs and hashtags are very sus-
picious, which gives birth to features RTU and RTS.
The reviewing bursiness (BST) is used to the
time period between the earliest review and the
latest review of a user.

0, ifL(u) —A(u) >7
_ , otherwise

3)

where L(u) — F (u) is the number of days between
last and first review of a user u, and 7 is a threshold
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Identifying Spam in Reviews, Table 2 Representative features for users

Type Name | Polarity | Description
Behavior | MNR H Max number of reviews/tweets 1 day
PR/ H Ratio of positive (45 star)/negative (1-2 star) reviews
NR
BST H Reviewing burstiness as defined in Eq. 3
BRR L Ratio of the reviews in a burst pattern to the total reviews
ARD H Average rating deviation of user’s reviews
WRD H Weighed rating deviation
AVP L Ratio of Amazon verified purchase
Text ARL L Average review/tweet length in number of words
ACS H Average content similarity among one’s reviews
MCS H Maximum cosine similarity among all review pairs
Social ATD H Average tweets per day
NFF L Number of followers/followees
RFF H Ratio of the number of followers/followees
RBF H Ratio of bidirectional friends
ROR L Ratio of original/reposted tweets
RTU H Ratio of tweets containing URL
RTS H

Ratio of tweets containing special characters (“@,” “#,”
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Source

Mukherjee et al.
(2013a)

Mukherjee et al.
(2013b)

Mukherjee et al.
(2013a)

Fei et al. (2013)
Lim et al. (2010)
Lim et al. (2010)
Fei et al. (2013)

Mukherjee et al.
(2013b)

Lim et al. (2010)

Mukherjee et al.
(2013b)

Lee et al. (2010)
Liu et al. (2013)
Lee et al. (2010)
Lee et al. (2010)
Liu et al. (2013)
Lee et al. (2010)
Grier et al. (2010)

etc.)

set to be 28 days for Amazon data (Mukherjee
et al. 2013a). BST indicates that if all reviews are
posted within a very short burst, it is likely to be a
spam infiliction.

Group Features

To improve the effectiveness of spamming,
review spammers might be well organized and
implement spamming after a premeditated plan-
ning. A few studies have been devoted to detect
review spamming groups as well as group anomaly
in social media (Mukherjee et al. 2012; Wang et al.
2016; Yu et al. 2014). Intuitively, group spam
behavior indicators can be parallel extended based
on user features. As features of each review and
user in a group have been defined (see Table 1 and
2), some aggregation functions, i.e., max(-) and avg
(+), can be utilized to compute features of the group.
Let us take group early time frame (GETF) as an
example. With ETF as shown in Eq. 2, GETF is

max
uegpeP,

GETF(g) = (EFT(r..p)), (4

where g denotes the group of users and P, is the
set of products rated by all group members. Sim-
ilarly, many features, such as BST, ARD, WRD,
ACS, etc., can be extended for groups.

Topological Features
In social media, the graph can be directly
constructed based on social relations. These rela-
tions might be heterogeneous for representing
different activities on the website, such as sending
friend requests or messages, viewing another
user’s profile, being friend/follower/followee of
another user, and so on. In online shopping sites,
however, the relation between users is usually
hidden in the user-product reviewing relation.
For example, the relation between users could be
created when they frequently rate the same prod-
ucts, e.g., over 20 times. Nevertheless, the graph
among users is easily obtained in different spam
detection scenarios, which provides the metadata
for computing topological features.

The topological features attempt to describe
the importance of every node in the graph, and
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they are usually derived from the graph analytics
methods. Commonly used topological features
include (Fayazi et al. 2015; Fakhraei et al. 2015):

* Degree. The total degree, in-degree, and out-
degree of every node.

* PageRank. By running PageRank algorithm, a
score for each node can be regarded as a fea-
ture. The important nodes receiving more links
from other nodes have the higher score.

* Centrality. The greater the number of paths in
which a node participates, the higher centrality
value of this node. There are lots of metrics that
can be used as the centrality features (Costa
et al. 2007), including k-core, betweenness
centrality, eigenvector centrality, Katz central-
ity, Freeman’s closeness centrality, etc.

» Triangle Count. The triangle count of a node is
the number of triangles (a complete subgraph
of three nodes) in the graph the node
participates in.

*  Community. If using graph clustering algo-
rithms to partition nodes into a number of
communities, the community ID can be used
as a categorical feature. The most coarse-
grained clustering is to find connected compo-
nents (Fakhraei et al. 2015).

To sum up, the underlying assumption of topo-
logical features is that the spamming nodes are
more important in the graph, i.e., having higher
connectivity, centrality, influence, etc. It is natu-
rally accord with the target of group spam detec-
tion, that is, spammers are likely to have strong
connections with each other.

Detection Algorithms

According to Eq. 1, the review spam detection
problem is to predict whether an object with an
unobserved label is spam or not. Since most
classifiers could assign a probability to each
instance, this classification problem can also
regarded as a ranking problem. That is, this
problem is the assignment of a probability to
every object for ranking them from the most to
the least probable spam. In this section, we
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categorize the existing detection algorithms
into two classes: (i) supervised and semi-
supervised classification, and (ii) unsupervised
ranking. When introducing algorithmic details,
the target objects to be detected will be no longer
distinguished. Instead, we shall select several
spam detection frameworks with different prin-
ciples and algorithms.

Supervised and Semisupervised Methods
With a variety of features, including both user and
topological features, the intuitive detection
method is to utilize existing classification models,
such as Na"tve Bayesian, SVM, logistic regres-
sion, random forest, and so on. In Fakhraei et al.
(2015), sequential k-gram features are further
constructed based on a set of graph features, and
then many classifiers can be integrated into the
detection framework flexibly. Beyond this, many
recent studies focus on incorporating the topolog-
ical information (i.e., pair potentials) with user
features (i.e., singleton potentials) into the super-
vised or semisupervised models.

In Wu et al. (2013), Fayazi et al. (2015),
Rayana and Akoglu (2015), and Wu et al.
(2015), the network is represented as a pairwise
Markov Random Field (MRF), where the joint
probability of class labels is written as a product
of singleton and pair potentials. Mathematically, if
let y be an assignment of labels to all objects and y;
denote the label of i-th object, the pairwise MRF
can be written as:

Pr(y) < [T [T #ii(3yy)- -

In Eq. 5, pi(y;) is called singleton potentials
which is determined by a set of user features,
while ¢; (v, y;) is called pairwise potentials
which is generated on every edge of the network.
The specific definitions of both ¢,(y;) and ¢;; (v; ¥))
are often given based on different assumptions or
the requirements of reference models. For example,
in Fayazi et al. (2015), @A;) is defined as a Bayes-
ian estimator under the independence assumption
of user features, and ¢;; (y; »;) is modeled as an
exponential function. However, in Wu et al
(2013), (y;) is represented by using the Logistic
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Regression model, and ¢;; (y; ;) is modeled using
the Bernoulli distribution.

To maximize Pr(y) as shown in Eq. 5, the
supervised methods (Wu et al. 2013; Fayazi
et al. 2015) only use training data (i.e., all y;
used in Eq. 5 is known), but the semisupervised
(Rayana and Akoglu 2015; Wu et al. 2015) utilize
both labeled and unlabeled data for model training
(i.e., a majority of y, used in Eq. 5 is unknown and
should be estimated during model training).

Unsupervised Methods

Other than the supervised classification, the
unsupervised methods target at assigning a rank-
ing score to every object for indicating the likeli-
hood that the object is a spam, without the help of
the labeled instances. In what follows, we intro-
duce two kinds of unsupervised models.

Topic Model
The basic idea of topic model is that objects are
represented as random mixtures over latent topics,
where each topic is characterized by a distribution
over features. It is actually a generative probabi-
listic model. The Author Spamicity Model (ASM)
(Mukherjee et al. 2013a) is a typical example of
applying the topic model for spam detection. Gen-
erally, ASM normalizes continuous user features
in [0,1] and models them by a Beta distribution.
Then, ASM transforms review features as binary
variables and models them by a Bernoulli distri-
bution. ASM further denotes two latent variables
as the spamicity of each user and each review,
respectively. The objective of ASM is to learn
the latent behavior distribution for spam and non-
spam clusters along with spamicites of users from
the observed features. In other words, the number
of latent topics is set as 2. Hence, the Monte Carlo
Gibbs sampling is employed for approximate pos-
terior inference, and the Expectation Maximiza-
tion (EM) is used for estimating parameters.
ASM provides a clear logic of using the topic
model to solve the spam detection problem, which
is very similar to the clustering analysis. Some
other research attempts to use unsupervised clus-
tering for spam detection. In Lee and Zhu (2012),
a three-phase detector is designed: it first extracts
a subset of effective users by using the matrix
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decomposition, invokes K-means to divide the
selected users into a number of clusters, and
finally employs a metric to judge spamming
clusters.

Ranking Model

The earliest detection algorithm using the ranking
model is known as PCASelectUsers (Mehta and
Nejdl 2009). It uses user-product rating matrix as
the unique input, rather than various features. This
method transforms user-product rating matrix to a
user-user covariance matrix and employs Princi-
pal Component Analysis (PCA) to decompose the
covariance matrix. Thus, each user is represented
as a number of principal components (PCs) with
the largest Eigen values, where the sum of squares
on PCs is adopted as the ranking score. The
underlying assumption of this algorithm is that
the rating vectors of spammers are highly similar
with each other. With a similar approach, the
recent research (Wang et al. 2016) has extended
the PCA ranking model to the feature space for
identifying spamming groups.

A more general ranking framework called
GSRank is presented in Mukherjee et al. (2012).
GSRank is designed to spot fake reviewer groups.
Based on both group and individual spam fea-
tures, GSRank models three kinds of relations:
group-product, member-product, and group-
member, where each relation is represented as a
matrix. Meanwhile, GSRank initializes the spam-
ming score for groups, members, and products
respectively, forming three vectors. Then,
GSRank adopts a PageRank-like procedure to
iteratively computes the spamming score of three
kinds of objects, where each score vector is
modeled as a product of one relation matrix and
one score vector. The distinguishing feature of
GSRank is to incorporate features into relation
matrices and exploit the natural relationships
among user, group, and product to derive the
spamming score of groups.

Key Applications

Spam reviews have been very prevalent in e-com-
merce sites and social networking sites, and thus
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many commercial websites have organized dedi-
cated anti-fraud teams to filter deceptive reviews
(Kc and Mukherjee 2016). Since identifying spam
by human experts is very time-consuming, more
and more sites begin to develop commercial filter
for the automatic identification of spam reviews
(e.g., Yelp implemented review filtering a decade
ago). However, the existing commercial filters
including Yelp’s filter are far from perfect. As
mentioned earlier, there has been significant
amount of work done on spam detection. Clearly,
these research findings have a great application
prospect on commercial websites for enhancing
both effectiveness and efficiency of their commer-
cial antifraud algorithms.

Future Directions

Despite recent advances in spam review detection,
there are still a plethora of open issues that need
serious and immediate attention. We list several
important directions as follows:

» Correlation analysis on spamming with their
social networking. Existing studies have
shown that the spam detection methods could
benefit from social network (i.e., topological
features). However, it is not clear that how
spamming behavior interact with social net-
working. For example, spammers might be
very active on some kinds of social relations
yet oscitant on other kinds of relations, and
specific malicious users might prefer to use
some kinds of relations to commit spam to
normal users yet use other kinds of relations
to contact with other spammers.

* Novel detection methods with more heteroge-
neous data. There is no doubt that more data
can provide more signals for identifying spam.
Similar to the aforementioned pairwise MRF
model incorporating user features and topolog-
ical information, we expect an advanced model
to integrate more heterogeneous data as a uni-
form objective function, such as features, net-
work, text, and even trajectory data. Hence,
some novel learning framework based on het-
erogeneous data might be devised.
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*  Deployment of advanced detection methods for
commercial use. Many commercial websites
need spam filters but the existing commercial
filters are still very rough. Therefore, the detec-
tion techniques for commercial use should bal-
ance the theorization and the practicality. Also,
the deployment and the use of some advanced
detection techniques on commercial websites
will provide more empirical findings and more
benchmark data.

Cross-References

Collective Classification

Multirelational Social Networks

Opinion Diffusion and Analysis on Social
Networks
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Actor Non-

response (Unit
Non-response)

Missing all outgoing ties of an
actor

Imputation Substituting missing data by
plausible values

MAR Missing at random

MCAR Missing completely at
random

MNAR Missing not at random

Multiple Repeated stochastic

Imputation imputation of a dataset to

generate multiple completed
datasets. These completed
datasets are analyzed
separately, after which the
results of the analysis are
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Imputation of Missing Network Data

pooled to generate proper
estimates of parameters and
standard errors
Tie Non- Missing some ties of an actor
response (Item

Non-response)

Definition

When confronted with missing data, researchers
often want to handle the missing observations by
substituting plausible values for the missing
scores. This practice of filling in missing items is
called imputation (e.g., Schafer and Graham
2002). Imputation has several advantages: it is
more efficient than analyzing complete cases, it
gives the opportunity to use information
contained in the observed data in predicting the
missing scores, and allows analysis using stan-
dard techniques and software on a complete(d)
dataset that is the same for all following analyses.
The idea of imputation “is both seductive and
dangerous,” in the words of Dempster and Rubin
(1983). “It is seductive because it can lull the user
into the pleasurable state of believing that the data
are complete after all, and it is dangerous because
it lumps together situations where the problem is
sufficiently minor that it can be legitimately han-
dled in this way and situations where standard
estimators applied to the real and imputed data
have substantial biases” (Dempster and Rubin
1983, p. 8).

The shortcomings of imputation are related to
bias and uncertainty. Ad hoc imputations can seri-
ously distort data distributions and relationships,
and produce biased estimates. Moreover, in sub-
sequent analyses, predicted scores are treated as
observed values which lead to overestimating the
sample size and underestimation of uncertainty
levels. Multiple imputation (Rubin 1987) solves
the problem of underestimating uncertainty mea-
sures (i.e., standard errors). In multiple imputa-
tion, each missing value is replaced multiple times
(say m) by random draws from the distribution of
the missing values given the observed scores. This
results in m completed datasets that are identical
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except for the imputed values. The m completed
datasets are analyzed separately using the same
complete-data method, and the m results are com-
bined according to Rubin’s rules for combining
estimates and standard errors (Rubin 1987,
Schafer and Graham 2002). The final result
reflects the extra uncertainty due to missing data
by using the differences between the imputations
to correct the standard errors.

Multiple imputation is a flexible procedure that
retains much of the advantages of single imputa-
tion. As an imputation procedure, it separates the
missing data handling and the final analysis of the
dataset. This simplifies statistical modeling and
enables the researcher to expand the data in the
imputation model by including a large number of
predictors in order to reduce the bias due to sys-
tematic differences between responders and non-
responders (data Missing Not at Random; van
Buuren 2012).

Introduction

In many social network studies, missing data con-
stitute a serious problem. Often, popular software
packages can only deal with fully observed net-
work data, while others disregard the missing data
or treat the missing observations as non-existing.
These practices result in (serious) loss of informa-
tion, leading to decreased statistical power, and
may lead to serious bias due to the systematic
nature of the missingness (e.g., Schafer and Gra-
ham 2002; Graham 2009). Moreover, due to the
complex dependencies that exist within networks,
missing scores of one actor will influence the local
neighborhoods of other actors (directly or indi-
rectly via others). This makes careful treatment of
missing network data essential.

Missing data treatment procedures that are
common in statistical literature can roughly be
classified into four categories: analysis of avail-
able data, (re)weighting data, likelihood-based
procedures (e.g., the EM algorithm), and imputa-
tion. Much is already known about the effects of
missingness on (statistical) data analysis and the
effectiveness of the various treatment procedures



1046

(e.g., Schafer and Graham 2002; Graham 2009).
The effects of missing data treatments on estimat-
ing structural properties of social networks are
less often studied, although the field is catching
up (e.g., Huisman 2009; Koskinen et al. 2010,
2013; Hipp et al. 2015; Wang et al. 2016). In this
entry, we investigate in which way imputation can
be used to treat missing network data. We translate
common imputation strategies to the context of
social network data and inspect the effect of impu-
tation on estimating network properties.

Graham (2009) recommends that researchers
use missing data procedures from the latter two
categories: likelihood-based, or model-based,
methods and multiple imputation. He calls these
methods the “modern” missing data procedures
(p. 555). For social network analysis, “modern”
model-based procedures were proposed by
Robins et al. (2004), Handcock and Gile (2010),
and Koskinen et al. (2010, 2013), who describe
model-based approaches (likelihood-based or
Bayesian) within the framework of exponential
random graph models (ERGMs; see Lusher et al.
2013). In the proposed approaches, values for the
missing data are simulated in the course of param-
eter estimation, and observed statistics are
replaced by expected values based on these simu-
lations, in a manner similar to the EM algorithm
approach (e.g., Schafer and Graham 2002; Gra-
ham 2009). For longitudinal network data,
Snijders (2005) proposed a model-based proce-
dure incorporated in stochastic actor-driven
models for network evolution. Analogous to the
EM algorithm, the model-based procedures can
also be used for link prediction and imputation of
missing ties.

This entry is concerned with imputation
methods. The “modern” imputation procedure
that is recommended by Graham (2009) is multi-
ple imputation (Rubin 1987). Although this pro-
cedure is generally recommended as the best way
to impute, (simple) single imputations can still be
useful for specific analyses that do not require
hypothesis testing or confidence intervals (Gra-
ham 2009). Such analyses are not uncommon for
social networks (e.g., blockmodeling). As gener-
ating multiple imputations and combining the
results of the separate analyses can be a difficult
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task, single imputation methods can be useful to
treat missing network data (also as a first step to
multiple imputations).

Key Points

In this entry, we assume a fixed and known set of
actors and a single, binary relation between the
actors. The tie variable .X}; indicates whether the
tie from actor i to j is present (X;; = 1) or absent
(X; = 0); Znidarsi¢ et al. 2017 treat missing data
in valued networks. The relation can either be
directed, from i to j, or undirected, in which case
X;; = Xj;. Additional information on the ties and/or
actors may be available in the form of dyadic
covariates or actor-attribute variables. In all three
types of variables (tie variables, dyadic covariates,
and actor attributes) missing values may occur.

We only consider the situation where missing
data is caused by non-response (see Kossinets
2006, or Znidarsi¢ et al. 2012b, for other sources
of sampling errors and missing data in the context
of social networks) and distinguish two types of
non-response: unit non-response, where all scores
of an actor are missing (ties and attributes), and
item non-response, where only particular items
are missing. When only tie variables (i.e., network
data) are concerned, these two types are also
called actor non-response and tie non-response,
respectively (Huisman 2009; Znidarsi¢ et al.
2012a). A special case of item non-response may
occur when all outgoing ties of an actor are missing
(actor non-response), but attribute information is
available, or vice versa. This form of non-response
is sometimes called partial non-response
(de Leeuw et al. 2003). A specific form of partial
non-response is common in longitudinal studies,
wave non-response, which arises when complete
network information for an actor is missing at one
(or more) measurement moments (Huisman and
Steglich 2008; Hipp et al. 2015).

The type of non-response determines the
amount of data that is available for each actor.
With actor non-response, more information is
missing for each actor than with partial or item
non-response. An advantage of social network
data is that information on the network context
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of incompletely observed actors is often available,
at least partially, through observed nominations
by other actors. This information can be used to
analyze (or even “reconstruct”) the network
neighborhood of missing actors, and should not
be omitted from the analyses. This approach sup-
poses that the observed and missing data are not
systematically different and that all necessary
information about the missing data can be found
in the observed data. In the statistical literature,
this situation is known as data that are Missing at
Random (MAR,; e.g., Schafer and Graham 2002).
When data are MAR, the probability of mis-
singness is related to the observed data, and not
to the missing data. If, in addition, the missingness
is not related to the observed data either, the data
are called Missing Completely at Random. If, on
the other hand, the probability of missingness is
related to the missing (and therefore unknown)
values themselves, the data are Missing Not at
Random (MNAR). Huisman (2009) and Smith
et al. (2017) provide more details on missing
data mechanisms for social network data, and
Handcock and Gile (2010) give formal
definitions.

The “modern” missing data methods of Gra-
ham (2009) assume MAR. This means that all
information about the missingness is contained
in the observed data, and given these data the
missing data mechanism is ignorable. In this situ-
ation, the causes of missingness do not have to be
taken into account (Koskinen et al. 2010). Simple
(older) missing data methods only give unbiased
results when data are MCAR, which is only real-
istic when there is no reason to assume that actors
differ in their propensity to fill in network ques-
tionnaires (Huisman and Steglich 2008).

Historical Background

One of the first studies on the effects of non-
response on the structural properties of social
networks is the study by Burt (1987). He calls
missing data “doubly a curse to survey network
analysis” (p. 63), because the complexity of net-
work questionnaires is more likely to generate
missing data, and the dependence structure of
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the network increases the impact of missing ties.
Others followed-up on this study and found,
among others, that missing data have a negative
effect on network mapping (Borgatti and Molina
2003), underestimate the strength of relationships
(Burt 1987), make centrality measures and degree
measures unstable (Costenbader and Valente
2003; Kossinets 2006; Borgatti et al. 2006;
Huisman 2009), underestimate clustering coeffi-
cients (Kossinets 2006; Huisman 2009), and
underestimate reciprocity measures (Huisman
2009).

Bias due to non-response generally increases
with higher missing data rates. The amount and
nature of the bias, however, varies across network
measures, features of the network of interest, and
nature of the missing data mechanism, as was
clearly shown in two large simulation studies by
Smith and Moody (2013) and Smith et al. (2017).
In these studies, the effect of missing nodes on
22 network measures for 12 empirical networks
was investigated, using 12 missing data rates. In
the first study, a MAR mechanism for nodes was
used. The latter study investigated the effects of
four MNAR mechanisms based on centrality.
Overall, large, centralized networks are generally
more robust to missing-at-random data, and for
most network measures, biases are generally
larger when more central nodes are missing
(MNAR), although some (e.g., degree centrality)
are robust to both types of missingness.

Some of the studies show that the extent to
which structural properties of the network are
affected by missing data also depends on how
the available information is used to calculate the
measures. For instance, measures based on
indegrees are reasonably robust to missing data
when the observed incoming ties of non-respon-
dents are included in the analyses (Costenbader
and Valente 2003). The same was found for reci-
procity measures (Huisman 2009). This is the
result of the unique property of social networks
that non-participation (or partial participation)
does not necessarily mean that the missing actors
are not included in the analyses (Borgatti and
Molina 2003), that is, when incoming ties of
respondents to non-respondents are available.
Because of this property, Stork and Richards
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(1992) proposed using the information in partially
described ties of non-respondents to reconstruct
the missing part of the network.

Stork and Richards (1992) explore problems in
analyzing incomplete network data due to non-
response. They propose a treatment for incom-
plete data based on reconstruction of the missing
ties, and make suggestions for designing network
studies that improve response rates and that pro-
vide information to make decisions about analysis
methods. The impact of non-response on network
properties was further explored by Kossinets
(2006). He investigated a broader set of missing
data sources, including boundary specification
problems, non-response, and fixed choice
designs. An even broader set of sources of mea-
surement error in network data is discussed by
Butts (2003), Znidari¢ et al. (2012a), and Wang
et al. (2012).

Imputation of Missing Network Data

Imputation is a general and popular approach to
handle missing data, and various imputation pro-
cedures are thoroughly studied in the statistical
literature. Schafer and Graham (2002) give a gen-
eral overview by distinguishing four classes of
single imputation methods. Before discussing
imputation methods for network data, we first
present these general classes.

Imputing Unconditional Means A simple
(ad hoc) procedure is replacing each missing
value with the mean over the observed cases of
that item. Although the means of items are pre-
served, variances and covariances (relations) are
often severely biased. Rounding the mean values,
in case of binary or categorical data, even adds
more error to the imputed values. Although the
added variability is random, it is better to keep
rounding to a minimum (Graham 2009).

Imputing from Unconditional Distribu-
tions The underestimation of variances by
imputing means can be corrected by using the
observed (empirical) distributions of the items to
impute the missing scores. In one class of
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procedures, called hot-deck procedures, these dis-
tributions are simulated by (randomly) selecting
an observed donor case from the same dataset, and
replacing the missing values with the observed
scores of the donor (e.g., Sande 1982). Although
such procedures preserve univariate distributions
of variables (i.e., means and variances), relations
are still biased.

Imputing Conditional Means Prediction of
mean values can be improved using a formal
model that accurately captures the association
between a missing item and observed items.
Often linear (regression) models are used to pre-
dict the conditional means of the missing items.
These procedures result in more accurate predic-
tions of the missing scores and yield unbiased
estimates of means under MAR, but underesti-
mate variances and generally overestimate
covariances.

Imputing from Conditional Distributions The
biases in variances and covariances found in the
previous procedures are largely reduced by using
conditional distributions to impute the missing
values, conditional on observed variables. The
conditional distribution of the missing values is
simulated using the imputation models of the pre-
vious procedure (imputing conditional means),
conditional on the observed independent variables
in the model. The missing scores are replaced by
draws from this distribution. In the practice of
empirical research, this procedure usually
amounts to imputing regression predictions with
an added error term, randomly drawn from the
normal distribution (of which the standard error
is estimated in the regression analysis; for this
purpose, a ¢ distribution is also often used instead
of the normal distribution). Multiple imputation
procedures fall in this class of imputations
methods (Schafer and Graham 2002; Graham
2009).

Imputation of Missing Ties

Based on the classification of Schafer and Graham
(2002), Huisman (2009) presents an overview of
simple imputation methods to impute missing ties
caused by both actor and tie non-response, which
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were previously applied in empirical network
research. These methods belong to the first two
classes of imputation methods, some of which are
also investigated by others (Ouzienko and
Obradovic 2011; Znidarsi¢ et al. 2012a). In this
section, simple imputation procedures for missing
network data will be presented together with more
sophisticated imputation models that are more
recently proposed in the literature.

Imputing Unconditional Means

For binary tie variables, the total mean value
equals the network density. Rounding the density
(using a threshold of 0.5) results in filling in zeros
in sparse networks, and ones in dense networks. In
the former case, missing ties are treated as absent.
This is called null tie imputation by Znidarsi¢
et al. (2012a) and is sometimes even used in
dense networks.

Instead of filling in the overall mean value of
the tie variable, the mean of the incoming ties of
an actor (“average popularity”) or the mean of the
outgoing ties of an actor (“average activity”) can
be used. The latter method can obviously not be
used in the case of actor non-response. The former
method results in imputing the modal value of the
incoming ties and is called imputation based on
model indegree values by Znidarsic et al. (2012a).

Reconstruction

Stork and Richards (1992) suggest reconstructing
the missing part of the network by replacing the
missing outgoing ties of non-respondents by
observed incoming ties to these actors. As a result,
that part of the network with ties between respon-
dents and non-respondents becomes
symmetric. Additional imputations are required
for ties between non-respondents. For these,
Huisman and Steglich (2008) and Huisman
(2009) use random imputation proportional to
observed density (i.e., the probability of a tie is
equal to the observed density of the network).
Znidarsi¢ et al. (2012a) propose additional impu-
tations based on modal indegree values.

Note that reconstruction is an imputation pro-
cedure when applied to directed networks. For
undirected networks it is an available-case method
using partially described links (i.e., reported by
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only one of the two actors; Stork and Richards
1992), because no new ties are added. The under-
lying assumption is that the tie between two actors
can be measured by the report of only one of the
actors, and that respondents and non-respondents
do not systematically differ in reporting their rela-
tionship. In directed networks, the two tie vari-
ables X; and X; are allowed to differ
(in asymmetric dyads), and reconstruction is an
imputation method in which missing ties are
replaced with plausible values: the reversed tie
within the dyad.

Imputing from Uncondition or Simple
Distributions: Hot-Deck Imputation

Hot-deck imputation uses completely observed
donor actors to replace all ties of the missing
actor (actor non-response), or the missing ties of
an incomplete actor (tie non-response). Donor
actors can either be randomly selected, or by
using observed attribute values or structural prop-
erties of the network, or both. Huisman (2009)
gives an example of the latter option where actors
are matched on indegree and attribute values.
Instead of finding only one donor actor (the
“best” donor), a set of donors can be selected
from which one is randomly chosen. Note that
reconstruction, as discussed in the previous sec-
tion, can be regarded as hot-deck imputation,
defining the donor actor as the second actor in
the dyad whose incoming tie is not observed.

Imputing from Simple Distributions: Preferential
Attachment

Preferential attachment was proposed by Barabasi
and Albert (1999) as a model for the growth of
networks and was used by Huisman and Steglich
(2008) as an imputation model. The model states
that the probability that a new tie X;; = 1 will
emerge between actors i and j is proportional to
the current number of neighbors (i.e., indegree) of
actor j. This means that the probability that an
actor (observed or missing) will link to another
is dependent on the connectivity of others. Liben-
Nowell and Kleinberg (2007) mention preferen-
tial attachment as a method for link prediction.
Huisman and Steglich (2008) propose a two-step
imputation procedure based on random draws
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from outdegree distributions and random draws
using preferential attachment probabilities to
impute missing data caused by actor non-
response. Huisman (2009) investigates this
method also for tie non-response.

Imputing Conditional Means: Link Prediction

The simple methods presented above all have in
common that they are not model based. Although
some depend on (often strong) network properties
like reciprocity (i.e., reconstruction) or connectiv-
ity (i.e., preferential attachment based on
indegrees), they do not use statistical models to
relate observed and unobserved scores. Imputa-
tion methods that use such models (the condi-
tional methods, in the classification of Schafer
and Graham 2002) are the link-prediction
methods based on stochastic blockmodels pro-
posed by Guimera and Sales-Pardo (2009);
methods based on latent factor models proposed
by Hoff (2009); methods based on ERGMs pro-
posed by Koskinen et al. (2010, 2013) and
Handcock and Gile (2010); and methods based
on Kronecker graph models proposed by Kim and
Leskovec (2011).

Imputing from Conditional Distributions: ERGM
The link-prediction methods mentioned above are
often used to estimate distributions conditional on
the observed data. Missing values are then
replaced by a random draw from these conditional
distributions. The exponential random graph
model (ERGM,; see Lusher et al. 2013) is suitable
model to fit on the observed data and impute the
missing values using the simulated ERGM distri-
bution that results from the estimation process
(Wang et al. 2016; Hipp et al. 2015; Koskinen
etal. 2010, 2013). The general assumption under-
lying the procedure is that the observed structure
of the network can be used to recreate the missing
information.

For longitudinal network data, Snijders (2005)
proposed a model-based procedure incorporated
in stochastic actor-driven models for network evo-
lution. In this procedure, missing data at the first
observation moment are replaced by zeros (null
tie imputation). In further observations, missing
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entries are replaced by either earlier observations
(last value carried forward), or zeros if there is no
earlier observation. This procedure is described
and investigated by Huisman and Steglich
(2008), who call it a hybrid imputation method
as it only uses the imputed values to simulate the
evolution of the network and not for the calcula-
tion of the target statistics, preventing a direct
effect of the imputed values on the estimation of
the model. Moreover, the imputations do not auto-
matically result in a completed dataset. Hipp et al.
(2015) investigate an adapted version of this
method in combination with stochastic ERGM-
imputation of the first observation moment.

Multiple Imputation
When the conditional distribution of the missing
values is available, draws from this distribution
can be used to replace the missing values more
than once in a multiple imputation procedure.
Currently, there are two proposed multiple impu-
tation procedures based on ERGMs. Wang et al.
(2016) propose the procedure described above,
fitting an ERGM on the observed part of the
network and simulating networks keeping the
observed ties fixed, thus only simulating the miss-
ing ties (the same procedure was proposed by
Hipp et al. 2015 in a longitudinal setting). How-
ever, this procedure is not a proper multiple impu-
tation procedure in terms of Rubin (1987), for it
does not take the uncertainty about the estimated
model parameters into account. While in improper
multiple imputation each imputed dataset is gen-
erated with the same parameters, proper imputa-
tions use different parameters as if they were
estimated from different samples drawn from the
same population. Koskinen et al. (2010, 2013)
provide such a proper multiple imputation proce-
dure based on Bayesian methods in which param-
eters are drawn from their posterior distributions.
Although their work mainly focuses on Bayesian
estimation of ERGMs under missing data (i.e.,
model-based missing data procedures), it also pro-
vides proper multiply imputed datasets.

Both methods have shown reasonably good
performances in imputing ties (i.e., both presence
and absence of ties). Koskinen et al. (2010)
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provide evidence on the ability to reconstruct
descriptive network statistics using proper multi-
ple imputation. A yet unaddressed problem is the
selection of the imputation model. For now, it
remains unclear under which circumstances
which parameters (i.e., predictors) should be
included in the imputation model. For non-net-
work data, the general recommendation is to
include at least all predictors that are used in the
analysis model (Graham 2009). It was shown that
for MAR-data, analyses give unbiased results and
adding predictors in the imputation model will
make the missing data mechanism closer to
MAR (van Buuren 2012). It is yet unknown
whether the same will hold for parameters of
network models.

Imputation of Missing Actor Attributes
Missing actor attributes could be regarded as
“ordinary” missing data in any non-network data
set, and treated separately from the network data.
As discussed previously, ample imputation
methods are available and are well known and
discussed in statistical literature. For example, a
number of completed attribute sets can be created
with multiple imputation and used in subsequent
network analyses, after which the results are
pooled. Ouzienko and Obradovic (2011) present
some simple imputation methods (e.g., mean
imputation), to impute the missing attributes with-
out taking into account the tie variables.

Actor attributes, however, are known to be
(often strongly) related to structural properties of
the network. Imputation of missing attribute data
should therefore be considered within a general
framework of imputations together with missing
tie variables. As Graham puts it “all variables in
the analyses model must be included in the impu-
tation model” (p. 559). Omitting variables from
the imputation model amount to assuming that
there is no association between the omitted vari-
ables and the included variables. This may lead to
underestimation of relations, that is, the structural
properties of the network. Koskinen et al. (2013)
illustrate the added difficulty of missing attributes
in a model-based (i.e., ERGM) framework, but
practical solutions for the combined imputation
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of missing attribute and network data are not yet
available.

In a longitudinal setting, the method proposed
by Snijders (2005) for stochastic actor-driven
models is also applied to dependent behavior vari-
ables and explanatory attribute variables. The for-
mer are imputed using previous or future
observations, or zeros if these are not available,
the latter are imputed using means. However,
imputations are only used in the simulation
phase of the algorithm and have therefore no
direct impact on parameter estimates.

Key Applications

Huisman (2009) investigated simple imputation
methods (all simple methods mentioned in the
previous section) for cross-sectional network
data suffering from actor non-response and tie
non-response. He examined the effects of the
methods on some structural properties of social
networks (e.g., reciprocity, clustering,
assortativity). A similarly designed study was
performed by Znidarsi¢ et al. (2012b), who inves-
tigated the effect of simple imputations on
blockmodeling (Znidarsi¢ et al. 2017 extend the
simple methods to valued networks). Both studies
arrive at the general same conclusion that the
majority of simple imputation procedures can
severely bias estimates of network properties. In
such cases, a complete-case analysis is to be pre-
ferred, except in networks with high reciprocity
and low proportions of missingness, where the
reconstruction method performs best.

Wang et al. (2016) investigated ERGM-based
multiple imputation of friendship network
datasets from 14 schools in the In-School Survey
of Add Health to handle both actor and tie non-
response. They also developed a procedure to
validate imputation methods (Held-Out Predictive
Evaluation) and concluded that the ERGM-based
imputations are doing a better job of imputing data
than simple methods do.

Huisman and Steglich (2008) investigated the
effect of imputation of missing ties in longitudinal
network data suffering from wave non-response.
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They compared two simple methods (reconstruc-
tion and imputation based on preferential attach-
ment) and the model-based procedure of Snijders
(2005), and studied the effects on parameter esti-
mates for actor-driven models for network evolu-
tion. They found that the latter, model-based
method generally had smaller biases than the sim-
ple imputations. This is as expected, given that the
simple imputation methods do not take into
account the longitudinal aspect of the data,
whereas the model-based method is designed to
do so.

Hipp et al. (2015) also studied several missing
data strategies in longitudinal network data using
the Add Health data. They recommend using the
procedure proposed bij Snijders (2005) with
added ERGM-based imputations of the first
wave of network observations and stress the
point that researchers should carefully consider
missing data handling when estimating statistical
models for social networks.

Future Directions

It was found that simple imputation methods are
unable to capture the structural properties of net-
works, because relationships are not incorporated
in the imputation models and therefore poorly
estimated. The ERGM-based imputations seem
promising and the results of the first simulation
studies show good performances. We want to
build on these results and further investigate the
performance of ERGM-based imputation, espe-
cially multiple imputation procedures. Repeated
imputations are needed in “modern” missing data
methods to give correct estimates of uncertainty
levels needed for inferences. For both cross-sec-
tional and longitudinal network data, different
aspects of multiple imputation (e.g., model selec-
tion, non-ignorable non-response) need to be
explored in Monte Carlo simulation studies.

In this entry, actor attributes played a minor
role, both as predictors in imputation models, and
as (missing) response variables to be predicted by
the imputation models. We would like to explore
the possibilities to use attributes in imputation
models and methods for the combined imputation

Imputation of Missing Network Data

of attributes and network data. As stated above,
practical solutions with respect to imputation of
actor attributes are topics of ongoing research.
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Glossary

Collaborative A system that relies on the

System collaboration of its users when
providing a service

Contribution  Any user activity that is or might

be of benefit to other users or the
system itself
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Extrinsic Interest that is based on an

Interest outside stimulation (such as a
reward)

Free Rider A participant who enjoys the
contribution of others but fails to
contribute or contributes
significantly less than others

Intrinsic Interest that is based on inner

Interest satisfaction

Definition

Collaborative systems rely on the cooperation of
their users to provide a service. We can distinguish
between various types of collaborative systems,
such as Q&A services, social networking ser-
vices, sharing platforms, and crowdsourcing plat-
forms. Despite the fact that each one of these
services and platforms has its own unique charac-
teristics, they all rely on the cooperation of their
participants and community members in order to
operate successfully.

The study of incentives and cooperation is
multidisciplinary and is approached through
diverse and sometimes contradictory points of
view. Social science, economy (game theory),
and biology are merely a part of the different
approaches which attempt to explain cooperation
in platforms that require it.

Game theory approaches assume that users are
rational and act in order to maximize their benefit
(Kreps 1990). These approaches model systems
using well-defined game settings and provide
mathematically proven strategies for maximizing
self and/or overall benefit. However, it was shown
that human decision-making is biased when oper-
ating under risk and uncertainty (Kahneman and
Tversky 1979). This bias is not captured by game
theoretic approaches.

Moreover, different users have diverse reac-
tions to various types of incentives. For example,
pro-self-oriented users will respond best to
extrinsic incentives that ensure benefit from
using the system. Pro-social-oriented users will
better cooperate in communities with social ties
and trust.

Incentives in Collaborative Applications

It is important to understand the population at
hand and the system objectives in order to design
the most appropriate incentive mechanisms for
each collaborative system.

Introduction

Collaborative systems rely on the cooperation of
their users to provide service in the form of knowl-
edge or information, products, paid or unpaid
tasks, etc. Some well-known examples of collab-
orative systems, protocols, or applications include
informative websites, such as Wikipedia or
Yahoo! Answers; crowdsourcing platforms, such
as Amazon Mechanical Turk; peer-to-peer file
sharing protocols, such as BitTorrent; social net-
working services and microblogging, such as
Facebook and Twitter; and media sharing plat-
forms, such as YouTube or Flickr.

Many systems explicitly require contribution
and cooperation from their users. For example,
one must enable uploading in order to download
files in most peer-to-peer file sharing systems.
However, contribution to a system is often time
and effort consuming. For example, filling ques-
tioners in a collaborative recommendation system
or reviewing an article in Wikipedia often require a
significant time contribution. The non-negligible
effort that users contribute in many collaborative
systems leads toward an inevitable question: what
drives users to cooperate in collaborative systems,
and, in fact, why do users cooperate at all?

There are various reasons for users to cooper-
ate. In some cases, cooperation might be benefi-
cial for a user in the future. For example, a user is
willing to cooperate with others now in the hopes
that others will cooperate with her later on. Even
though cooperating now may not be beneficial to
this user, the expected benefit she is to receive
makes it in her best interest to cooperate. For
example, a user sharing a file fragment in a peer-
to-peer system will rely on the fact that other users
share their files with whoever shares with them.

This consideration of benefit (also referred to
as utility) is the foundation of incentive mecha-
nisms that assume that users behave rationally,
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i.e., are motivated by maximizing their utility.
Game theory approaches analyze such incentive
mechanisms by modeling the systems with well-
defined game settings. These approaches will be
briefly reviewed in the section “Game Theory.”

Despite proliferation of game theory in the
academic community, human participants rarely
act rationally. A Nobel Prize winning paper (Kah-
neman and Tversky 1979) exemplified decision-
making behavior under risk and uncertainty which
is significantly different from the optimal deci-
sions when only the expected utility is considered.
This entry and other works in the domain of social
sciences and human behavior will be reviewed in
section “Social Studies.”

Once both disciplines are presented, we will
compare the different types of incentives that each
approach suggests and continue on to describe the
incentive mechanisms relevant to collaborative
on-demand applications.

Lastly, we discuss free riders — a population of
users that use the contribution of others but fail to
contribute for themselves.

Classifying Collaborative Systems

Collaborative systems utilize the knowledge, the
time, and the effort of their participants to create
value and share that value among their users. Such
systems were thoroughly studied and classified
according to nine major dimensions (Doan et al.
2011). We will refer to the three dimensions that
are most relevant for designing incentives mech-
anisms: users’ contribution, distribution of effort,
and roles.

Users’ Contribution

The first dimension refers to a users’ contribution
to the system. Contribution can be manifested in
different ways according to the nature of the dif-
ferent collaborative applications. In Wikipedia, a
contributing user is one who creates and edits the
Wikipedia pages. On Facebook, a contributing
user is one who shares their own information,
such as photographs, videos, and text (referred to
as status).
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To put things in order, Doan et al. defined five
ways to contribute:
Evaluation  Contributing users provide their
perspective on a topic by
reviewing, ranking, or tagging. An
example of evaluation would be a
user’s feedback to a recommender
system
Contributing users provide content
rather than perspective by sharing
media items or knowledge, either
on demand by their own initiative.
An example can be found on Q&A
web pages like Yahoo! Answers as
well as in sharing platforms like
YouTube and Flicker
Refers to users’ social activities
and interactions. Examples can be
found in user’s activities on
Facebook, LinkedIn, and other
social networks in the form of
messages, status posts,
pictures, etc
Contributing users collaborate to
build a product. This contribution
could refer to a textual knowledge
base, such as Wikipedia, or
collaborative software
developments like Linux and
Apache
The contributor performs a task or
a set of tasks defined by other users
or by the system’s owners.
Amazon Mechanical Turk
exemplifies this contribution
method, where some users define
tasks and others perform them for
monetary or alternative
compensation

Sharing

Networking

Building
artifacts

Task
execution

Timing and Relevance of Contribution

From the point of view of incentive mechanisms,
collaborative systems are particularly interesting
where contribution is provided upon request from
other system users. In Q&A websites, like Yahoo!
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Answers, participants may share textual informa-
tion as a response to previously asked questions.

However, the timing of a response can play a
significant role in the satisfaction of the querying
user. Answers on Q&A websites might be helpful
for a long period of time. Take, for example, a
query about a vacation planned for 1 year ahead.
Replies to this query will stay relevant until time
of the vacation. In other cases, however, sharing
might be limited in its relevance. In the example
of peer-to-peer file sharing, if a peer wishes to
download a file segment, she needs other peers
who are currently available to upload it. While
uploading the file when the requiring peer is dis-
connected might be relevant to other peers, it is no
longer relevant to the peer who requested it in the
first place.

Distribution of Effort

Effort in collaborative systems can be distributed
among users and among system owners (Doan
et al. 2011). A recommender system requires
some participation from its users (a rank, an opin-
ion), while most of the effort is imposed on the
system itself (combining the ranks and providing
recommendations). On the other hand, most of the
effort in writing, reviewing, and merging the
Wikipedia pages is invested by its users.

In systems where the effort is mainly distrib-
uted among the users, cooperation is critical to the
proliferation of the system. Imagine, for instance,
a Wikipedia with no authors or a Yahoo! Answers
website with no responders. In fact, without this
cooperation, such systems could not exist.

User Roles
Doan et al. (2011) describe four different roles
users may have in collaborative systems:

Slaves Refers to users who solve together
a common problem by dividing
effort among them.

Perspective  Refers to users who provide their

providers own thoughts and perspective on
various topics, such as book
reviews.

Content Refers to users who share self-

providers generated content, for example,

Incentives in Collaborative Applications

photos on Flicker or movies on
YouTube.

Refers to users who serve as parts
of a bigger system (participants in
a social network).

Component
providers

A single user can play multiple roles in one
collaborative system. The different roles depend
on the systems’ design, architecture, and pur-
pose. Evaluating users will generally play the
role of perspective providers, sharing users are
commonly content providers, and users who
contribute by networking will commonly play
the role of component providers. However, users
who participate in systems that build an artifact
may be of differing roles according to the col-
laborative system’s structure. All Wikipedia
writers, for example, are content providers, but
reviewers play the role of perspective providers
as well.

Why Do People Cooperate?

Psychology of Cooperation

The motives of cooperation begin in a reward
system present in our brain. This reward system
can be modulated by a cognitive system of extrin-
sic rewards and by a social cognition system based
on trust (Declerck et al. 2011; Walter et al. 2005).
The reward system foresees an expected payoff
and guides behavior accordingly. The cognition
system interprets the mental state of other people
and is sensitive to trust signals in order to avoid
betrayal. Together these two systems collaborate
in the effort of decision-making and, particularly,
in cooperation.

Furthermore, the oxytocin hormone, a trust-
associated hormone present in the brain, was
found to increase cooperation in games that
include social information and decrease coopera-
tion in games where social information was
lacking (Declerck et al. 2010). This gives us a
clue to interpret different cooperation behaviors
in different settings. While one game setting may
encourage intrinsic cooperation, another may
cause the opposite effect.
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Social Studies

We already mentioned the irrationality of human
behavior. A rational decision would take into
account the expected utility of each action a per-
son performs and select the action that guarantees
the highest payoft to the person. However, peo-
ple’s behavior was not in accordance to the
expected utility strategy when presented with
decisions that they were to take under risk and
uncertainty (Kahneman and Tversky 1979). Take,
for example, a decision to choose between a lot-
tery where there is a 50% to win $1000 prize or an
assured amount of $450. According to expected
utility, one should choose the lottery with the
highest expected utility of $500 and not the
assured prize of $450; however, people decided
to choose the assured prize over an expected one.
We can therefore conclude that expected utility is
not the only factor that influences human deci-
sion-making.

In order to better understand the factors which
influence decision-making and, in particular, the
decision to cooperate, we shall review studies
investigating pro-social behavior and the incen-
tives affecting it. Benabou and Tirole (2006)
reviewed the set of motives that shape people’s
social conduct. They found three motivations that
affect social decisions: intrinsic (out of inner inter-
est), extrinsic (dependent on an outside interest
such as a reward), and reputational.

These results further explain the expected out-
comes of the following incentive mechanisms in a
social environment:

Reward and punishment
— Presence of extrinsic rewards crowd out
voluntary cooperation. Authors point out
that the reason is due to the spoil of reputa-
tion, where a good deed is no longer per-
ceived as something a person performed out
of good will but out of extrinsic interest to
earn the reward. This was supported in Fehr
and Falk (2002), where monetary incentives
were shown to reduce the performance of
agents and their compliance with rules.
Publicity, praise, and shame
— Generally encourages pro-social behavior.
In some cases, good actions are suspected
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of reputation considerations, thus making
people refrain public praising and other
“image” rewards.
Social and personal norms
— People act according to social norms in
their surroundings. A human’s desire is to
avoid being driven out of the rest of the
community. As such, a community
supporting contributions with high intrinsic
altruism will cause individuals to contribute
and cooperate.
Welfare and competition
— Authors warn of a holier-than-thou compe-
tition between contributing agents. Such
competition can motivate agents to commit
high visibility contributions that will even-
tually reduce social welfare (e.g., hosting an
expansive fund raiser instead of a modest
one).

Further research strengthens the social effect of
society and norms (Fischbacher and Gachter
2010). Researchers conducted an experiment on
sharing in the public environment. Results indicate
that participants’ belief about the contribution of
others directly influences their own contribution.

In the aspect of reward and punishment, we
witness the manifestation of a well-documented
side effect called the over-justification effect. This
effect was presented by Deci in 1975 and
contained two hypotheses.

Deci’s First Hypothesis (Over-Justification Effect)

When one is offered a reward based on the exe-
cution of an activity, there will be a decrease in the
intrinsic interest one had in the activity. Further-
more, a previous intrinsic interest that might have
been associated with the activity will transform
into an extrinsic interest. In other words, the rea-
son to perform a task will transform into reward
compensation rather than interest and enjoyment.

Deci’s Second Hypothesis

When one is offered a reward based on compe-
tence to fulfill an activity, the intrinsic interest for
the activity is increased. This is explained by the
increase in the perception of self, having a greater
competence.
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Deci’s hypotheses were put to the test in a set of
experiments (Enzle and Ross 1978), and the
results indicate that subjects who received high
rewards based on execution showed less intrinsic
interest than subjects who received the same
reward unexpectedly. Furthermore, subjects who
received rewards based on competence showed a
high intrinsic interest. Enzle and Ross (1978) con-
clude that a high value reward should make sub-
jects feel more competent in an activity in order to
increase their intrinsic interest.

Game Theory
Not all proposed solutions for cooperation believe
human players are irrational. Peer-to-peer proto-
col clients, for example, often implement a shar-
ing strategy that benefits their human user.
Cooperation in collaborative systems is often
compared to different game theory settings, parts
of which are reviewed in this section. Comparing
the cooperation to well-defined games allows for
analyzing and defining strategies, according to
Nash equilibrium, minimax, Pareto optimality,
and other game theory measures of beneficial
strategies. In addition, analyzing these strategies
enables the definition of incentives which agents
need to provide in order to increase overall coop-
eration (Akc¢ay and Roughgarden 2011).

Noncooperative Game

A noncooperative game is a game where the par-
ticipants make decisions independently, without
collaboration or communication with other partic-
ipants (Nash 1951); thus, any cooperation is dic-
tated by the player’s own will and benefit.

Normal Form Games

In a finite game where players have knowledge of
the payoffs and strategies of other players and all
players share this information, a game is often
represented as a payoff matrix. The matrix states
the expected payoff of each player when
performing a particular action.

An example of a payoff matrix of two players
is illustrated in Table 1. Both row players and
column players are playing simultaneously by
moving to the right (R) or to the left (L). The
payoff a player receives depends on the action of
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Table 1 Normal form game example
R L
R 1,1 0,0
L 0,0 1,1

the opponent. If both players choose the same
side, both receive a payoff of 1. On the other
hand, choosing two different directions will result
in a payoff of 0 to both players.

Prisoner’s Dilemma

Prisoner’s dilemma is a game that is often used to
model cooperation in collaborative applications.
We will briefly describe the game and its
variations.

Prisoner’s dilemma received its name from a
story about two prisoners being caught by the
police. Unfortunately for the police, they did not
have enough evidence to charge the criminals for
their crimes so they decided to interrogate the
prisoners in two separate rooms in the hope that
at least one of them would supply evidence
against the other. The terms presented to both
prisoners were as follows:

* If one criminal is to supply evidence on the
other (defect), while the other remains silent
(cooperates), the silent criminal is to receive
10 years in prison while the first one goes free.

 Ifboth criminals supply evidence on each other
(defect), both will split the penalty of 10 years,
i.e., each criminal will spend 5 years in prison.

* Ifboth criminals decide to remain silent (coop-
erate), the police will charge both of them with
minor crimes, causing each criminal to spend a
year in prison.

Table 2 (left) represents the normal form of the
prisoner’s dilemma game. The payoff values of
every action (cooperate or defect) in the matrix
can vary as long as the following equation holds:
b < d < a < c. An example to a payoff matrix in the
prisoner’s dilemma is presented in Table 2 (right).

Iterated Prisoner’s Dilemma
The iterated prisoner’s dilemma is a game of pris-
oners dilemma played repeatedly with the same
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Table 2 Prisoner’s dilemma payoff
Normal form Payoff
representation example

C D C D
C aa |bc |C 33 10,5
D ¢cb |dd |D 50 1,1

opponent. We noticed that in a repeated game, one
remembers the actions of the other player and is
able to “punish” defecting behavior. For example,
a punishing strategy may be to defect three itera-
tions in a row after the opponent player
defected once.

Random Matching Game

The random matching game version of prisoners’
dilemma is an iterated game where opponents are
randomly matched in every iteration. We noticed
that “punishing” is no longer applicable as it was
in the iterated prisoners dilemma because oppo-
nents alter through every iteration.

The Effects of Incentives

Different types of incentives may have diverse
and even opposite effects on different types of
participants. It is therefore important to under-
stand the crowd we are trying to motivate and to
apply the right incentives in order to encourage
cooperation.

Volunteer Work
Studies have evaluated the motivation behind vol-
untary work. Volunteering is important to collab-
orative applications that do not grant extrinsic
rewards upon cooperation. In fact, rewards in
volunteering environments were found to
decrease volunteering work due to the over-justi-
fication effect. Monetary rewards were shown to
decrease intrinsic motivation of volunteers (Frey
and Goette 1999) and sometimes even to harm
their image and reputation (Carpenter and Myers
2010).

In fact, when examining volunteer work, the
presence of peers and social norms appeared to
have a great impact. When volunteering in a social

1059

environment, the absence of excuses to stop vol-
untary work did not only keep volunteers in their
environment but also did not change their effi-
ciency at the voluntary job (Linardi and
McConnell 2011).

Nevertheless, even monetary rewards may
result in different effects depending on the way
they are presented. According to a study by
Lacetera and Macis (2010), the majority of
blood donors reported to have stopped the dona-
tion if given a cash reward for it; however, same
donors were not reluctant to receive a voucher
worth the exact same amount.

Social Ties

Social ties were vastly researched in working
environments. Implicit incentives, such as social
relations, were shown to increase voluntary coop-
eration at work (Géchter et al. 2010). Good social
ties in the working environment were shown to
increase altruism between peers (Dur and Sol
2010) and increase efficiency to the point that
managers were recommended to encourage social
ties and friendship among workers in order to
increase overall performance (Bandiera et al.
2010). Monetary incentives, in contrast, were
shown to crowd out voluntary cooperation (Fehr
and Géchter 2000).

Comparing economic incentives to social
norms reveals that social norms are derived from
the aspiration to be socially efficient. On one
hand, when workers were presented with individ-
ual incentives, the effect of social norms
decreased to the point of irrelevance. The same
effect was caused by peer competition. On the
other hand, group incentives were shown to
increase worker’s efficiency (Huck et al. 2010).

Strong social ties were shown to benefit stock
market exchanges as well. Brokers with strong social
ties were able to disseminate and absorb more
knowledge. Furthermore, social returns on invest-
ments tend to affect broker’s position more than
private benefits (Fritsch and Kauffeld-Monz 2010).

Extrinsic and Intrinsic Rewards

Not all extrinsic rewards crowd out cooperation.
A point system technique in collaborative recom-
mender systems was shown to increase
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cooperation among system users (Melamed et al.
2007). Studies examining opportunism (i.e., the
willingness to be persuaded to cooperate by incen-
tives) found punishments to be efficient as long as
one cannot get away with defection (Hilbe and
Sigmund 2010).

An experiment on the crowdsourcing platform
Amazon Mechanical Turk shows some interesting
insights on the perception of workers on monetary
rewards (Mason and Watts 2010). Crowdsourcing
workers who were paid more money for a job
increased the quantity of the work, but not the
quality. This occurred due to a perception of
workers that their work is more valuable, thus
reducing the effort put into it.

In general, people with a pro-self-value orien-
tation tend to respond better to extrinsic incen-
tives, while people with a pro-social value
orientation tend to respond better to trust and
social ties (Boone et al. 2010). In order to fit the
right incentives scheme to the right collaborative
application, one must study the user population
and apply incentives that crowd in cooperation
and crowd out free riding.

Free Riders

It is not surprising that some users would rather
enjoy the contributions of others while not con-
tributing themselves. These users are typically
called free riders.

Free riders can be found throughout all popular
collaborative systems today. In Q&A engines,
free riders are easily recognized as users who ask
questions but do not answer the questions of
others. Peer-to-peer file sharing protocols distin-
guish between users who upload file segments
(in addition to downloading) and users who
mainly download.

The prevalence of free riders has different
effects on different collaborative systems. On
one hand, most peer-to-peer file sharing protocols
discourage free riding by using extrinsic rewards
and punishments. On the other hand, a vast major-
ity of Wikipedia users are free riders! The number
of contributors is very small compared to the
number of users who take a look at the Wikipedia
pages once in a while.

Incentives in Collaborative Applications

In general, a lack of collaboration introduces
significant difficulties to the system, as the num-
ber of users who are able to contribute becomes
smaller. For example, if a user is asked a question
on a very specific topic, the number of participants
who are able to respond is limited. In a system
with a big number of free riders, the chances of the
question being answered are small. However, a
general question, oriented to a large number of
potential responders, has a higher chance of
receiving a reply. Therefore, every system will
usually apply different measures to deal with
free riders, respective to the damage inflicted by
their existence.

Reducing Free Riding

The benefits of free riding are easy to compre-
hend. However, one must address the moral issues
involved in enjoying one’s contribution while
refusing to contribute to others. A study examin-
ing moral judgment of free riders found that one’s
free riding behavior depends on the free riding of
others (Cubitt et al. 2011).

Society-based solutions that deal with free
riders contain coordinated punishments (Boyd
et al. 2010) in environments where the cost of an
individual punishment exceeds the individual
gain of cooperation. Punishments jointly coordi-
nated by contributing peers were shown to reduce
free riding when the punishments are rare.

To implement a coordinated punishment, par-
ticipants must distinguish the cooperating users
from the defecting ones. In order to maintain
public knowledge on peer contributions, several
suggestions were made in order to design a public
reputation system where noncooperative users are
punished by other peers until they start
cooperating and increase their reputation (Blanc
et al. 2005; Tseng and Chen 2011). In other cases,
a priority system which benefits cooperating users
increased the motivation to cooperate and
decreased the motivation to free ride (Carlsson
and Eager 2008).

Unfortunately, social punishment is not appli-
cable in systems where pseudonyms are changed
easily. An entry fee to acquire a pseudonym
(Friedman and Resnick 2001) could come as a
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solution to free rider users who aim “to get away
with it.” If the cost of changing a pseudonym is
bigger than contributing and maintaining a reputa-
tion, it is no longer beneficial to ride for free.
Another solution is to treat all new users as one
(Feldman et al. 2004). If new users are treated
according to the actions of new users before them,
then they must gain their own reputation and con-
tribution history in order to enjoy the contribution of
others. Changing pseudonyms is now worthwhile
only if the number of new free riders is significantly
small (i.e., most of new users cooperate).

Summary

Collaborative systems are diverse in their archi-
tecture, purpose, and user population. In order to
provide the best incentives and encourage the
cooperation of users, one must understand the
population at hand and its motivations.

In this entry we covered several disciplines that
investigate incentives in collaborative systems.
Collaboration theory and experiments compare
different approaches toward incentives and define
the types of incentives to use within different
environments to motivate different types of
users. In general, pro-self-oriented participants
respond best to extrinsic incentives that ensure
benefits from using the system, and pro-social-
oriented participants will better cooperate in com-
munities with social ties and trust.

When dealing with free riders, the collabora-
tive system must understand the damage inflicted
by a lack of cooperation and whether this damage is
critical to its survival. Minor damages will not jus-
tify extreme measures and sometimes might even
reduce contribution (imagine Wikipedia enforcing
its users to write a page before reading one).
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ICA Independent component analysis
BSS Blind source separation
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cdf Cumulative distribution function
EEG Signal Electroencephalogram signal
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Independent Component Analysis
Definition

Independent  component  analysis  (ICA)
(Hyvarinen et al. 2001; Stone 2004) extracts sta-
tistically independent variables from a set of mea-
sured variables, where each measured variable is
affected by a number of underlying physical
causes. Extracting such variables is desirable
because independent variables are usually gener-
ated by different physical processes. Thus, by
extracting independent variables, ICA can effec-
tively extract the underlying physical causes for a
given set of measured variables.

Introduction

Most measured quantities are actually mixtures of
other quantities. Typical examples are: (a) sound
signals in a room with several speakers; (b) an
electroencephalogram (EEG) signal, which con-
tains contributions from many different brain
regions; and (c) a person’s height, which is deter-
mined by contributions from many different
genetic and environmental factors.

It is often the case that measured quantities,
whether these involve height, EEG signals, or
even IQ, consist of components of different
nature. Under certain conditions, the signals
underlying measured quantities can be recovered
by using of independent component analysis

Source 1

&

Source 2

Mixture 2

: : Mixture 1\
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(ICA). ICA is one of the blind source separation
(BSS) methods. The success of ICA depends on
one key assumption that independent variables or
signals are generated by different underlying
physical processes. If two signals are indepen-
dent, then the value of one signal cannot be used
to predict anything about the corresponding value
of the other signal. As it is not usually possible to
measure the output of a single physical process, it
follows that most measured signals must be mix-
tures of independent signals. Given such a set of
measured signals (i.e., mixtures), ICA works by
finding a transformation of those mixtures, which
produces independent signal components, on the
assumption that each of these independent com-
ponent signals is associated with a different phys-
ical process. The measured signals are known as
signal mixtures, and the required independent sig-
nals are known as source signals.

ICA Description

Cocktail Party Example (Applying ICA to
Speech Data)

Suppose we have two speakers in a room with two
microphones, as depicted in Fig. 1. Voice signals
are considered to be independent from each other,
because they are generated by two unrelated phys-
ical processes (i.e., by two different people). If we
know that the voices are unrelated, then one key

————> Source 1
ICA

———> Source 2

Independent Component Analysis, Fig. 1 Simple example of ICA: a room with two speakers (source 1 and 2) and
two microphones (mixture 1 and 2); the aim is to divide mixture signal in two independent source signals
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strategy is to feed microphone outputs to the algo-
rithm which can separate mixtures of sound sig-
nals and extract independent signals from these
mixtures. The property of being independent is of
fundamental importance.

While it is true that two voice signals are
unrelated, this informal notion can be captured
in terms of statistical independence, which is
often truncated to independence. If two or more
signals are statistically independent of each
other, then the value of one signal provides no
information regarding the value of the other
signals.

The different distance of each source (i.e., per-
son) from a microphone ensures that each source
contributes a different amount to the microphones
output.

ICA Premises

Non-Gaussianity

The central limit theorem ensures that a signal
mixture that is the sum of almost any signals
yields a bell-shaped, normal, or Gaussian histo-
gram. In contrast, the histogram of a typical
source signal has a non-Gaussian structure. If
sources could be interpreted as Gaussian random
variables, then symmetry of histogram source and
mixture signals make it impossible to use ICA
with appropriate result. The assumption of “non-
Gaussianity” of source signals is the necessary
criteria for ICA.

Independence

Whereas source signals are independent, their sig-
nal mixtures are not. This is because each source
signal contributes to every mixture, and the mix-
tures cannot, therefore, be independent. Thus, the
second criteria for ICA algorithm is an assump-
tion about independence of source signals; in
other words, ICA finds source signals which are
maximally independent between each other.

Mathematical Formulation

® is represented as s() =

A speech source signal s
(s(lf),sg), s ,sfj)) , where s,(;)

amplitude of signal) from speaker k at time t

is a signal (e.g.,

Independent Component Analysis

and n is a number of input signals (number of
speakers).

The microphones’ output is a column of linear
combinations (or mixtures) x* that consists of a

weighted sum of the source signals x() = Als(lt)

—I—Azsg) +...+ A,,sﬁﬂ, where Ay, k=1...N,are
columns with unknown mixing coefficients and
N is a number of microphones. For our example
with two people and two microphones (see
Fig. 1), the model can be represented as a system
of linear equations:

(1) (1) ()

X = a8 +ans,
t t t
x? = a21s§) + azzs;)
or using vector notation
K0 = AS([),

where

(1) (0
K0 — <x(11)>’s(t) _ (5(1[)>’A _ (011 6112)
Xy 85 azy an

By definition, x is a set of mixtures, s is a set of
signals, and 4 is a mixing matrix. Generating
mixtures from source signals in this linear manner
ensures that each source signal can be recovered
by a linearly recombining signal mixtures. The
precise nature of this recombination is determined
by an unmixing matrix #* = 4~ such that s =
W*x, if A were known. However, as we are ulti-
mately concerned with finding * when 4 is not
known, we cannot, therefore, use A" to estimate
W*. For arbitrary elements the unmixing matrix is
suboptimal and is denoted W. In this case, the
signals extracted by W are not necessarily source
signals, and are denoted y = Wx. Thus, the prob-
lem solved by ICA, and by all other BSS methods,
consists of estimating elements (unmixing coeffi-
cients) for the unmixing matrix W. Figure 2 shows
the plots for original signals and microphones’;
output in case if original signals are distributed
uniformly. Basically, ICA helps to find linear
transformation which recover graph Fig. 2a from
the graph Fig. 2b.
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Independent Component Analysis, Fig. 2 (a) Uniformly distributed source signals s; and s,; (b) non-uniformly

distributed mixtures x; and x,

Machine Learning Formulation
The data is represented by design matrix
X1

X = , where each column X; represents
XN
signal at time i. In the cocktail party example, each
row x;,j=1... N, of matrix X can be a
sequence of amplitudes for j-th microphone
output. The task is to transform the design matrix
X to maximally independent set of sources S =

S1

using linear transformation W: S = WX.

Sn

In practice, it is extremely difficult to measure
the independence of a set of extracted signals
unless we have some general knowledge about
those signals. In fact, the observations above sug-
gest that we do often have some knowledge of the
source signals. Specifically, we know that they are
non-Gaussian, and that they are independent. This
knowledge can be specified in terms of a formal
model, and we can then extract signals that con-
form to this model. More specifically, we can
search for an unmixing matrix that maximizes
the agreement between the model and the signals
extracted by that unmixing matrix.

ICA Implementation

As noted above, mixtures of source signals are
almost always Gaussian, and it is fairly safe to
assume that non-Gaussian signals must, therefore,
be source signals. The amount of “Gaussianness”

of a signal can be specified in terms of its histo-
gram, which is an approximation to a probability
density function (pdf).

For original source s we denote the probability
density function (pdf) as p; (s). In case if we know
pdf p; (s) for the original sources the density p, (x)
of microphone’s output x is defined as follows:

Pa(x) = py(Wx) - [W].

We illustrate this formula for one source signal
and one microphone. Let us assume that p; (s) =1
{0 <s< 1}, ie.,sisuniformon [0,1]andx =2 s.
In this example, 4 = 2, W = 1. Then p,(x) = p,
(Wx) - W] =p(s) - 1 =1{0<x <2}, ie, x is
uniform on [0, 2].

As we know the source signals are independent,
we need to incorporate this knowledge into our
model. The degree of mutual independence between
signals can be specified in terms of their joint pdf p
(s). Crucially, if signals are mutually independent,
then the joint pdf p(s) of s can be expressed as the
product of the pdfs p (s,),i=1...n.

We can consider the probability of obtaining
the observed mixtures x in the context of such a
model, where this probability is known as the
likelihood of the mixtures. We can then pose the
question: given that the source signals have a joint
pdf p(s), which particular mixing matrix 4 (and,
therefore, which unmixing matrix W = A7) is
most likely to have generated the observed signal
mixtures x? In other words, if the likelihood of
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obtaining the observed mixtures (from some
unknown source signals with joint pdf p(s)) were
to vary with 4, then which particular 4 would
maximize this likelihood? ICA algorithm is
based on the assumption that if the model joint
pdf p(s) and the model parameters 4 are correct,
then a high probability (i.e., likelihood) should be
obtained for the mixtures x that were actually
observed. Conversely, if 4 is far from the correct
parameter values, then a low probability of the
observed mixtures would be expected. We will
assume that all source signals have the same pdf
Ps(s). This may not seem much to go on, but it
turns out to be perfectly adequate for extracting
source signals from signal mixtures.

ICA Algorithm

Our objective is to find an unmixing matrix /¥ that
yields extracted signals y = Wx, which have a
joint pdf as similar as possible to the model joint
pdf p(s) of the unknown source signals s. This
model incorporates the assumptions that source
signals are non-Gaussian and independent.

One way to choose the probability density func-
tion py (s) is to define cumulative distributive func-
tion (cdf) F(;) = P(S < s), where S is a random
variable. According to general probability theory
F(s) = py(s). Possible choices for cdf are sigmoid
function F(s) = -5= or Kurtosis’s leptokurtic
function. We summarize ICA algorithm as follows:

n
Step 1 Assume that p(s) = [[p,(si) as s,
i=1

i=1...n,are independent. Then the probability
density function for outputs x

plx) = [Hps (WiTX)] -l
i1
where W is row i of matrix 7.

Step 2 Choose p; (s;).

Step 3 Given training set {x'V, x@, ..., x™},

where x© is a column vector of mixtures at time
t, we write log-likelihood function on our param-
eters W:

Independent Component Analysis

(W) = Z log <f[ps (W,-Tx(’))> W

Step 4 Apply stochastic gradient ascent W: =
W + oVy (W), where Vi, [(W) is a gradient of
I(W) (vector of partial derivatives with respect to
unknown parameters W).

Step 5 Estimated source signals are calculated as
follows: s = wx®.

ICA, Principal Component Analysis, and Factor
Analysis

ICA is related to conventional methods for ana-
lyzing large data sets such as principal component
analysis (PCA) and factor analysis (FA). Whereas
ICA finds a set of source signals that are mutually
independent, PCA and FA find a set of signals that
are mutually decorrelated (consequently, neither
PCA nor FA could extract speech signals, e.g.,).
The “forward” assumption that signals from dif-
ferent physical processes are uncorrelated still
holds, but the “reverse” assumption that
uncorrelated signals are from different physical
processes does not. This is because lack of corre-
lation is a weaker property than independence. In
summary, independence implies a lack of correla-
tion, but a lack of correlation does not imply
independence.

Key Applications

ICA has been applied to separation of different
speech signals (Bell and Sejnowski 1995), analy-
sis of EEG data (Makeig et al. 1997), functional
magnetic resonance imaging (fMRI) data
(McKeown et al. 1998), image processing (Bell
and Sejnowski 1997), and as a model of biological
image processing Van Hateren and Van der
Schaaf (1998).
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Glossary

Active
learning

Active learning refers to a
learning task which allows an
algorithm to interactively query
the user (or some other
information source) to obtain
the desired outputs at new data
points. For inferring social ties,
it tries to maximally enhance the
inferring model by actively
acquiring the labels of some
unknown relationships
Influence maximization refers to
the problem of finding a small
subset of nodes (seed nodes) in a
social network that could
maximize the spread of
influence

In sociology, social tie is defined
as information-carrying
connections between people. It
generally comes in three
varieties: strong, weak, or
absent

Supervised learning is a
machine learning task, aiming to
learn a function from the labeled
training data. For inferring
social ties, it aims to learn a
function from the labeled
relationships, so as to infer the
type of unknown relationships
Unsupervised learning attempts
to find hidden structure in
unlabeled data. For inferring
social ties, it aims to find
patterns that could distinguish
different types of social
relationships

Influence
maximization

Social tie

Supervised
learning

Unsupervised
learning

Definition

In online social networks, most relationships are
lack-of-meaning labels (e.g., “colleague” and
“intimate friends”), simply because users do not
take the time to label them. Statistics show that
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Inferring Social Ties, Fig. 1 An example of inferring social ties in a mobile communication network. The left figure is
the input of the task, and the right figure is the output of the task of inferring social ties

only 16% of mobile phone users in Europe have
created custom contact groups (Roth et al. 2010;
Grob et al. 2009) and less than 23%; connections
on LinkedIn have been labeled.

The goal of inferring social ties is to automat-
ically recognize the type of social relationships.
Awareness of the types of social relationships can
benefit many applications. For example, if we
could have extracted friendships between users
from the mobile communication network, then
we can leverage the friendships for a “word-of-
mouth” promotion of a new product.

Figure 1 gives an example of relationship min-
ing in mobile calling network. The left figure is
the input of the problem: a mobile social network,
which consists of users, calls and messages
between users, users’ location logs, etc. The
objective is to infer the type of the relationships
in the network. In the right figure, the users who
are family members are connected with red-col-
ored lines, friends are connected with blue-col-
ored dash lines, and colleagues are connected with
green-colored dotted lines. The probability asso-
ciated with each relationship represents our confi-
dence on the detected relationship types.

To formally define the problem of inferring
social ties, let us start with some basic definitions.
A social network can be represented as G = (V, E),
where Visasetof [V|=Nusersand ECV x Vis
a set of |[E| = M relationships between users. The
objective of our work is to learn a model that can

effectively infer the type of social relationships
between two users. More precisely, we first define
the output of our problem, namely, relationship
semantics.

Definition 1 (Relationship semantics) Relation-
ship semantics is a triple (ej;, rj;, pjj), Where e € E
is a social relationship, (r;; € ) is a label associ-
ated with the relationship, ) is the set of all the
labels, and p;; is the probability (confidence)
obtained by an algorithm for inferring
relationship type.

Social relationships might be undirected in
some networks (e.g., friendships discovered
from the mobile communication network) or
directed in other networks (e.g., advisor—advisee
relationships in the publication network). To be
consistent, we define all social relationships as
directed relationships. In addition, relationships
may be static (e.g., the family-member relation-
ship) or dynamic over time (e.g., colleague rela-
tionship). Here, we mainly introduce the problem
using the static case.

To infer relationship semantics, we could con-
sider different factors such as user-specific infor-
mation, link-specific information, and global
constraints. For example, to discover
advisor—advisee relationships from a publication
network, we can consider how many papers were
coauthored by two authors, how many papers in
total an author has published, and when the first
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paper was published by each author. Besides,
there may exist some labeled relationships. For-
mally, we can define the input of our problem, a
partially labeled network.

Definition 2 (Partially labeled network) A par-
tially labeled network is an augmented social net-
work denoted as G = (V, EL, EY, RY, W), where
E" is a set of labeled relationships and EV is a set
of unlabeled relationships with EX U EY = E; R" is
a set of labels corresponding to the relationships in
EY; and W is an attribute matrix associated with
users in V where each row corresponds to a user,
each column an attribute, and an element w;; the
value of the jth attribute of user v;.

Based on the above concepts, we can define the
problem of inferring social ties. Given a partially
labeled network, the goal is to detect the types
(labels) of all unknown relationships in the net-
work. More precisely,

Problem 1 (Inferring social ties) Given a par-
tially labeled network G = (V, EL, EU, RE, W), the
objective is to learn a predictive function

f:G=(V.E*,EY,R", W) =R

Therefore, the problem is how to find a func-
tion f that can leverage both the labeled relation-
ships and the unlabeled relationships to infer the
unknown relationships.

Historical Background

Inferring social ties is an important problem in
social network analysis. One research branch is
to predict and recommend unknown links in
social networks. Liben-Nowell and Kleinberg
(2007) study the problem of inferring new inter-
actions among users given a snapshot of a social
network. They develop several unsupervised
approaches to deal with this problem based on
measures for analyzing the “proximity” of nodes
in a network. The principle is mainly based on
similarity of either content or structure between
users. Backstrom and Leskovec (2011) propose a
supervised random walk algorithm to estimate the
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strength of social links. Leskovec et al. (2010)
employ a logistic regression model to predict pos-
itive and negative links in online social networks,
where the positive links indicate the relationships
such as friendship, while negative links indicate
opposition. However, these works consider only
the existence of social relationships and do not
consider the types of the relationships.

There are also several works on mining the
relationship semantics. Diehl et al. (2007) try to
identify the manager—subordinate relationships by
learning a ranking function. They define a ranking
objective function and cast the relationship iden-
tification as a relationship ranking problem.
Menon and Elkan (2010) propose a log-linear
matrix model for dyadic prediction. They use
matrix factorization to derive latent features and
incorporate the latent features for predicting the
label of user relationships. Wang et al. (2010)
propose a probabilistic model for mining the
advisor—advisee relationships from the publica-
tion network. The proposed model is referred to
as time-constrained probabilistic factor graph
model (TFGM), which supports both supervised
and unsupervised learning. Eagle et al. (2009)
present several patterns discovered in mobile
phone data and try to use these patterns to infer
the friendship network. Tang and Liu (2009)
develop a classification framework for categoriz-
ing the type of social connections in social media.
However, these methods mainly focus on a
specific domain, while our model is general and
can be applied to different domains. Moreover,
these methods also do not explicitly consider
the correlation information between different
relationships.

Recently, Hopcroft et al. (2011) explore the
problem of reciprocal relationship prediction.
They propose a learning framework to formulate
the problem of reciprocal relationship prediction
into a graphical model and evaluate the proposed
method on a Twitter data set. The framework is
demonstrated to be very effective, i.e., it is possi-
ble to accurately infer 90% of reciprocal relation-
ships in a dynamic network. Tang et al. (2012)
further propose a general framework for classify-
ing the type of social relationships by learning
across heterogeneous networks. The idea is to
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use social theories (e.g., social balance theory,
social status theory, structural hole theory, two-
step flow theory, and strong/weak tie) as the
bridge to connect different social networks. Social
theory-based features are defined and incorpo-
rated into a triad-based factor graph model to
infer the type of social relationships in different
networks.

Another related, but different, research topic is
relational learning (Califf and Mooney 1999;
Getoor and Taskar 2007). Relational learning
focuses on the classification problem when
objects or entities are presented in relations and
the goal is to categorize each object by consider-
ing both entities and relations. A number of super-
vised methods for link prediction in relational data
have also been developed (Taskar et al. 2003;
Popescul and Ungar 2003).

Supervised Learning to Infer Social Ties

For inferring the type of social relationships, we
could have several basic intuitions. First, the user-
specific or link-specific attributes will contain
implicit information about the relationships. For
example, two users who make a number of calls in
working hours might be colleagues, while two
users who frequently contact with each other in
the evening are more likely to be family members
or intimate friends. Second, relationships among
different users may have a correlation. For exam-
ple, in the mobile network, if user v; makes a call
to user v; immediately after calling user vy, then
user v; may have a similar relationship (family
member or colleague) with user v; and user vy.
Third, we also need to consider some global con-
straints such as common knowledge or user-spe-
cific constraints.

Based on the intuitions above, Tang et al.
(2011) propose a Partially-Labeled Pairwise Fac-
tor Graph Model (PLP-FGM). It allows us to take
all the factors mentioned above into account to
better infer the social relationships. Typically,
there are two ways to model the social tie inferring
problem. The first way is to model each user as a
node and for each node to estimate the probability
distribution of different relationships. The
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resultant graphical model thus consists of
N variable nodes. Each node contains a
(d x | Y| ) matrix to represent the probability dis-
tributions of different relationships between the
user and her/his neighbors, where d is the number
of neighbors of the node. This model is intuitive,
but it suffers from some limitations. For example,
it is difficult to model the correlations between
two relationships, and its computational complex-
ity is high. An alternative way is to model each
relationship as a node in the graphical model, and
the relationship mining task becomes how to pre-
dict the semantic label for each relationship node
in the model. This model contains M nodes (2 M
when the input social network is undirected). This
model is able to incorporate different correlations
between relationships such as the above
intuitions.

Figure 2 shows the graphical representation of
the PLP-FGM. Each relationship (v;,, v;,) ore;,;, in
the partially labeled network G is mapped to a
relationship node r; in PLP-FGM. We denote the
set of relationship labels as Y = {yi, ¥2,- - -, Ym}-
The relationships in G are partially labeled; thus,
all nodes in PLP-FGM can be divided into two
subsets Y™ and YV, corresponding to the labeled
and unlabeled relationships, respectively. The
relationships in the input are modeled by relation-
ship nodes in PLP-FGM. Corresponding to the
three intuitions, we define the following three
factors.

+ Attribute factor: f(y;, x;) represents the poste-
rior probability of the relationship y; given the
attribute vector x;.

» Correlation factor: g(y;, G(y;)) denotes the cor-
relation between the relationships, where G(y;)
is the set of correlated relationships to y;.

+ Constraint factor: h(y;, H(y;)) reflects the con-
straints between relationships, where H(y;) is
the set of relationships constrained on y;.

Given this, one can define a log-likelihood
objective function incorporating all the factor
functions. By learning the unknown parameters
in the objective function, we obtain the social tie
inferring model, which can be further applied to
infer newly unknown social ties.



Inferring Social Ties

PLP-FGM

Yo=advisor

Input: Social Network

/

\

V3

Vy

Vi f— ) —

1071

9 (V45.Y34)
[ ]

r
r21 @

relationships

Inferring Social Ties, Fig. 2 Graphical representation of the PLP-FGM model

Unsupervised Learning to Infer
Social Ties

In some networks, acquiring labeled relationships
is very expensive, which makes it infeasible to
perform the supervised learning. The unsupervised
learning method tries to get around of this and
directly infers the type of relationships without
labeled relationships. Such a method is usually
task oriented.

Wang et al. (2010) propose a two-stage frame-
work for inferring advisor—advisee relationships
in the coauthor network. The main idea is to
leverage a time-constrained probabilistic factor
graph model to decompose the joint probability
of the unknown advisor of every author. The time-
related information associated to the hidden social
role is captured via factor functions, which form
the basic components of the factor graph model.
By maximizing the joint probability of the factor
graph, one can infer the relationship and compute
a ranking score for each relationship on the can-
didate graph.

More specifically, at the first stage of the frame-
work, commonsense knowledge is defined for

recognizing interesting semantic relationships.
Here the authors try to make a few general
assumptions based on the commonsense knowl-
edge about advisor—advisee relationships.

+ The first assumption is to reflect the following
fact for general consideration of advising rela-
tionship. At each time t during the publication
history of an author x, x is either being advised
or not being advised. Once x starts to advise
another author, it will not be advised again.

* Another assumption indicates that for a given
pair of advisor and advisee, the advisor always
has a longer publication history than the
advisee.

Based on the two assumptions, the framework
processes the task in the following two stages:

Stage 1: Preprocessing — The purpose of pre-
processing is to generate the candidate graph
H’' and reduce the search space while keeping
the real advisor not excluded from the candi-
date pool in most cases. First, one needs to
generate according to the coauthor information
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a homogeneous author network G’ by pro-
cessing the papers in the network one by one.
For each paper p;, we can construct an edge
between every pair of its authors.

Then, a filtering process is performed to
remove unlikely relations of advisor—advisee.
For each edge ¢ on G/, a; and a; have collab-
oration. To decide whether a; is a;’s potential
advisor, the following conditions are checked.
First, the second assumption is checked. Only
if a; started to publish earlier than a;, the possi-
bility is considered. Second, some heuristic
rules are applied, which are based on the prior
intuitive knowledge about advisor—advisee
relations. For more detailed definitions of
those rules, please refer to Wang et al. (2010).

Stage 2: The factor graph model — From the
candidate graph H' we know the potential advi-
sors of each author and the likelihood based on
local information. By modeling the network as
a whole, we can incorporate both structural
information and temporal constraint and better
analyze the relationship among individual
links.

By learning the factor graph model, we can
find a configuration of the latent variables for
each node in the candidate graph H' that
maximize the objective function. For learning
the model, one can consider the sum-product
and the junction tree algorithms (Wang
et al. 2010).

Active Learning to Infer Social Ties

Another problem is how to learn the social tie
inferring function f effectively. In many situa-
tions, labeled data is limited and expensive. The
question is, how to design a strategy to actively
learn the model with minimal labeling cost?
Formally,

Problem 2 (Active social tie inference) Given a
partially labeled network G = (V, EX, EY, R, W)
and a labeling budget b (number of user interac-
tions), our objective is to select a subset of
unknown relationships A C EY within the con-
straint of b to label, so that the performance of
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predictive
improved.

Formally, for actively selecting relationships to
query the user, we define a quality function Q(A),
which measures the expected improvement of the
prediction performance by labeling relationships
in set A. The problem can be then defined as an
optimization problem of Q(A), i.e.,

function f can be maximally

A* = argmax Q(A), |A |=b,b> 0.
AcyY

To quantify Q(A), one could consider how a
selected node can influence the others. For exam-
ple, correction of a centered relationship may
trigger a spread of the correction, thus helping
infer correlated relationships.

The quality function Q(A) can be defined in
different forms. Without any constraints, optimiz-
ing the quality function Q(A) needs to enumerate
all possible subsets A C YV, which is obviously
NP-hard. Let us start with two baseline greedy
algorithms.

Maximum Uncertainty (MU) — A most common
selection strategy for active learning is to select the
most uncertain relationships. The uncertainty of an
unlabeled relationship y; is measured by the
entropy H(y;) = =),y p(y; = y)log p(y; = y).
Based on this intuition, we can define the quality
function as

Omu(A) = H(A) (1)
where H(A) = 3, c 4H ().

Information Density (ID) — A drawback of the
maximum uncertainty strategy is its tendency to
choose outliers. We can consider another strat-
egy, information density, proposed in Settles and
Craven (2008). The idea is to choose the most
representative nodes in YV, which are supposed
to be the most informative ones. Based on this
intuition, we measure the informativeness of a
node by its cosine similarity to all other
unlabeled nodes in the sense of the attributes
attached to a node. Formally, we define the qual-
ity function as
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Op(A) = ZH()’i)

icA
| 2)
X | ——— sim (X;, X;
St
jey”
where sim (xi,xj) = W’M Note that we again

employ the entropy of a relationship node H(y;) to
leverage the “base” informativeness.

All the strategies mentioned above do not con-
sider the network structure information. To deal
with this problem, Zhuang et al. (2012) have
developed two new methods, i.e., Influence-Max-
imization Selection model (IMS) and Belief-Max-
imization Selection model (BMS), for actively
learning to inferring social ties.

Influence-Maximization Selection (IMS) — As
relationships could be correlated, the most influ-
ential nodes are more likely to help improve the
overall performance of the model. Existing work
has studied several influence propagation models,
including the linear threshold model (LTM)
(Kempe et al. 2003). The LTM sets a threshold
value varepsilon; for each node, and weights b; ; for
its connected edges, satisfying > ; ¢ nppb;; < 1.In
each time stamp, if Zj € NB(@) N activated(j)bi, 7 > i
then the node i will be activated. We use the
PLP-FGM model (cf. section “Supervised Learn-
ing to Infer Social Ties”) as the example and
develop a variation of the LTM by incorporating a
score for each node reflecting the strength of the
influence spreading in our model. The propagation
process is described as:

* The graph is the same as the PLP-FGM model.
In addition, a relationship node as “activated”
when its label y; is determined. The initial
activated set of nodes is Y". We can assign a
threshold &; = >y | p(yi=y|G.Y") — ﬁ |
for each node. Thus, a node with higher uncer-
tainty will be easier to be activated.

* When anode i is activated, it spreads its gained
score increment (g; — &) to its neighbor nodes
j € NB(i) with a weight b; j, i.e., gj < gj + b;
(gi — ¢&;). The gained score increment reflects
the improvement of confidence brought by
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user labeling; therefore, the influence by label-
ing an uncertain relationship will be greater
than labeling a more certain relationship. To
simplify the problem, we set weight b;; = 1/|
NB()I-

* If a node is labeled by the user, we set it as
activated and assign its gained score as 1. The
gained score for other nodes is set to 0 at the
beginning. Once an inactivated node k gains a
score that is larger than the threshold, i.e.,
g > ¢, it will become activated and spreads
its gained score similarly. Note that the acti-
vated node only spreads its gained score once
and remains its status.

The quality function Qpvs(A) is defined as the
total number of activated nodes after the propaga-
tion process. Finding the set A that maximizes the
quality function Qpys(A) with the IMS model is
again NP-hard. Finally, one can use a greedy
strategy to approximate the solution.

Belief~-Maximization Selection (BMS) — To
quantify the influence of one node on the others,
we employ the belief of each node obtained by
loopy belief propagation in our model. We define
a heuristic by removing the effect of attributes
from the belief score, denoted by B(y| G, Y5).
More precisely, from a graphical model such as
the abovementioned PLP-FGM model, by nor-
malizing the belief of one relationship node, one
could obtain the belief marginal probability pg(vi
G, "), which estimates the marginal probability
distribution of a relationship node where the infor-
mation of its attribute vector is absent.

A basic intuition is the belief of a relationship
node is monotonically increasing with respect to
the number of relationship nodes of the same type,
i.e., B(v; = y| G, Y*) is monotonically increasing
with respect to the number of relationships with
label y. Without loss of generality, let us first
consider the binary relationship mining problem,
i.e., there are only two possible labels of relation-
ships (¥ ={0,1}). In the binary setting, we
further consider the active selection for each type
separately. This is because when mixing the dif-
ferent types of relationships together, it cannot be
guaranteed to have a closed-form solution. Thus,
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when users provide only positive feedback, our
objective is to find a set of positive nodes. Accord-
ingly, we define the quality function of the posi-
tive-oriented BMS strategy as

Opws+(A) = Y pg(yi=1/G,Y"UA) ()
Vi€ Yéjl)
where Yf]” ={yly €Y AB(y;=1|G,Y") >
B(y; =0|G, Y}
Symmetrically, if the users provide only nega-
tive feedback, we can adopt a negative-oriented
BMS strategy, with the following quality function:

Opms-(A) =7 Z D3 ()’i =0|G,Y* UA) (€]
V€Y Z))

The optimization of both quality functions
Opms+(A) and Qpyps-(A) is NP-hard. However,
as both quality functions are submodular, a solu-
tion with an approximation ratio of (1 — 1/¢) can
be obtained using a greedy algorithm: at each
time, it selects the relationship which is expected
to provide the maximum marginal increase of the
quality function. Notice that we treat the examin-
ing relationship node y; as if it is positive labeled
when optimizing Qpys+(A), or negative labeled
for Opus- (A), since the active learning algorithm
is label unaware in the selection stage. In order to
leverage the risk that a selected relationship is not
labeled as expected, we employ a weighting factor
pilG, Y") to reflect how likely the relationship
would be labeled as positive(negative). Further, to
prevent making an imbalance selection, one can
use Qppms+ (A) to choose b/2 nodes (where b is the
number of relationships we expect to query the
user each time) and then use Q- (A) for the rest.

Five Challenges for Inferring Social Ties

The general problem of inferring social ties rep-
resents an interesting research direction in social
network analysis. There are still many challenges
and also potential future directions on this
topic. Here we list of five major challenges.

Inferring Social Ties

* Big network. As social networks increasingly
becoming larger, it is important to study how to
incrementally learn the inferring model, so that
we can dynamically feed new data to the model
or involve user interactions into the learning
process.

* Globality versus locality. Most existing works
focus on studying social ties in the entire net-
work. However, as most users and their behav-
iors are influenced by friends in their local
circles, it would be interesting to study the
problem from the locality perspective, for
example, inferring personal social circles
(McAuley and Leskovec 2012; Zhang
et al. 2013).

* Social theories. How to seamlessly incorporate
social theories into the inferring model?
Although Hopcroft et al. (2011) and Tang
et al. (2012) propose using social balance,
social status, structural hole theories to define
features for help infer social ties. However, it is
still unclear how the strength of social connec-
tions (strong/weak tie) correlates with the type
of social ties.

* Dynamic evolution. Some social ties are sta-
ble, for example, the family relationships,
while some other social ties will change
over time, for example, colleagues and even
friendships. It is important to capture the
dynamic pattern and infer the changes of
social ties.

* Applications. It has many real applications
based on the results of social tie analysis. For
example, we can use the inferred social ties to
help information recommendation in the social
network. According to the social influence the-
ory, a user’s connections with different social
ties would have very different influence on her/
his behaviors from different aspects.
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Glossary
Active The nodes that adopt the piece of
nodes information propagated
Diffusion  The spread of information, idea, or
product in social networks
Influence  The expected number of active
spread nodes when the process of
information diffusion terminates
Seed The nodes that are the initial
nodes disseminators of an information
Definition

According to the opinion of Aristotle, human
beings are social animals. Specifically, in social
networks, people often make decisions (e.g.,
repost a tweet) under the influence of their friends.
By utilizing such “word-of-mouth” effect, influ-
ence maximization aims to trigger a large cascade
of influence spread in a social network by
targeting on only a small set of individuals. Tech-
nically and more specifically, given a diffusion
model, which specifies the dynamics of influence
spread, each influence maximization model fig-
ures out a way to select a set of nodes such that if
the selected nodes are the initial disseminators of
an information (e.g., adopting a product), the
expected spread of this information in the social
network is maximized.

Introduction

Recent years have witnessed the advance of social
networks. Many social networking sites (e.g.,
Facebook and Twitter) emerge and attract billions
of users. People publish and share different kinds
of information on these sites, which makes them
become important platforms for the spread of
information, idea, or product. A key factor that
leads to this phenomenon is the “word-of-mouth”
effect. In social networks, users often have an
influence on their neighbors. As a result, we can
trigger a large cascade of (product) adoption
spreading in a social network by targeting on
only a small number of individuals (persuade
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them to adopt the product). To explore and exploit
such an effect, influence maximization was pro-
posed by the researchers from the area of com-
puter science. Due to its important application in
viral marketing and other interesting areas, influ-
ence maximization attracts a lot of attentions from
both industry and academia. In the past years,
different kinds of influence diffusion models
were proposed to describe the dynamics of influ-
ence spreading and lots of algorithms were
designed to solve the optimization problem of
influence maximization.

Key Points

In this work, we focus on introducing the
major ideas and technical solutions of influence
maximization problem. Different kinds of influence
diffusion models are introduced as well, since these
models are the basis for influence maximization.

Historical Background

The study of social influence can be traced back to
early social science research (Bass 1969;
Wasserman and Faust 1994). Previously,
researchers had to manually collect the data
(e.g., social investigation), which makes their
work limited to a small scale. Nevertheless, these
works laid a good foundation for the development
of the analysis of social influence propagation,
for example, Granovetter (1978) introduced the
well-known linear threshold model in 1978. In
recent years, with the rise of the Internet and the
advances of computing performance, research on
social influence begins a rapid growth. In 2002,
Domingos and Richardson (2001) studied the
problem of leveraging the influence between
social users for viral marketing. A year later,
Kempe et al. (2003) formulated the problem as
the well-known influence maximization problem.
In their paper, the two widely used influence
diffusion models, the independent cascade
(IC) model and the linear threshold (LT) model,
were first introduced in the current form. Mean-
while, Kempe et al. proved that influence
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maximization is NP-hard in both two models and
proposed a greedy algorithm to approximate the
solution. Along this line, many efforts have been
devoted to explore the process of influence diffu-
sion (information propagation) in social networks,
and these works can be generally grouped into
three categories. First, in terms of social influence
diffusion, traditional IC model and LT model were
extended to better describe the propagation pro-
cess in different kinds of scenarios (Kempe et al.
2005; Borodin et al. 2010). Second, how to solve
influence maximization in a given influence diffu-
sion model is always a hot topic and attracts lots of
attention (Chen et al. 2013; Borgs et al. 2014). Last,
as social influence has become an important tool of
social behavior analysis, a growing number of influ-
ence based applications begin to emerge (Wu et al.
2015; Zu et al. 2016).

Scientific Fundamentals

Consider a social network G = (¥, E), where V'is
the set of nodes and £ C V' x Vis the set of edges
connecting pairs of nodes. A node v € V repre-
sents an individual in the social network and an
edge (u, v) represents the relationship between
individual # and v. Influence diffusion models
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formally describe the process of influence spread
in social networks, and therefore, they can output
the estimated social influence of each node/node
set (i.e., social users, as shown in Fig. 1a). Given
an influence diffusion model, influence maximi-
zation aims to maximize the influence spread by
elaborately selecting a small set of initial dissem-
inators (as shown in Fig. 1b). In the following, we
first introduce some widely used diffusion
models, and then show the major ideas and tech-
nical solutions of influence maximization.

Diffusion Models

Generally speaking, diffusion models describe the
process of information propagation in social net-
works with some predefined rules. Among them,
stochastic diffusion models are the most widely
used ones. In stochastic diffusion models, there
are two possible states, active and inactive, for
each node v € V. Intuitively, an active node can
be viewed as adopting the propagating informa-
tion while the inactive state of a node means it has
not adopted the information. Also, there are a set
of nodes called seed nodes in these models, which
are active at the initial time moment. They can be
viewed as the source of information propagation,
and stochastic diffusion models specify the ran-
domized process of generating active sets at any

L]
9
L
-

(a) Influence Diffusion.

(b) Influence Maximization.

Influence Maximization Model, Fig. 1 A toy illustration for the process of social influence diffusion and the solution

of influence maximization
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time moment given the seed nodes (Chen et al.
2013). According to different settings, stochastic
diffusion models can be classified to several classes.
For example, a stochastic diffusion model is called
progressive if a node stays active ever since it is
activated. In contrast, models in which a node may
switch back and forth between active and inactive
are called nonprogressive models.

To the best of our knowledge, IC model
(Goldenberg et al. 2001) and LT model
(Granovetter 1978) are two of the most widely
used stochastic diffusion models in the literature.
We explain the major ideas of stochastic diffusion
models by taking the example of them. Let S, be the
set of the active nodes in step/time ¢ (t =0, 1, - - -).
Here, S is the set of seed nodes. In the IC model,
each edge (u, v) € E associates with a propagation
probability p,,, (usually, predefined), which is the
probability that v is activated by u after u is acti-
vated. Then, the randomized process unfolds as
follows. At step ¢ + 1, each node v in S, has only
one chance to activate each inactive out neighbor
u with the probability p,,,,. The process stops when
no more nodes can be activated. In the LT model,
correspondingly, each edge (1, v) € E associates
with an influence weight b, ,, (e.g., 0.1, which is
also prelearned), indicating the importance of
u influencing v. Then, the randomized process
unfolds as follows. Initially, each node v picks a
threshold 0, in range [0, 1] uniformly at random. At
step ¢ > 0, an inactive node v is activated if
Zentn( U §i) B 2 O

1<t

The process also stops when no more nodes
can be activated. It is worth noting that, in both IC
and LT model, once a node becomes active, it
stays active. We call such diffusion models as
progressive models. Due to their importance,
many variations of the IC and LT model have
appeared in literature (Kempe et al. 2005;
Rodriguez et al. 2011; Borodin et al. 2010;
Budak et al. 2011), and these variations extend
the IC model and the LT model to accommodate
various application scenarios.

In addition to stochastic diffusion models,
there are also other diffusion models for different
purposes. For instance, to efficiently approximate
the influence, Yang et al. (2012) simplified the IC
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model by solving a linear system. Furthermore,
Xiang et al. (2013) proposed a linear social influ-
ence model which formulates the influence with a
linear system, and they showed the linear social
influence model is a good approximation of the IC
model and revealed the connection between the
model and PageRank. To directly find influential
nodes from raw data, Goyal et al. (2011a) pro-
posed credit distribution model. In the model, an
influenced node distributes influence credits to its
predecessors and ancestors in the action trace.

Influence Maximization

Let 6(S) denote the influence spread of a set of
nodes S under a specific influence diffusion
model, which is the expected number of final
activated nodes if S is selected as the seed nodes.
Now, we can formally define influence maximi-
zation problem as follows. In a social network G,
given a diffusion model M and a budget £, select
a set of seed nodes S™ such that

S = argmgxé(S), s.8SCV, |S|=k.

Kempe et al. (2003) first studied this problem
in the IC model and LT model. They proved that
influence maximization problem is NP-hard under
both IC model and LT model. Fortunately, they
also pointed out that the influence spread function
d(+) is submodular, and to solve the problem, a
simple but powerful greedy algorithm was pro-
posed. In each iteration, the algorithm selects a
node v and adds it into the current candidate set S,
such that the selected node v provides the largest
marginal contribution to influence spread 6 with
respect to S. Due to the submodularity of the
influence spread function, the greedy algorithm
can approximate the optimal solution with a factor
of 1-1/e. However, one main drawback of this
algorithm is computing the influence of a given
set of seed nodes relies on a time-consuming
Monte Carlo simulation method. In (Chen et al.
2010a, b), Chen et al. proved that computing the
influence of a given set of seed nodes is #P-hard in
both IC model and LT model. Thus, Monte Carlo
simulation is necessary for the computation of
influence. To address the efficiency issue,
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Leskovec et al. (2007) presented a “Lazy Evalua-
tion” strategy which takes advantage of the sub-
modular property of the influence spread function
to reduce the number of evaluations on the influence
spread of nodes. The key idea behind lazy evalua-
tion is to avoid evaluation when it is not necessary.
Specifically, denote by 5(v|S) the marginal gain of
node v given set S, that is, 6(v|S) = (S U
{v}) — d(S). Suppose in the i-th iteration, the greedy
algorithm evaluated 6(u|S) for someu € V'1S.Ifin
an earlier iteration when the candidate set is S , the
greedy algorithm has evaluated o (v| s ) for some v

€V\S and 5(v|§) < 5(ulS) , then by sub-

modularity we have 5(v|S) <9 v\§> < o(ulS).
It follows that there is no need to evaluate J(v|S) in
the i-th iteration. In this way, lazy evaluation strat-
egy significantly reduces the total number of Monte
Carlo simulations. Goyal et al. (2011b) proposed the
CELF++ algorithm to further enhance the lazy eval-
uation strategy for influence maximization problem.
However, even with the lazy evaluation strategy that
provides hundreds of times of improvement to the
greedy algorithm, the time cost is still too high for
practical applications. To deal with this problem, a
series of heuristic algorithms (Chen et al. 2010a, b,
2014; Goyal et al. 2011¢; Jung et al. 2012; Liu et al.
2014b) have been proposed. For instance, Chen
et al. (2010a) approximated the influence propaga-
tion using local arborescence structures of each
node, which leads to a quick estimation of influence
spread. Later, Chen et al. (2010b) applied the same
idea in the LT model and designed the LDAG
algorithm, which restricts influence diffusion to
node v on a local directed acyclic graph of v. Liu
et al. (2014b) developed a quantitative metric,
named Group-PageRank, which is actually the
upper bound of the social influence based on a linear
social influence model. They plugged Group-
PageRank into the greedy algorithm to efficiently
find the seed nodes with maximal influence spread.
All of these algorithms have one thing in common:
compromising the approximation guarantee to
achieve high efficiency.

Recently, the efficiency-effectiveness dilemma
has been solved by the polling-based algorithm
(Borgs et al. 2014), which can efficiently return a
solution with provable approximation guarantee.
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The algorithm includes two steps. In the first step,
it estimates the influence spread through sam-
pling. In the second step, it finds an approximation
solution for maximizing the estimation. To esti-
mate the influence spread, instead of simulating
the process of information diffusion that starts
from the seed nodes, the algorithm uniformly
selects a node v at random and runs a simulation
of information spread that starts from v along the
reverse direction. Such an operation is named
“poll” by the authors. If we can bound the estima-
tion error, then the solution also enjoys an approx-
imation guarantee for the influence maximization
problem. Along this line, Tang et al. (2014b,
2015) reduced the sample complexity and
improved the efficiency. Later, Nguyen et al.
(2016) further reduced the time complexity with
a different bounding technique. Experimental
results showed that these randomized algorithms
have outperformed the heuristic algorithms (Tang
et al. 2015). In addition to IC model and LT
model, influence maximization in other diffusion
models have been explored as well. For instance,
Duetal. (2013) studied influence maximization in
the continuous time IC model and proposed an
efficient sketch based algorithm. Borodin et al.
(2010) studied influence maximization under the
competitive threshold model and showed the orig-
inal greedy algorithm cannot be applied.

Key Applications

The study of social influence propagation has
found applications in many fields, such as viral
marketing, the spread of trust, expert finding,
social media analysis, social recommendation.
Among these applications, viral marketing is the
most important application of social influence. In
fact, influence maximization was proposed as a
mathematical prototype of viral marketing. In the
following, we first introduce applications in viral
marketing. Then, we show some other interesting
applications based on social influence analysis.

Viral Marketing
Due to the “word-of-mouth” effect, social net-
work is an ideal platform for viral marketing.
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The key idea behind viral marketing is that by
targeting on only a small number of individuals
(persuade them to adopt the product), we can
trigger a large cascade of (product) adoption
spreading in a social network. Kempe et al.
(2003) proposed its mathematical prototype, the
well-known influence maximization problem,
which we have discussed in the previous sections.
Although influence maximization has its root in
viral marketing, it is still too simple for many real-
life scenarios. To fill this gap, researchers have
proposed different kind of variations of influence
maximization. For instance, Chen et al. (2012)
considered the time-delay factor in information
diffusion and solved the influence maximization
problem with respect to time constraint. Wang
et al. (2016) took spatial factor into consideration
when they dealt with influence maximization in
geo-social network. Tang et al. (2014a) tried to
maximize the influence and the diversity of the
influenced crowd simultaneously. The original
setting of influence maximization assumes that a
node is either a seed or not. In other words, either
we offer a user the free product (i.e., select her as
the seed node) or not. Yang et al. (2016) relaxed
this assumption and investigated the question
about what discounts we should offer to social
users so that the product adoption is maximized.
Another implicit assumption of influence maximi-
zation is that the active state of a node means she
adopts the product. Bhagat et al. (2012) pointed
out that product adoption should be distinguished
from influence spread, since influence spread is
essentially used as proxy for product adoption.
Similarly, Wang et al. (2015) argued that informa-
tion awareness is not the same as the information
propagation and proposed a new concept “infor-
mation coverage,” which captures the values of
nodes that are inactive but aware of the propagat-
ing information. In the case of multi-items diffu-
sion, Lu et al. (2015) studied comparative
influence maximization problem which covers
the full spectrum of item interactions from com-
petition to complementarity.

Influence-Based Applications
Since people are often influenced by their friends
in social networks, social influence is an important
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factor that we need to consider when we try to
analyze different kind of social behaviors. There-
fore, in addition to viral marketing, there are other
interesting influence-based applications. For
example, to predict product adoption rate in social
networks, Wu et al. (2015) introduced a social
user decision function which leverages various
factors, including neighbor influence, crow
wisdom, etc. To analyze the behaviors of taxi
drivers, Xu et al. (2012b) verified the existence
of the latent vehicle-to-vehicle network and
revealed how social influence propagation affects
the prediction of taxi drivers’ future behaviors.
For better social marketing, Liu et al. (2014a)
combined recommendation techniques and social
influence tools. Meanwhile, Ma et al. (2015) uti-
lized social influence to identify interested but
hesitant users. In the area of social media analysis,
Xu et al. (2012a) annotated media content through
social influence analysis. Similarly, Wang et al.
(2013) applied social influence maximization
method on words network for text summarization.

Future Directions

In the past years, social influence has been exten-
sively studied and much progress has been
achieved. However, to have a more comprehen-
sive understanding of social influence, there are
also some important issues should be addressed,
and these issues lead to the future research
directions.

Parameter Learning

Some key parameters exist in most diffusion
models, such as propagation probability in the
IC model and influence weight in the LT model
(i.e., be,y)). These parameters have a great influ-
ence on the performance of the corresponding
models (He and Kempe 2016). To assure the
effectiveness of the diffusion models, we need to
learn these parameters from real-world data
instead of just assigning some empirical values.
Until now, however, how to learn model parame-
ters remains a big challenge. One reason is that the
sample complexity of such learning tasks is very
high, since we need to learn influence strength
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(propagation probability or influence weight) of
each node pair. Another important reason is that
there is too much noise in real-world data. It is hard
to isolate the contribution of influence from other
factors (e.g., homophily) in the diffusion of infor-
mation in social networks. Therefore, there is still a
long way to go before we can tackle this issue.

Effectiveness Validation

Influence maximization models output target cus-
tomers for viral marketing. Then a natural ques-
tion arises: how do we know if the marketing
strategy works? In other words, are the selected
customers really worth to invest on? As we men-
tioned above, it is hard to recognize the contribu-
tion of influence in the diffusion of information
propagation, which means that we actually do not
have any ground truth to validate the effectiveness
of the strategy. A possible way to solve this prob-
lem is conducting randomized controlled experi-
ments in real social network sites (Chen 2015).
However, how to cooperate with social network
service providers and deploy the testing system is
still a problem we have to face.

Dynamic Network

Until now, most of works on social influence
assume that social network is static. However, in
real world, social networks evolve over time.
Thus, to better describe the process of information
diffusion, we should consider the dynamics of
information propagation and network structure at
the same time. In the aspect of diffusion models,
we need to improve existing models so that the
change of network structure can be detected and
processed in real time. As for influence maximi-
zation and other applications, online algorithms
should be developed so that the results can be
updated incrementally.
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Glossary
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negative signs
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Balanced A triangular network pattern with
triangle an odd number of positive links
Unbalanced A triangular network pattern with
triangle an odd number of negative links
Monolithic Social relationships that can take
relationship  a single type, e.g., friendship
Propagation  Cost that is incurred by social or
cost physical entities such as
propagation delay, social tie
strength, or the impact of
propagating ideas
Definition

Online social networks exhibit a wide range of
relationship types, including friendship and antag-
onism. As such, the type of relationship between
two persons, whether positive or negative,
impacts how they are influenced by one another.
Signed social networks are defined as networks in
which individuals can be linked with positive or
negative relationships. Influence diffusion and
propagation models in signed social networks
have been considered in two major line of prob-
lems. The first group of problems is based on
influence diffusion and maximization in signed
networks, among which we review the voter
model, epidemic models, independent cascade
model, and game theoretic models. These models
focus on the spread behavior of opinions in a
signed social network or on identifying the key
nodes that can trigger a propagation behavior
leading to maximum influence spread. The second
group of problems is focused on propagation strat-
egies for influencing a target node by taking into
account key network metrics such as propagation
costs. The propagation cost is due to both social
and physical factors such as propagation delay,
strength of social ties, or the impact factor of the
propagating idea.

Introduction

Social networks have become a major domain for
information dissemination, with the proliferation
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of smart devices and portable computers (Easley
and Kleinberg 2010). Individuals in online social
communities are often linked with relationships
ranging from friendship to antagonism. Conven-
tional social network analysis, on the other hand,
is often focused on monolithic relationships that
treat all relations as friendly. The need for incor-
porating different relationship types in social net-
work analysis has recently been emphasized in
various studies (Brzozowski et al. 2008; Kunegis
et al. 2009; Hogg et al. 2008; Lampe et al. 2007,
Anchuri and Magdon-Ismail 2012).

Influence diffusion and propagation character-
istics in online social networks has been exten-
sively studied for networks with monolithic
relationships (Domingos and Richardson 2001;
Kempe et al. 2003; Kimura and Saito 2006;
Chen et al. 2009, 2010; Goyal et al. 2010), pri-
marily focusing on how to identify the key users
that maximize the spread of influence through the
use of probabilistic methods or optimization
approaches as well as effective heuristics. For
networks that consist of both positive and nega-
tive relationships, it has been showed in Li et al.
(2013a,2015a), Chen et al. (2011) and Guler et al.
(2015) that taking the relationship type into con-
sideration can lead to significant changes in the
diffusion patterns for the spread of opposing
ideas.

Influence propagation models in social net-
works with positive and negative relationships
are often based on the principle of homophily
(McPherson et al. 2001), which states that persons
are more likely to agree with others who are
similar to them and oppose to the ideas that
come from others that are dissimilar (Brzozowski
et al. 2008). For instance, consider a voting pro-
cess between two candidates, candidate X and
candidate ¥, representing two opposite political
views. Suppose that Alice supports candidate
X and tells Bob that she supports candidate X. If
Bob perceives Alice as a like-minded friend, he is
more inclined to support candidate X, whereas it is
more likely that he will support candidate Y if he
and Alice have antagonistic world views. This
phenomenon can impact the diffusion of ideas,
opinions, or products in a social network, leading
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to influence patterns that are based on the type of
relationship that exists between the interacting
parties. In particular, a person is more likely to
favor an idea if that idea is promoted by a like-
minded friend who shares similar interests. In
contrast, an idea supported by an individual with
an antagonistic world view is more likely to cause
the person to pause and even resist the idea. If, on
the other hand, an individual with an opposite
world view is against an idea, going against the
neighbor leads to a positive disposition towards
the original idea. This intuition fits well with
various historical observations, including, for
instance, the formation of the European alliances
before World War I (Langer 1977; Schmitt 1924).
In essence, relationship structures can have sig-
nificant impact on the influence patterns in a social
network.

In the sequel, major influence propagation
models are reviewed for social networks with
positive and negative relationship types. Initially,
we review the network models for influence dif-
fusion and maximization, including the voter
model, epidemic models, game-theoretic models,
and the independent cascade model (Li et al.
2013a, b, 2014, 2015b; Chen et al. 2011; Shafaei
and Jalili 2014). These models are focused on the
spread behavior of opposing ideas in a network
with positive or negative relationships, or the
identification of a small subset of nodes that can
trigger a propagation behavior in the network so
that maximum number of nodes are influenced
eventually. Next, we discuss the targeted influ-
ence propagation model, which finds the optimal
propagation policies to influence a target node in
the network positively, by taking into account key
network metrics such as the total propagation cost
or the number of negatively influenced users
(Guler et al. 2014a, b, 2015). These models are
based on the intuition that parties in social com-
munities have a tendency to take a side in favor of
or against an opinion, candidate, or product by
taking into account the information that they have
access to. Accordingly, a judicious strategy for
choosing the propagation path for an idea or a
product is impactful in influencing a target node
positively or negatively.
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Key Points

Understanding influence diffusion and propaga-
tion mechanisms in social networks is a major step
towards understanding how phenomena spreads
in human societies. Influence diffusion has been
well studied for networks with monolithic rela-
tionships, by treating all social relationships as
friendship. Human societies, on the other hand,
often exhibit various types of social relations,
including both friendship and antagonism. The
type of relationship between two individuals has
a key role in influence propagation, that is,
whether the latter develops a positive or a negative
opinion about a product, candidate, or an idea
favored by the former. To this end, one needs to
take into account the type of relationships, posi-
tive or negative, in the social network while study-
ing diffusion policies. Therefore, influence
diffusion in networks with positive and negative
relationships is distinct from networks with
monolithic relationships, which is demonstrated
by the differences in the optimal diffusion and
propagation strategies between the two types of
networks.

Historical Background

The impact of social relations on influence spread
and information dissemination have been investi-
gated in various studies (Brzozowski et al. 2008;
Kunegis et al. 2009; Hogg et al. 2008; Lampe
et al. 2007; Anchuri and Magdon-Ismail 2012;
Domingos and Richardson 2001; Kempe et al.
2003; Watts and Strogatz 1998; Girvan and New-
man 2002). Relationship types in online social
networks often have a complex structure, ranging
from like-minded friends to ideological foes. By
focusing on purely monolithic relationships, how-
ever, conventional social network analysis often
treats all relations as friendship relations. Identi-
fying positive and negative relationship types in
social networks dates back to balance and status
theories in social psychology (Heider 1946; Cart-
wright and Harary 1956; Harary and Kabell
1980), to provide a graph-theoretic description
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of balanced structures in organizational net-
works. Signed links have been incorporated to
represent positive and negative relationships in a
social network (Leskovec et al. 2010a) and to
explore the evolution of user behavior patterns.
A machine-learning framework is utilized in
Leskovec et al. (2010b) to predict positive and
negative links in social networks. Detecting the
community structures in a social network with
positive and negative relationships has been
considered in (Anchuri and Magdon-Ismail
2012). Another direction in signed network
analysis has been to turn an unsigned social
network into a signed one by predicting the
type of a social tie, positive or negative, between
the parties in the social network (Yang et al.
2012; Agrawal et al. 2013; Papaoikonomou
et al. 2014).

The impact of relationship types on the propa-
gation behavior has also been utilized to investi-
gate the diffusion of opposing ideas and to
identify the important nodes in the network that
can trigger a propagation behavior which achieves
the maximum spread of influence (Li et al. 2013a,
2015a; Chen et al. 2011). Various propagation
models are proposed to investigate the diffusion
behavior in networks with positive and negative
relationships, including the voter model (Li et al.
2013a, 2015a), independent cascade model (Chen
etal. 2011; Li et al. 2014; Srivastava et al. 2015),
game-theoretic and linear threshold models
(Shafaei and Jalili 2014), and epidemic models
(Li et al. 2013b; Fan et al. 2012). The influence
propagation behavior in networks with positive
and negative relationships has also been investi-
gated for identifying the optimal influence propa-
gation policies for influencing a target node
positively and by taking into account key network
metrics such as propagation costs (Guler et al.
2014a, b, 2015).

Signed Social Networks
A signed social network is a social network in

which the relationships between users are defined
as either positive or negative.
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Influence Propagation in Social Networks with Positive and Negative Relationships, Fig. 1 Signed social

network models: (a) directed, (b) undirected

+f' 5+ - f‘ E -
+ +
balanced balanced

+ f E + - f' E -
unbalanced unbalanced

Influence Propagation in Social Networks with Positive and Negative Relationships, Fig. 2 Balanced and

unbalanced triangle structures

Definition 1 (Signed social network) Let G =
(V, E) be a directed graph representing a social
network with |V'| nodes, where the vertex set
V and the edge set E represent the persons and
social relationships, respectively. A directed
edge (i, j) from node i to node j exists if
(i, j) € E. The edge (i, j) is labeled with the
sign “+” if user 7 holds a positive opinion about
user j, e.g., user I trusts user j or perceives user
j as a friend. If user i holds a negative opinion
about user j, e.g., user i distrusts user j or per-
ceives userj as a foe, then the edge (7, /) is labeled
with a “ — 7 sign.

A signed social network with directed links is
illustrated in Fig. 1a. If the relationships between
the individuals are mutual, i.e., the edge label of
(i, j) is equal to that of (j, i), then, the social
network can be represented with an undirected
graph as in Fig. 1b.

The social links in signed networks often evolve
with time. The steady state behavior of the link
structures often demonstrates common patterns.
These common patterns are described by the struc-
tural balance theory (Heider 1946; Cartwright and
Harary 1956; Harary and Kabell 1980), which
distinguishes between balanced and unbalanced
social structures demonstrated in Fig. 2 for a net-
work of three nodes. Structural balance theory
states that the social links in a signed network
evolve to a balanced structure because unbalanced
structures cause tension between the parties who
eventually change the type of their social relation-
ships and form balanced structures.

Influence Diffusion and Maximization

Diffusion characteristics of information has been
studied broadly in the context of social networks
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with monolithic relationships, when parties are
connected to each other via friendship relations
(Domingos and Richardson 2001; Kempe et al.
2003; Kimura and Saito 2006; Chen et al. 2009,
2010; Goyal et al. 2010). The diffusion process for
signed networks, i.e., when parties can engage in
multiple types of relationships, has received
growing interest with the observation that the
type of relationship between two parties, positive
or negative, has great impact on the influence
spread behavior (Li et al. 2013a). Influence diffu-
sion models for signed networks are primarily
based on extending the diffusion models for net-
works with monolithic relationships to take into
account the impact of positive and negative
relationships.

In a social network, influence maximization is
the study of identifying a small subset of nodes in
the network that will initiate a propagation pattern
leading to the maximum spread of influence
(Kempe et al. 2003). An important application
area of this model is recommender systems and
viral marketing, in which companies provide sam-
ples of their products to a small number of pro-
moters, with the expectation that they will
influence their friends who will then influence
their friends. As such, companies try to identify
the best group of promoters that will trigger a
cascade structure that will reach the maximum
number of users. In the remainder of this section
we review the major influence diffusion and max-
imization models in the context of signed social
networks.

Independent Cascade Model

Originally proposed for unsigned social networks
in Kempe et al. (2003), the independent cascade
model allows users to actively make attempts to
influence their neighbors. In this model, each node
in the network can be in one of two states, active
or inactive, noting that all nodes in the network are
in the inactive state in the beginning. In a sense,
the active state corresponds to a user adopting an
opinion or a product, whereas an inactive state
corresponds to a user who has not adopted it. A
selected subset of &k nodes are then influenced so
that they are in the active state. In the next step,
each user in the active state makes a single attempt
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to influence each one of its inactive neighbors.
Denoting i as the active node and j as the inactive
neighbor, then node i succeeds in influencing
node j with probability p(i, j). A common practice
is to assume p(i, j) = a for all 4, j for some constant
0 < a < 1. Ifnode i succeeds in influencing node j,
then node j takes the active state starting from the
next time step. Once a node makes an attempt to
influence a neighbor, whether it succeeds or fails,
it can take no actions to influence the same neigh-
bor in the subsequent time steps. Whenever a node
is successfully influenced by a neighbor, no other
neighbors can try to influence it. The propagation
terminates once no more activation attempts can
take place in the network.

The conventional independent cascade model
is focused on the propagation of positive opinions
and a social network in which all social links
correspond to friendship relations. The propaga-
tion of positive opinions corresponds to the sce-
nario where each active user is positively
influenced by an opinion or a product and conse-
quently tries to influence others in a positive man-
ner. Consequently, no negative opinions emerge
or propagate in the network. Chen et al. (2011)
consider the scenario when the nodes can develop
and propagate negative opinions. For instance, a
user may have a bad experience with a product
given to her for promotion, and subsequently tells
her friends about her experience, influencing them
with negative opinions about the product. Similar
to the original independent cascade model, the
propagation model in Chen et al. (2011) allow
the selection and activation of a group of k£ nodes
in the network, for instance, by providing free
samples of a product or a service. Each activated
node is influenced positively by the product as a
result of a good experience with probability ¢,
whereas with probability 1 — ¢, the node is
influenced negatively due to a bad experience.
Accordingly, the parameter ¢ is termed the quality
factor. Each active node, whether positively or
negatively influenced, makes an attempt to acti-
vate each of its inactive neighbors. Node
i succeeds in activating node j with probability p
(i, j). If node i succeeds in activating node j, the
type of influence adopted by node j depends on
the type of influence of node i. In particular, if
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node i is a positively influenced node, then node
j is influenced positively with probability g, or
negatively with probability 1 — g. On the other
hand, if node i is a negatively influenced node,
then node j is also influenced negatively. In that
sense, being activated corresponds to buying a
product, whereas the type of influence depends
on the experience the individual has with the
product. The case when ¢ = 1 reduces to the
conventional independent cascade problem.

This model incorporates the concept of nega-
tivity bias from social psychology, as negative
opinions in the model dominate the positive
ones. The goal is to maximize the expected num-
ber of positively influenced nodes, which is
termed as the positive influence spread. The influ-
ence maximization problem is formally defined as
follows. Consider a social network represented by
a directed graph G with a set of nodes ¥, a quality
factor ¢, and activation probabilities p(i, j) for
i, j € V. Let a(U,q) denote the expected number
of positively influenced nodes when the set of
seed nodes that are activated positively in the
beginning is U C V. Then, the influence maximi-
zation problem is defined as finding the optimal
seed set U” such that

U*€arg max
Ucv, U=k

a(U,q) (1)

The influence maximization problem in (1) is
shown to exhibit properties such as monotonicity
and submodularity, allowing the use of greedy
approximation algorithms as in the original inde-
pendent cascade problem (Kempe et al. 2003).
The social network considered in this model con-
sists solely of friendship links.

The independent cascade process for the prop-
agation of opposing ideas has been extended in Li
et al. (2014) to take into account the positive and
negative relationships. Accordingly, the new
model is called polarity-related independent cas-
cade (IC-P). The polarity is associated with the
type of relationship exhibited between the parties
in the social network. In that sense, each social
link is labeled with a positive or negative sign.
The sign of the link from node 7 to node j is
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represented by a function f (3, j) € {+,—}. In
this model, f (i, j)) = + indicates that node j per-
ceives node i as a friend, or trusts node i. On the
other hand, (i, /) = — indicates that node j per-
ceives node i as a foe, or distrusts node i. The state
of a node i is denoted by S(i), where

S(7)
1 if {isactive and positively influenced
=<¢ —1 if iisactiveandnegatively influenced
0 if i isinactive

(@)

Initially, a small set of nodes are selected and acti-
vated with positive influence, while the remaining
nodes in the network are inactive. In other words,
denoting the set of all nodes in the network by Vand
the initial set of activated nodes by U,

~ ] 1 forall
S() = {O for all

In the next time step, each active node makes a
single attempt to activate each one of its inactive
neighbors. The probability that node i succeeds
in activating node j is given by p(i, j) where 0 <
p(i, j) < 1. If node i succeeds in activating node j,
then node j is influenced with a polarity given by

iceU

ieV\U )

S() = S() x f(i.))- @
In that sense, Eq. 4 implies that if node i is a
positively influenced node, then node j is also
influenced positively if it trusts node i, whereas
node j is influenced negatively if it distrusts
node i. If instead node i is a negatively influenced
node, then node j is influenced negatively if it
trusts node i and positively if it distrusts node i.
Once node i makes an attempt to activate node j, it
can make no further attempts to activate the same
node in the consequent time steps. The state of a
node cannot be altered once it is activated posi-
tively or negatively. Different from the original
independent cascade model, Li et al. (2014) allow
each node to be activated at most once in a given
time step, whereas in the original independent
cascade model, multiple active neighbors can
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make attempts to influence the same node in a
single time step.

Given the influence diffusion model, Li et al.
(2014) propose two influence maximization prob-
lems, corresponding to the maximization of posi-
tive and negative influence, respectively. The
positive influence maximization (PIM) problem
is to find a subset U" of size k from the set of all
nodes V" that maximizes the expected number of
positively influenced nodes,

max
Ucv, U=k

U* = arg o+ (U) )

where the function ¢, (U) identifies the expected
number of positively influenced nodes when the
initial set of nodes activated with positive influ-
ence, i.e., the set of seed nodes, is U.

The negative influence maximization (NIM)
problem, on the other hand, is to find a subset U
of size k that maximizes the expected number of
negatively influenced nodes,

U =arg max

(U
Ugv,\U|:1<J )

(6)

where o_(U) is expected number of negatively
influenced nodes when the initial set of nodes
activated with positive influence is U. As the
initial set of seed nodes in both Eqgs. 5 and 6 are
activated with positive influence, negative influ-
ences that emerge in the diffusion process are due
to the relationship structure of the signed social
network. It is shown in Li et al. (2014) that both
influence maximization problems from Egs. 5 and
6 satisfy monotonicity and submodularity proper-
ties. As a result, similar to the original indepen-
dent cascade problem, a greedy hill-climbing
algorithm can be utilized to find an approximate
solution to Eqs. 5 and 6 that approximates the
optimal solution within a factor of (1 —1)
(Kempe et al. 2003).

The influence diffusion scheme considered in
Srivastava et al. (2015) extends the independent
cascade model from Li et al. (2014) by allowing
the seed nodes, i.e., nodes that are initially acti-
vated in the network, to be influenced positively
or negatively. The influence maximization
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problem is to find a set of & initial nodes and
their influence types, positive or negative, to max-
imize the expected number of nodes that are
influenced, without loss of generality, positively.
Srivastava et al. (2015) show that the new prob-
lem, termed the Signed Network Influence Maxi-
mization (SNIMax) problem, is NP-hard. It is also
proved via a counter-example that, unlike the
previous independent cascade models (Kempe
et al. 2003; Li et al. 2014), the new influence
diffusion model does not satisfy the monotonicity
property. Accordingly, the greedy algorithm from
Kempe et al. (2003) cannot guarantee the approx-
imation of the optimal solution to within a factor
of (1 — %) Instead, Srivastava et al. (2015) pro-
pose a novel heuristic algorithm to find the set of
k initial nodes and their influence types, positive
or negative. The algorithm starts with an empty
seed set and for each ¢ = 1,.. ., k, incrementally
adds node i with an influence type ¢ € {positive,
negative} to the seed set if activating i with the
influence type ¢ maximizes the expected number
of new positive influences in the next time step.
The independent cascade model is extended in Li
et al. (2015b) by allowing each node to be
influenced multiple times by his/her friends and
by taking into account the impact of structural
balance during influence propagation.

Voter Model

The classical voter model considers a set of nodes
that are connected to each other with monolithic
relationships, i.e., each directed edge denotes a
positive relation. At each step, each user selects
one of its outgoing neighbors at random, and
adopts the opinion of the selected neighbor. In
that sense, user opinions are not fixed in the
voter model, and can change in time.

This model is extended in Li et al. (2013a,
2015a) to the context of signed networks, to
study how positive and negative relationships
affect the spread of two competing opinions. As
in the classical voter model, this model allows, at
each step, every user to adopt an opinion based on
interacting with a random outgoing neighbor.
Unlike the classical model, the type of opinion
adopted depends on the type of relationship
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between the user and its neighbor. Letting X and
Y denote two competing opinions, a user will
adopt opinion X if the selected outgoing neighbor
supports X and the two users have a positive
relationship between them. In contrast, the user
will adopt opinion Yif the neighbor supports X but
the two users have a negative relationship.

The relationship structure for the social net-
work is represented by a weighted adjacency
matrix A, with the element 4;; in row i and column
j corresponding to the directed edge from node i to
node j. The individual entries of 4 may be posi-
tive, corresponding to a positive relationship, or
negative, corresponding to a negative relation-
ship. If there is no social contact from node i to
node j, either positive or negative, then 4, ; = 0.
The absolute value |4; ;| of each entry represents
the strength of the social tie from node i to node ;.
Each user holds one of two opposite opinions {X,
Y}. In the proposed voter model for signed net-
works, each user selects an outgoing neighbor
uniformly at random, with probability of choosing
neighbor j being p(i, j) where

oAyl
p(l’j) - Z[|Ail| (7)

which is proportional to the weight of the strength
of the social tie form node i to node j. Node i then
adopts the opinion of user j if

A;>0 ®)
whereas if
A,:,‘ <0 )

then node i adopts the opinion other than the
opinion of user j. This propagation model is
explored for both short-term and long-term diffu-
sion dynamics. Short-term diffusion dynamics
investigate the distribution of nodes in the net-
work influenced by opinions X and Y at a future
step ¢ > 0. Long-term diffusion dynamics investi-
gate whether or not the distribution of nodes
influenced by opinions X and Y converge. If they
do so, then the goal is to identify the steady state
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distribution of the two opinions. For the short-
term diffusion patterns, an exact formula is
derived for the distribution of opinions at each
propagation step. For the long-term diffusion pat-
terns, the steady-state distribution of opinions is
obtained in closed-form.

The diffusion model is then utilized to study
influence maximization in a signed social net-
work. In this framework, a small number of
nodes, i.e., no more than k nodes, can be initial-
ized with the opinion X, and all the remaining
nodes are assumed to be following opinion Y.
The goal is to find the best set of initial nodes to
maximize the expected number of nodes who
have adopted opinion X in the short and long
terms. To do so, the Signed Voter model Influence
Maximization (SVIM) algorithm is introduced,
which is based on computing the influence con-
tributions of the individual nodes to find the sub-
set with the highest contribution.

Epidemic Models

Diffusion characteristics of social phenomena
often have similarities to the spreading behavior in
epidemics. As a result, several propagation models
have been introduced to model influence diffusion
in a signed network as an epidemic (Li et al. 2013b;
Fan et al. 2012). In essence, epidemic models com-
bine the diffusion principles of epidemics with the
propagation characteristics of signed networks,
which are based on the fact that opinions spread
differently through positive and negative links, as
people tend to adopt the opinions of their friends
while opposing to the opinions of their foes.

The diffusion of two opposing ideas in a signed
network is modeled as an epidemic in (Li et al.
2013b). The diffusion process is based on the
susceptible-infected-recovered (SIR) epidemic
model (Kermack and McKendrick 1927). The
SIR epidemic model assigns to each node in the
network one of three states: susceptible if anode is
healthy but is susceptible to infection, infected if
the node is infected by a disease and may spread it
to the neighboring susceptible nodes, and recov-
ered or removed if a node that was once infected
has recovered from the infection due to immuni-
zation and is no longer susceptible to the disease.
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In order to model influence propagation in a
signed network as an epidemic, Li et al. (2013b)
assume that a node can be in one of five states:
susceptible with neutral opinion (S), infected by
positive opinion (/p), infected by negative opinion
(Iy), recovered with positive opinion (Rp), and
recovered with negative opinion (Ry). State
S indicates that a node holds no opinion about
the topic but is susceptible to be influenced by a
positive or negative opinion in the future. States /p
and 7y imply that the node currently holds a pos-
itive or negative opinion about the topic, respec-
tively, and may influence neighboring nodes.
States Rp and Ry imply that the node holds a
positive or negative opinion about the topic,
respectively, but will no longer attempt to influ-
ence the neighboring nodes. Propagation of influ-
ence depends on the relationship between the
interacting parties. Consider two nodes, node i
and node j, with a positive relationship and
assume that node i is in state Ip or Iy whereas
node is in state S. Then, node j adopts the same
opinion as node i with probability . On the other
hand, if the relationship between the two nodes is
negative, then, with probability 5, node j adopts
the opinion opposite to that of the opinion of
node i. The characteristics of the influence process
is illustrated in Fig. 3. Node i cannot influence
node if node j is already in one of Ip, Iy, Rp, or Ry
states. Lastly, a node in state I or Iy switches to
state Rp or Ry, respectively, with probability p.

i J i J
(07
—
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—
_ g -
O—E -
Influence Propagation in Social Networks with Posi-

tive and Negative Relationships, Fig. 3 Influence
characteristics for the epidemic model
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The time evolution of the density of the nodes in
each state is described by a set of coupled non-
linear differential equations,

B a0+ B~ 0)Ks(0)in0)
a0+ B(1 — O)Ks@in()  (10)
dip(l) . .
e aBKs(1)ip(t)
B — O)Ks(in() — pi(t) (1)
D _ g1~ 0)Ks(oyin
+ 00Ks(t)in (1) — pin(t) (12)
dr;f’) — pip(1) (13)
d”zt(t) = pin(1) (14)

where s(¢), ip(?), in(1), rp(f), and rp(?) represent the
density of the nodes in states S, Ip, I, Rp, and Ry,
respectively, such that

s(t) +ip(t) +in(t) +rp(t) +rn(t) =1 (15)
and 0 is the probability of positive relationships,
whereas K is the average number of neighbors of
any node in the network.

The set of Egs. 10, 11, 12, 13 and 14 are solved
at an early stage of the diffusion process when
ip(f) < 1 and ip(f) < 1 with the initial conditions

s()y=1—¢p —ey =~ 1,
ip(0) =¢ep =0,
ir10) = (16)
in(0) = ey =20,
I”P(O) :IN(O) =0

via linear approximation, leading to the following
densities of positively or negatively influenced
nodes in the network,

(SP + SN)e“’ + (Sp - 81\/)6‘/1[
2

ip(1) = (17)
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(ep + en)e" + (ey — ep)e”
2

in(t) = (18)

where u = (@0 + p(1 — OK — p) and /1 =
(20 — p( — 0)K — p, leading to the following
definition of critical rates.

Given a signed network with ¢p ~ 0 and
en= 0, rates (o, °) are called opinion spreading
critical rates such that, if « < o and f§ < f8, then
rp(00) = 0 and ry (00) & 0, whereas if o > o and
p > f, then rp(co) > 0 and rp(c0) > 0. The
critical rates are characterized for the following
three network structures. The first one is a network
with positive relationships only, i.e., § = 1. In this
case, the critical rates are shown to satisfy o = £
and ¢ = 1. The second one is the case when the
network has solely negative relationships, i.e.,
0 = 0, for which the critical rates are shown to
satisfy «° = 1 and f° = %. The third one is a
network with 0 < 6 < 1. In this case, the critical
rates satisfy o =7 and f= —(IHT“@) + ﬁ
Simulation results for the opinion spreading pat-
terns demonstrate that the numerical results agree
with the theoretical analysis.

Game Theoretic Models

Influence propagation in a signed network is
modeled in Shafaei and Jalili (2014) by utilizing
anetwork coordination game. By considering two
behaviors X and ¥, each pair of nodes is associated
with a payoff matrix with respect to the behaviors
the parties can take and the sign of the relationship
between the two nodes. The payoff matrix in
Fig. 4a corresponds to the case when the two
nodes have a positive relationship, whereas the

Influence Propagation in (a)
Social Networks with
Positive and Negative X

node j
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payoff matrix in Fig. 4b corresponds to the case
when the two nodes have a negative relationship.
The payoff for each person is then calculated by
taking into account the number of neighbors that
have adopted each behavior. To do so, Z~ l+ and
X' is defined as the set of neighbors with
positive and negative relations with node i who
have taken behavior X, respectively. Similarly,
@ and #; is defined as the set of neighbors
with positive and negative relations with node
i who have taken behavior ¥, respectively. Then,
the payoff received from taking behavior X is
given as

[iX) = |Z o + |27 | (19)
whereas the payoff received from taking behavior
Yis given as

[ =7y 127y, Qo)
fornodei. In Eq. 19, x; > 0 and x, < 0 are defined
as the payoffs two friends or foes receive when
they both choose behavior X, respectively,
whereas y; > 0 and y, < 0 in Eq. 20 are the
payoffs received when two friends or foes choose
behavior ¥, respectively. Node i then takes the
behavior that maximizes its payoff. Accordingly,
node i takes behavior X whenever,

|2 o+ |27 e > |2 v+ 12 |y, @D

and takes behavior Y otherwise.
The propagation model considers a network in
which all nodes have initially adopted behavior Y.

node j

(b)
Y X Y

Relationships,

Fig. 4 Payoff matrix for a
pair of nodes with a (a)
positive relationship, (b) X
negative relationship

L1,y

0,0 Loy X

0,0

node 1

node

Yoy, Yo Uy
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A given number of randomly selected nodes are
then switched to behavior X. At each subsequent
step, each node in the network evaluates its payoff
and selects the optimal behavior, X or ¥, by using
Eq. 21. Propagation continues until no changes
occur in the network, i.e., steady state is reached.
Numerical evaluations are performed to identify
the relation between the number of nodes that has
adopted behavior X at the end of propagation,
termed as the cascade depth, and the community
structure of the signed network. To do so, the
community structure of the signed network is
modeled by leveraging structural balance theory.
The numerical results show that the cascade depth
and the extent of influence diffusion is closely tied
to the community structure in the signed network,
in that the cascade depth decreases as the social
network becomes more closely tied. In contrast,
the cascade depth increases as the network
becomes more homogeneous.

In case the entries of the payoff matrix is a
fixed constant, then the model reduces to the lin-
ear threshold model (Kempe et al. 2003), in which
each user adopts a behavior if the number of
neighbors who have already adopted the behavior
is above a given threshold.

Targeted Influence Propagation

The targeted influence propagation model
addresses the optimal strategies for influencing a
target node (Lietal. 2011, 2015¢; Srinivasan et al.
2014) as well as how to optimize key network
metrics such as propagation costs (Guler et al.
2014a, b, 2015). For instance, suppose that an
online voting process is taking place between
two candidates, candidate X and candidate Y,
who possess opposite world views. An online
recommender is suggesting one of the two candi-
dates to a set of users. Assume that Alice is such a
user with two neighbors, Bob and Eve. Bob has a
similar world view with Alice, whereas Eve has an
antagonistic world view. The recommender can
make suggestions such as “Bob likes candidate ¥,
do you want to support candidate ¥, too?” Sup-
pose that the recommender knows that both Bob
and Eve support candidate Y. The recommender
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can suggest either “Bob likes candidate ¥, do you
want to support candidate ¥, too?” or “Eve likes
candidate ¥, do you want to support candidate ¥,
t00?” to Alice. Since Bob has similar interests,
Alice is likely to support candidate Yif the recom-
mender follows the former statement. If, instead,
the recommender follows the latter statement,
Alice is more likely to have a negative opinion
about candidate Y as she considers Eve as an
ideological foe. As such, the recommender has
to decide what type of statement to follow while
making a recommendation. Therefore, social rela-
tionship structures can have significant impact on
the optimal recommendation strategies tailored
towards the network interests.

For cases when it is unfeasible to influence a
target node directly, one may utilize an indirect
strategy by identifying a group of nodes that can
propagate the information to the target node
resulting in the target node being influenced pos-
itively. Real world networks often incur propaga-
tion costs for the transmission of various types of
information that originates from both social and
physical aspects of communication. As a result,
designing the optimal propagation path to influ-
ence a target node necessitates taking into account
the network propagation costs. As such, Guler
et al. (2014a, b, 2015) consider the problem of
identifying the optimal propagation strategy to
influence a target node in favor of a product or
an item, by taking into account the network prop-
agation costs.

Guler et al. (2015) study the problem of mini-
mizing the end-to-end propagation cost incurred
through the network for influencing a target per-
son in favor of a given idea. In this model, every
social link incurs a propagation cost, due to a
combination of various social and physical phe-
nomena such as the interaction frequency between
the users, network propagation delay, the strength
of social ties, or the impact of the propagating
idea. A single node, termed the source node, is
activated initially by an external event such as an
article in the news or an advertisement. The infor-
mation is then passed by the source node to one of
its neighbors, leading to the neighbor being posi-
tively or negatively influenced. The information
propagation continues until it is received at the
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target node. This model can also be applied to a
recommender system, in which a recommender
makes suggestions to a group of online users, by
utilizing the preferences of other users. In this
case, a person is more likely to be influenced
positively if a product has been favored by a
friend in the past, whereas the person is more
likely to oppose buying the product if it has been
favored by a foe. This model applies to networks
in which no direct link exists to directly influence
the target node or the direct link is very costly,
such as a public figure known by a large popula-
tion. In the sequel, we review the propagation
models designed for targeted influence.

Minimum-Cost Influence Propagation
Consider an acyclic directed signed network. The
coordinates of node i € Vare denoted by the tuple
(ix-). A node is represented by its index and its
coordinates interchangeably. Every edge (i, j) €
Eis labeled with asigns;; € {—1,1} according to
the type of relationship, positive or negative,
between parties i and j. Denote by i, and i, the
source and destination nodes, respectively. From
node i to a neighbor node j there exists a propa-
gation cost d;; > 0. The sign of the relationship
type, positive or negative, between node i and its
neighbor j is represented by s;;. The set of all
possible paths from the source to the destination
is given by & The optimal propagation strategy to
positively influence the target node, i.e., the des-
tination, with minimum expected end-to-end cost
can be determined from,
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pin, D
isji(isj) €P
(22)
S.t. Si,j = +1
isj:(isj) €P

where the objective function is for the total cost of
path P and the multiplicative constraint is to ensure
that the destination is influenced positively. The
node indices are labeled in a way that for every
edge (u,v) € E, u < v (Dreyfus and Law 1977).

The total cost of the optimal path from node i to
the destination is quantified by the optimal value
function S(i,z), where z € {0,1} is a parity vari-
able such that z = 0 indicates that the signs from
node i to the destination node have a product that
is equal to +1, and z = 1 indicates that the signs
from node i to the destination node have a product
that is equal to —1. The optimal decision taken at
i is given by the optimal policy function 7(7) that
identifies the index of the next node. Algorithm 1
provides the backward induction algorithm that
solves the dynamic program in Eq. 22.

If the network includes cycles, a modified
Dijkstra-like algorithm can be used to solve
Eq. 22. To do so, positive and negative temporary
labels 7. (i) and _(7) can be defined for each node
i € V.Next, o, (i)and 7’ (i) are defined as per-
manent positive and negative labels for each
i € V. The sets N, and N_ are introduced for the
nodes that are assigned permanent positive/nega-
tive labels, respectively. The steps of the algo-
rithm is given in Algorithm 2, which has time

Algorithm 1

Minimum-Cost Targeted Influence Propagation

1. Assigns; j and d; ; forevery(i, j) € E.

2. Boundary conditions: set S(i;,0)= 0, S(iy,1)= oo, infinite cost to any direction with no edge.

3. Start from the destination node i; and evaluate the value functions at each node i from
S(i,0) = (mlgl E{di’j +0(si;—1)S(j,0)+ 6(si;+1)S(j, 1)}
JRUY)S

S(i,1)=

Jij)e

where 0 (x) = 1if x = 0and 6 (x) = O otherwise.

min_{d;+8(s~ DU 1)+ 6 (50, +1)S(7,0)}.

5. Upon reaching the source node i,, determine the minimum end-to-end cost S(i,,0).

6. Find the optimal decision 7 (i), Vi€ V.
7. Identify the optimal path from 7 ().
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Algorithm 2

Minimum-Cost Targeted Influence Propagation in a Cyclic Graph

1. Define the sets Ny = {i, }, N_= {i, }.

2. Assign the permanent labels of the source node i, as 77:/+ (ip) = Oand n (i) = oo.

3. Initialize temporary labels of remaining nodes i €V via:

. di(;‘i if Sio.i = +l
ﬂ+(l) - ©o 0.W.
di i if s i=—1
n_(i)={ ol SOW

where an infinite cost is used if there exists no edge between nodes i, and i.

4. Find anode j € V that satisfies:
n(j)= min (i), m_(j
() l.ev_N”ev_N_{ + (@), (j)}

5.if n(j) = ()

! . . .

m, (j)=n(j)and N. = N, U{j}
6. else

n (j)=m(j)and N_= N_U{j}
7. NNAN_=V

STOP
else
3. Evaluate and update temporary labels V(j,i) € E:
9. if Sj,i: +1
10. if (7()j) =7.(j) A (i€ N-N.)
. (i) = min (y (i), 70, (j)+d;,)
1. elseif (m(j)=m_(j)) A(ie N-N.)
n_ (i) = min (z_ (i), 7 (j)+d;;)
13. else
14. if (m(j)=rm,(j)) A (i€ N—N.)
7 (i) = min(x_(1),7, () + ;)
15. elseif (7(j)=m_(j)) A (ie N—N,)
. (i) = min (my (i), 7 (j)+d;,)

16. Go back to Step 4.

complexity O((|E| + |V |)log|V |) as for the con-
ventional Dijkstra’s algorithm.

Propagation with Message Deterioration and
Ignorance

Known as the “Telephone” effect (Blackmore
2000), a message propagating in a social network
gets distorted when it is repeated, changing its
content and quality over time. A person may
choose to ignore a received message based on
how old or distorted the message is as well as
the strength of the social relationships between
the interacting parties. In this case, the

recommender can introduce a special promotion,
with an additional cost, to refresh the impact of the
message and draw the interest of the individual.
The impact of message deterioration and igno-
rance can be modeled by taking into account
message freshness and the possibility that nodes
may ignore one another. For message freshness,
k is defined as the age of a message, measured by
the number of hops the message has traveled since
the last activation. Each activation sets the mes-
sage age to 1. An activation is necessary in case a
node ignores its neighbor. The cost of activating
node i is ¢;. The cost of activating node i when the
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Algorithm 3

Minimum-Cost Targeted Influence Propagation with Message Deterioration

1. Initialize the variables s; ; and d; ;(k; j)forall k;j=1,..., K and (i,j) € E.

2. Set the boundary conditions using S (iy,k,0) = 0, S(iy, k,1) = oo,

k=1,....K.

3. Starting from the destination node i,, evaluate S(i, k,z) at every i, k,z by

S(i,k,Z) = m}n E[d,j(k)]+p,j(k)(c_] + 8(;&',"/' —

DS(j.Lz)+ 8(sij+ 1)S(j.1.2))

+(1—p;j(k))min{S(s; ; — 1)S(j.k+1,2)+ 6(s;;+ 1)S(j,k+1,2),

8(sij—1)S(j,1,2)+ & (sij+ 1)S(j,1,2)+ cj}.
5. Evaluate the minimum cost S(i,, 1,0) upon reaching the source node i,,.

6. Starting from the source, identify the optimal decisions for each node.

7. Using the optimal decisions, determine the optimal propagation path.

message is not ignored, i.e., solely to reset the
message age to 1 and increase its impact, is c;.
Whenever the maximum message age, denoted by
K, is exceeded, the subsequent node on the path
has to be activated. The cost of propagating a
message of age k;; from node i to node j is
represented by the random variable d; (k; ).

Node j ignores a message of age k;; that is
propagated from node i with probability p; (k; ).
As the age of the message increases, nodes
become more likely to ignore it. The optimal
propagation strategy for minimizing the expected
cost can be obtained from

Pcp Z {Eldi,; (ki,j)] + o (ai; — 1)

min
ajyj, (i) €P
(1= pyj (ki) + i (ki) }

S.t. | I S,"jzl,

(i,j)EP
a;,;€{0,1},Y(i,j) €P,
kije{1,2,...,K},V(i,j) €P,
kjw= (ki,j + 1)5(ai,j),V(i,j),(j,w) epP,
ki,.j = 1,V(i,,j) €P
(23)

where (a;;) is the activation sequence such that
a;; = 1 if node i chooses to activate node j and
a;; = 0 otherwise. By letting S(i,k,z) denote the
value function at node i with message age k €
{1,2,...,K} and disparity z € {0,1}, the backward
induction algorithm from Algorithm 1 can be
utilized to solve Eq. 23 for acyclic networks.

Influence Propagation with Limited Negative
Influence

In real-life scenarios, it is often preferred to avoid
a propagation path in which a large number of
intermediate nodes are negatively influenced.
Accordingly, the optimal propagation strategy to
influence a target node positively while limiting
the number of negatively influenced intermediate
nodes can be obtained from,

pin 2 d
iy j:(i5]) €P
S.t. | | Si,j = +1
irj:(isj) € P
i : I | Siij, = —1 S Q
i/’j/ (l'/,j/)EPi
24)

where Q is the maximum number of negatively
influenced intermediate nodes allowed, and P; is
a path from node i, to node i such that if (7’ ,
j') € P, then (i, j/) € P. The value function of
the minimum-cost even-parity path between the
source node i, and node i is given by S(i,q,0)
when no more than ¢ intermediate nodes are
influenced negatively. The minimum cost for
the odd-parity path between i, and i is S(i,q,1)
when no more than ¢ intermediate users
are influenced negatively. Then, Eq. 24 can be
solved for acyclic directed networks via the
forward induction dynamic program from
Algorithm 4.
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Algorithm 4
Influenced Nodes

Forward Induction Dynamic Programming with Limited Number of Negatively

1. For each edge, assign the corresponding sign and link cost.
2. Evaluate the boundary conditions using S(i,,q,0) = 0,S(i,,q,1) = e, Vg €{0,1,..., O}.

3. Determine the value functions for each node i from
S(i,q,0)= min {d;;+6(s;;—
JHEE
S(i,q,1)= min
J:UHEE
where i, is the starting node.

{dji+6(s;;—1)S(j,q—1,1

)+ 6(sji+1)S(j,q,0)}.

5. Evaluate the minimum end-to-end cost S(iy, Q,0) for the destination node i.
6. Identify the optimal propagation path using the optimal decisions.

Algorithm 5

Minimizing the Number of Negative Influences

1. Initialize the positive and negative relationships in the social network.
2. Evaluate the boundary conditions using S(i,,n,0) = 0, S(i,,n,1)= o, n=0,1,..., N.

3. Determine the value functions at every node i using
S(i,n,0) = min
S

E{S(Si,j_ 1)S(j,}’l— 170)+ 6(51',]'_" 1)(S(j7n_ 171)+ 1)}

S(i,n,1)= min {&(s;; — 1)(S(j,n—1,1)+ 1)+ &(s;; +1)S(j,n—1,0)}.

J:(i.J)EE
starting from the source i,,.

5. Evaluate S(iy,N,0) to find the minimum number of negatively influenced nodes on the path.

6. Identify the optimal propagation path using the optimal decisions.

Propagation with Minimum Negative
Influence

While influencing a target node positively, one
may seek to find the policy that minimizes the
total number of negatively influenced users on
the path, i.c.,

min i: Sy i = —1
PeP? W ’
1) €y
(25)
S.t. si,j = +1s
P| < N.

where N is the maximum number of hops allowed
before reaching the destination.

The forward induction dynamic program pre-
sented in Algorithm 5 can be utilized to solve
Eq. 25 for acyclic directed networks. For networks
that contain cycles, the Dijkstra-like algorithm

from Algorithm 6 can be utilized for solving
Eq. 25. The temporary labels of each node are
now updated at each step to identify the minimum
number of nodes from the source to the
corresponding node that are influenced negatively.

Numerical Results

The propagation patterns and optimal strategies
are investigated for a synthetic small-scale
directed acyclic grid network in Guler et al.
(2014a, b, 2015). Large-scale simulations are
performed using the online Epinions dataset
(Leskovec et al. 2010a). Epinions is a consumer
review website in which users can identify other
users as friends or foes. These labels are then used
to construct a signed social graph, which has
131828 nodes and 841372 edges. Throughout
the numerical evaluations, source and destination
nodes are selected randomly. The algorithms are
applied to each source-destination pair to find the
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Algorithm 6  Minimizing the Number of Negative Influences for Cyclic Graphs

1. Define the sets
2. Set permanent labels of the source node i, as 77:/+ (ip)

Ny ={i},N- ={i,}.

=0and _(i,)=-c.
. For the remaining nodes i € V, determine the temporary labels from:

0 lf Si(;.,l' = + 1

s (l) 0.W.

1 if S,‘O’,' =—1
0.W.

(i)

5]

such that in the case of no edge between i, and i, use an infinite cost.

4. Identify anode j € V that satisfies:
n(j)= ,AevaTiféM, {ms (i), m-(j)}
5. n(j) = 7. (J)
', (j)=m(j)and Ny = N, U{ j}
6. else
7 (j)=n(j)and N_=N_U{j}
7. NyAN_=V
STOP
else
3. Evaluate and update temporary labels V(j,i) €
9. ifs;;=+1
10. if (n(j)= ())/\(zGN Ny)
7 (i) = min (z; (i),74(})
11. elseif (7 (j):n(])) (ieN—-N_)
(i) = min(z_(i), 7_(j)+ 1)
13. else
14. if (n(j) i (j)AN({FEN-N_)
(i) = min (7 (i), 7, (j)+ 1)
15. elseif (w(j)= nm_(j))A (zeN N.)
(i) = min (zy (i), 7 ()
16. Go back to Step 4.

E:

optimal propagation strategy such that, when started
from the source node, the destination is influenced
positively when the propagation terminates.

The Dijkstra-like algorithm from Algorithm 2
is compared with a naive myopic approach for
finding a low-cost positive path. For the imple-
mentation of Algorithm 2, the cost between node
i and node j is denoted by x|i — j| with a weight
parameter x = 0.1. The myopic algorithm, termed
as shortest DFS, is a depth first search algorithm
that traverses the graph starting from the source
node trying to reach the destination. The algo-
rithm selects the successor of each node with the

lowest cost, repeated recursively until reaching
the destination node. In case no path is identified
from a node to the destination, a successor with a
higher cost is picked by the algorithm.

Table 1 includes the evaluations for Algorithm 2,
whereas Table 2 presents the results of the shortest
DFS' (myopic) algorithm. From comparing the
results in Tables 1 and 2, we observe that the aver-
age cost of the paths found by the shortest DFS
algorithm is five times the cost of the paths found by
Algorithm 2. From the evaluations performed for
100 sources and 100 destinations, one can observe
that, among the 10000 possible source-destination
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Influence Propagation in Social Networks with Positive and Negative Relationships, Table 1 Implementation

results of Algorithm 2 for the Epinions dataset

Number of Number of Number of
source nodes destination nodes | paths identified
100 100 8830

500 500 218499

10000 10000 78029370

Path length Path length Path cost Path cost
(average) (median) (average) (median)
54.450 40.0 3436.569 2488.4
55.148 42.0 3419.907 2363.7
47.024 30.0 5027.842 4145.1

Influence Propagation in Social Networks with Positive and Negative Relationships, Table 2 Implementation
results of the myopic algorithm (shortest DFS) for the Epinions dataset

Number of Number of Number of
source nodes destination nodes | paths identified
100 100 1041

500 500 27309

Path length Path length Path cost Path cost
(average) (median) (average) (median)
660.727 638.0 17604.642 | 16875.4
726.949 727.0 19134.178 18425.9

Influence Propagation in Social Networks with Positive and Negative Relationships, Table 3 Implementation

results of Algorithm 6 for the Epinions dataset

Number of | Number of Number of Path
source destination paths length
nodes nodes identified (average)
100 100 8830 4.023
500 500 218499 4.097
10000 10000 78029370 4.646

pairs, the destination cannot be reached from the
source in 8957 cases for the shortest DFS algo-
rithm. Though some of these pairs may in fact be
unreachable due to the network structure, i.c., the
source and the destination may be disconnected,
with the Dijkstra-like algorithm only a number of
1168 cases the destination is not reachable from
the source. As a result, only a tenth of the paths
that were discovered by Algorithm 2 were also
discovered by the shortest DFS algorithm. For
500 sources and 500 destinations, the number of
times for which a destination is not reachable
from the source with the Dijkstra-type algorithm
is 31460, whereas the same number is 222650 for
the shortest DFS algorithm. Accordingly, the
shortest DFS algorithm has found only a tenth
ofthe paths identified by Algorithm 2. Moreover,
for 10000 nodes, the shortest DFS algorithm has
not been able to terminate within the maximum
allowed computing time.

The numerical results for Algorithm 2 is given in
Table 3, from which it can be observed that even for

Path Negatively Negatively
length influenced nodes influenced nodes
(median) (average) (median)

4.0 0.096 0.0

4.0 0.057 0.0

5.0 0.123 0.0

very large number of source and destination pairs,
no nodes are influenced negatively in at least half of
the paths. Moreover, less than five hops existed on
average in each path. Hence, one can find a rela-
tively short path from one node to another domi-
nated by positive influences and friendship relations,
and almost every node can influence a target node
positively within a small number of hops.

Key Applications

Influence diffusion and maximization has found
wide applications in the design of recommender
systems and word-of-mouth marketing in online
social communities. A recommender can influence
the maximum number of people by initially adver-
tising its product to a judiciously selected small
number of seed users who can trigger a widespread
influence diffusion pattern. As such, influence
maximization algorithms can identify which indi-
viduals trigger the largest influence spread.
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Epidemic models can identify the critical opinion
diffusion rates in the network which can be utilized
to determine whether a new opinion or trend will
die out or continue to spread in the long run.

Applications of targeted influence propagation
in signed networks consist of situations that arise
out of differing ideas, interpretation of situations,
acts, groups, events, or activities that are propa-
gated by users of social media. Examples of these
scenarios include promoting an online product or a
candidate in a voting process, situations involving
radical events such as terrorism, or rivalries
between sports teams. The biases held by the online
social media users are often publicly available, i.e.,
can be observed, through the online posts they
share or pages they like. In most online social
media applications, messages shared from a large
number of persons go through a filtering process
before appearing on the newsfeed or being
suggested by the recommender. The recommender,
who is in charge of the filtering process, can prior-
itize the posts, acts, or choices of certain users. It is
therefore important to understand the possible
strategies that may be adopted by the recommender
and its impact on the social community.

Future Directions

Future directions include the design of multilayer
influence propagation schemes for networks by
taking into account multiple relationship types, by
extending the signed network scenario with only
positive and negative relationships to multiple
types of relationships. Another future direction is
the development and analysis of practical modern
social network applications that take into account
the degree of positivity and negativity of the rela-
tionship type based on threshold techniques, and
developing inference strategies for identifying
influence patterns in social communities.
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Synonyms

Interorganizational collaborations; Inventor net-

works; R&D (Research and Development)
collaborations

Glossary

Architectural Refers to innovation in high-
control technology systems and

measures how the control over

Heterogeneity

Innovation
system (IS)

Separability of
innovation

Technological
dynamism and
uncertainty
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the architecture of the final
product is concentrated within
the hand of one (or few) agents
(Prybeck et al. 1991).

A concentrated architectural
control can be found, for
instance, in a high-tech industry
where a dominant standard
interface incorporates
proprietary elements, such as
telecommunications networks
Relationships in an Innovation
System span across very
different kinds of agents,
ranging from firms to scientists.
In addition, each agent is
endowed with specific features
and a unique knowledge base
An analytical framework aimed
at understanding how
innovation is produced in a
complex system of interacting
agents. The IS approach,
introduced by Lundvall (1985),
is now especially used to study
innovation at national or
regional level

Applies to product systems and
indicates the degree to which
components and/or processes
are independent and innovation
activities can be performed by
separate agents. Separable
innovation systems are
associated with a higher
community activity (Baldwin
and Clark 2000)

In a rapidly changing
technology environment where
knowledge often has a tacit
component and is strongly
distributed over agents,
collaborations become a central
component of the innovation
strategy (Tushman and
Rosenkopf 1992). Moreover,
collaborations mitigate
uncertainty about the direction
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of technological change.
Innovators share risks when
they collaborate which allows
for more flexibility and more
investments in future
opportunities as compared to an
isolated state

Definition

From the perspective of innovation economics
evolving institutions, innovating entrepreneurs,
technological change, and creative destruction are
the driving force of economic growth (Schumpeter
1942). To mitigate the uncertainty involved in the
creation of new processes, products, or business
models, innovation exhibits an intrinsic collabo-
rative nature. Innovator networks form through
formal and informal collaborations between dif-
ferent agents, including firms, institutions, uni-
versities, state agencies, inventors, and other
stake-holders of the innovation system. Being
embedded in a network enables these agents to
coordinate innovative efforts, as well as to pool
and jointly create knowledge (Kratzer et al.
2009; Raab and Kenis 2009).

Introduction

To cope with the variety of agents in innovator
networks, their analysis can be abstracted in a
network approach where nodes represent the
innovating entities and links represent their col-
laborations. A large body of literature in this
field has focused on collaborating firms (Allen
1983) as the fundamental units in creating inno-
vations, which is in line with recurrent theoreti-
cal arguments such as Schumpeter’s idea of
innovation as a recombination process, or the
resource-based view of the firm. Firm-related
data sources, such as databases on strategic alli-
ances, offer the possibility to construct large and
often longitudinal networks, allowing extensive
empirical studies. Hence, innovator networks in
this article refer mainly to networks of collabo-
rating firms.

Innovator Networks

Key Points

Collaboration between innovators is not a new
phenomenon; however, the 1980s and 1990s
witnessed an unprecedented growth of strategic
alliances aimed at research and development
(R&D) activities (Hagedoorn 2002). This has
been investigated by two different streams of
empirical literature (see Ebers 1997; Veugelers
1998; Walker 2005, for a more extensive
overview).

A body of work has studied the salient features
of empirically observed collaboration networks
(see e.g., Fleming et al. 2007; Powell et al. 1996;
Roijakkers and Hagedoorn 2006). These studies
have found that collaboration networks exhibit a
small-world topology characterized by short path
lengths and high clustering. In addition, these
networks tend to be highly heterogeneous and
centralized, although there exist some differences
across industries (Powell et al. 2005; Rosenkopf
and Schilling 2007), as we show below. The study
by Tomasello et al. (2014) further investigates the
drivers behind the formation of interfirm R&D
alliances and presents a model to reproduce the
observed “small-worldliness” of R&D networks.

Another body of work has studied the network
position of firms in relation to their performance
and the role of link density in knowledge diffu-
sion. It is of interest whether dense interconnec-
tions are more conducive than weak bridging ties
between separate communities (Granovetter 1983).
Indeed, clusters of densely connected firms foster
collaboration efforts by generating trust, punish-
ment of opportunistic behaviors, and common
practices (as shown by Ahuja 2000; Walker et al.
1997). Conversely, by creating a structural hole in
the network, firms have access to different sources
of knowledge spillovers, economizing on the
costs of direct collaborations (Burt 1992). Other
works (Gulati and Gargiulo 1999; Rosenkopf
and Padula 2008) have analyzed the mutual feed-
back between a firm’s position in the network
and its knowledge base. As it has been found by
Cohen and Levinthal (1990) and Lazer and Fried-
man (2007), two agents should not be too similar
nor too different in their knowledge bases in order
to engage in a collaboration.
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Historical Background

Following the wave of empirical research, various
theoretical models have explored the dynamics
of collaboration networks and their impact on
innovation. This literature on network formation
is basically divided in two strands (Schweitzer
et al. 2009). In the dynamic random network
approach, mainly developed by mathematicians
and physicists, networks are formed either
through a purely stochastic process or through
some other statistical algorithms (see e.g., Ehrhardt
et al. 2006). In the strategic network approach,
mainly developed by economists, strategic interac-
tion decides about the link formation: agents may
follow different strategies (see e.g., Jackson and
Wolinsky 1996; Konig et al. 2011) to decide
about — and interact with — their counterparts; there-
fore, this approach is also called “games on net-
works.” While the random network approach gives
insights into sow networks form, the strategic net-
work approach tries to explain wiy networks form.

In the “games on networks,” the network is
usually static and taken as given, and the focus is
on how the network structure impacts on outcomes
and individual decisions. In particular, some works
(Ballester et al. 2006; Goyal and Joshi 2003) show
that the centrality of an agent in the network pre-
dicts its innovation efforts and outcomes.

Other works combine a dynamic approach
with games on networks. For instance, Konig
et al. (2008) and (2012) examine the theoretical
efficiency of a given network in terms of total
profits maximization, showing that the most effi-
cient network structure depends on collaboration
costs. When the marginal cost is low, the efficient
collaboration network is fully connected, while a
high marginal cost implies a sparse efficient net-
work, with a core-periphery structure. In another
work combining strategic agents’ decisions with a
dynamical network evolution (Tomasello et al.
2015, 2016b), the effect of R&D alliances on the
firms’ technological positions is studied through
an agent-based model. The study uses real patent
data for a precise quantification of every firm’s
knowledge position, and shows that effective poli-
cies for an optimized collaboration network would
promote shorter R&D alliances and higher interfirm
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knowledge exchange rates (e.g., by including
rewards for quick co-patenting by allied firms).

lllustrative Examples

We present here two illustrative examples of inno-
vation networks, from the empirical literature. In
the first example (Rosenkopf and Schilling 2007),
the comparison of alliance networks across indus-
tries highlights how technology relates to network
structures. The alliance network for 32 industrial
sectors has been analyzed in terms of size, con-
nectivity, centralization, small-world properties,
and other indicators. As shown in Fig. 1, the
networks exhibit different structures across indus-
tries, depending on their technological features.
Technological dynamism and separability of
innovation are positively related to the number
of firms participating in alliances (the size of the
network) and to the average number of alliances
formed by each firm (the average degree). The
concentration of architectural control is instead
correlated to the asymmetry in the degree distri-
bution (number of alliances per firm) and to the
appearance of small-world architectures in the
network (high clustering and short path lengths).
The second work (Tomasello et al. 2016a)
extends the investigation of R&D networks to
the temporal dimension, by employing a longitu-
dinal dataset (from 1986 to 2009) of alliance for-
mation in several manufacturing sectors. The
study has found that most network properties are
not only invariant across sectors (as shown in
Fig. 2) but also independent of the scale of aggre-
gation at which they are observed (i.e., in the
aggregated global R&D network versus the indi-
vidual sectoral R&D networks). Remarkably,
many properties of R&D networks are character-
ized by a peculiar rise-and-fall dynamics with a
peak in the mid-1990s, driven by mechanisms of
accumulative advantage, structural homophily,
and multiconnectivity (see Powell et al. 2005). In
particular, the multiconnectivity hypothesis states
that partners allowing a firm to reach many other
firms through multiple independent paths in the
network are the most attractive alliance partners.
The study has found that the change from the
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Innovator Networks, Fig. 1 The structure of the collab-
oration networks in nine distinct industrial sectors. Some
sectors (industrial codes 221, 262, and 314) exhibit dis-
connected networks, consisting mainly of pairs of allied
firms with no bridging ties. Other sectors (codes 372, 281,
and 384) display networks of moderate size, defined

“rise” to the “fall” phase is indeed associated to a
structural break in the importance of multi-
connectivity as driving mechanism behind the
strategic choice of alliance partners.

Key Applications

One prominent application in the field of innova-
tor networks is the use of agent-based models to
not only reproduce the characteristics of the
observed networks but also to predict their forma-
tion and evolution, and to possibly optimize some
indicator of actual knowledge production and dif-
fusion. In this respect, the study by Tomasello
et al. (2014) develops an agent-based model of
strategic link formation, to explain the emergence
of such structures observed in real collaboration
networks. Similarly to the previous illustrative
example, the study is inspired to the four funda-
mental link creation mechanisms identified by
Powell et al. (2005) — accumulative advantage,
homophily, follow-the-trend, and multiconnectivity —
and to the stylized facts reported in Rosenkopfand

314 Leather footwear

- ¥
e

384 Medical instruments
and supplies

Innovator Networks

357 E:omputer and office

equipment equipment

371 Motor vehicles and
equipmenl

hybrids, with many separate clusters of nodes, but no
main component dominating the graph. The last sectors
(codes 357, 366, and 371) show large spider-web net-
works, consisting of a main component and several periph-
eral components (See Rosenkopf and Schilling (2007) for
more details)

Padula (2008), showing the presence of distinct
clusters (or communities) in a real R&D network.
By incorporating a set of appropriate link forma-
tion rules into an agent-based model, Tomasello
et al. (2014) are able to reproduce the emergence
of network clusters (see Fig. 3), as well as other
additional network indicators, including the dis-
tributions of degree, local clustering, path length,
and size of the network components.

Finally, by estimating the link probabilities
towards newcomers and incumbent firms from
the data, the study has found that the alliance
formation process is dominated by network
endogenous mechanisms. In other words, the
existing network structures (i.e., social capital)
are more important than the firms’ own character-
istics (i.e., technological and commercial capital)
in selecting new R&D partners.

Future Directions

Empirical evidence suggests that innovator net-
works are not designed, but emerge endogenously.
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Pharmaceuticals
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Aircrafts and parts

Medical Supplies

Innovator Networks, Fig. 2 Snapshots in the years
1989, 1993, 1997, 2001, 2005, and 2009 for five selected
sectoral R&D networks: Pharmaceuticals, Computer Soft-
ware, Communication Equipments, Aircrafts and parts,
Medical Supplies. Blue nodes represent the firms strictly
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Innovator Networks, Fig. 3 The formation of an

interfirm innovator network, captured through an agent-
based model. The figure depicts a representative example
of strategic link formation and community building in
a collaboration network. The result is a network whose

009

belonging to the examined sector, while orange nodes
represent their alliance partners belonging to different sec-
tors. The peculiar rise-and-fall trend is visible in all sectoral
networks shown

synthetic communities (represented by different colors)
exhibit a remarkable overlap with the empirical ones
(represented by different locations in the plot area) (See
Tomasello et al. (2014) for more details)



1108

Agents pursue self-interested goals when forming
and dissolving relationships, and thereby create an
evolving network that affects all the agents in its
turn. Although some models are already able to
capture several empirical observations, a compre-
hensive theory to explain the features of real-world
innovator networks is still missing. A complete
study should be able to reproduce similarities and
differences across the large variety of observed
innovation systems, and at the same time unveil
the complex interdependencies between the net-
work position of the innovators and their intrinsic
knowledge characteristics.

Besides, substantial potential for future work
lies in the study of performance, optimization, and
resilience of real innovator networks. The exercise
of defining and maximizing a performance indica-
tor, so far limited to the field of R&D networks (see
Tomasello et al. 2016b), could be extended to other
domains. The ultimate goal would be to assess
innovator networks in real time, and design policies
to make them more resilient and more conducive to
knowledge transfer.

Cross-References

Actor-Based Models for Longitudinal Networks
Collaboration Patterns in Software Developer
Network

Entrepreneurial Networks

Interorganizational Networks

Network Games

Networks of Practice

R&D Networks
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Synonyms

Community evolution;

Dynamic community

detection; Temporal analysis; Temporal networks

Glossary

Dynamic a community that changes

Community over time

Ego-Centered a community based on a

Community targeted node called ego

Instant a social network

Messaging communication built based on

Networks the content of instant
messaging

Instant an online chat that offers real-

Messaging time text transmission over the
Internet

Spatiotemporal  a social network that is built

Network based on individuals, their
interaction, and their location
over the time

Definition

The development of online social media has cre-
ated many opportunities to communicate, access,
and share information from anywhere and at any-
time. The kind of application such as Viber,
WhatsApp, Imo, Line, as well as Facebook affords
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plenty of possibilities for getting in touch with
friends, colleagues, and relatives at every moment
with real-time messages, photos, videos, etc. Data
collected from those applications integrate two
parameters such as the time and the geographical
position from which they were sent and/or
received. Therefore, it is worthwhile to build a
social network based on instant messaging con-
tent to find out “who talk to whom” and/or “who is
closed to whom.” Such a network that we call
instant messaging network (IMN) can be
represented as a graph where individuals are the
vertices and their interactions the edges.

Alongside the growth of online social media,
there is a rapid expansion of social network anal-
ysis (SNA), which is a process of exploring the
graph in order to discover knowledge leading to
informative decision-making. At the heart of the
SNA topics that attract many scientists, we have
the community detection. The mean reason is
related to the fact that individuals tend to form a
community in many real-life situation. The first
works on this topic had been conducted on statical
aspects while neglecting that community struc-
tures may be dynamic or ad hoc due to specific
characters related to the location and/or time.
Thus, the major drawbacks of the static commu-
nities are the fact they neither depict the real-time
situation nor how the communities were shaped
over time. To face these limitations, recent works
were conducted in order to deal with the dynamic
and/or temporal features of the communities.

The purpose of this work falls within this frame-
work while addressing the ego-centered communi-
ties in dynamic networks. The key idea is to detect
community structures while targeting some nodes
we found interesting based on their position.

Introduction

Research in either dynamic networks (DN) or
spatiotemporal network (STN) is attracting more
and more scientists, thanks to the rapid develop-
ment in information technology and computing,
which allows to retrieve data from everywhere
and at anytime and to build scalable solutions.
Some examples of complex networks that are
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possible to handle today are mobile social networks
(Eagle et al. 2009; Gao et al. 2012), disease diffu-
sion (Rocha et al. 2011), electric power systems
(Paevere et al. 2014), artificial neural networks
(Ermentrout 1998; Zeng and Zhang 2013),
etc. Nonetheless, it is worth noticing to remind the
little confusion between temporal and dynamic net-
work community. The difference can be portrayed
as follows: the dynamic aspect generally focuses on
how the topological structure evolves over time,
while the temporal aspect focuses more on the
historical traces of those changes. Notwithstanding
this difference, it is still challenging to deal with
STN or DN due to their time and/or space dimen-
sions. Therefore, we rely, for the purpose of this
study, on instant messaging network (IMN), which
is a good illustration of both STN and DN.

To address the time dimension, many solutions
rely on capturing a series of snapshots at different
time windows. For each snapshot, one may apply
a set of processes and finally compare the out-
comes with the ones obtained in the other snap-
shots. This strategy is widely used in dynamic
community studies in order to track changes
over time and has the advantage of reusing
existing algorithms of static community detection.
Even though there are many approaches that try to
deal efficiently with the problems raised by the
reuse of static algorithms for dynamic community
detection, there are less works addressing the
problem of how to assess and to set the time
windows. Rather, a time window size has a real
impact on a community structure evolution since
it determines the data that belong to each snap-
shot. In other words, a bad size definition of the
time windows can lead to miss the most interest-
ing structure changes.

Another challenge is the collection, the interpre-
tation of instant messaging platforms, which pro-
vide huge and various information with a high
velocity. Actually, in many studies, data contents
are extracted and analyzed for unveiling knowl-
edge. Important parts of these approaches rely on
semantic rules and/or more simply on keywords to
identify the network structures (nodes and their
links). However, when it comes to dealing with
temporal networks, it is worthwhile to integrate
the fact that links can either vanish or intensify
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over time. That is, everything (nodes as well as
links) must be set as dynamic. Moreover, based on
the exchange flows, a link direction may switch
over time and leads to many changes in the struc-
tures of the communities. Therefore, instant mes-
saging networks should be modeled as a directed
and weighted graph in order to deal with the fre-
quency and the direction of the interactions. In our
best knowledge, there is a glaring lack of studies
that target the challenges we pointed out while we
count hundreds of works in community detection
topic. In this entry, we aim at facing the above
challenges by focusing on two aspects: (1) discuss
on how to represent data from instant messaging in
order to track evolution and (2) propose the build-
ing blocks of a dynamic ego-centered community
detection in IMN.

Key Points

The objective of this study is to detect dynamic ego-
centered network based on instant messaging. To
this end, we consider data from an instant messaging
platform such as Facebook or WhatsApp and build a
social network based of “who talk to whom” and/or
“who is closed to whom.” We aim therefore at
finding out communities centered on some special
nodes due to their characteristics or social positions.
This is very useful since identifying individuals that
are closely exposed to a disease is a starting point for
controlling an epidemic. With this insight, finding
out nodes that share a community with an infected
individual may help to point out who is exposed or
not and where it is more relevant to make specific
actions to break down the disease spread. The goal
of this entry is twofold. First, we propose an
approach to detect ego-centered network based on
instant messaging network. Second, we envision a
tracking mechanism to see how communities evolve
over time.

The remainder of this entry is as follows. We
first present a background related to dynamic
community studies before describing instant mes-
saging network. Afterward, we portray how we
deal with dynamic community detection. Finally,
through some illustrative examples, we explain
how our proposal works.

11

Historical Background

Dynamic communities in social networks have
attracted many researchers, and one of the main
focuses of their studies is the tracking of commu-
nity evolution (Hopcroft et al. 2004; Chakrabarti
et al. 2006; Wang et al. 2008; Lancichinetti et al.
2009; Chan et al. 2009; Greene et al. 2010; Xu
et al. 2011; Li et al. 2012; Xie and Szymanski
2012; Brodka et al. 2013; Shang et al. 2014;
Cazabet and Amblard 2014). There are two main
trends that emerge from existing algorithms deal-
ing with dynamic communities, namely, snap-
shot-based approaches and stream-based ones.

The general idea on which snapshot-based
approaches rely is capturing a set of successive
static networks, each called a snapshot that repre-
sents an evolution of a dynamic network at a time
slot. The principle of these approaches is based on
three steps. First, decompose the network into sev-
eral snapshots based on a regular time period. Sec-
ond, apply a static algorithm on each snapshot in a
strict or partial sequential manner. Third, compare
communities of any couple of snapshots and assess
whether the community structures have changed.

Furthermore, the incremental approach repre-
sents another alternative, which does not consider
the network as a sequence of multiple snapshots.
The key idea is to consider changes as a result of a
stream of events. Basically, the approach captures
the sequence of events and modifies directly current
community structures rather than recalculating a
new composition from scratch. This approach is
particularly useful in the case of a real-time analysis.

The approach presented in this entry is related
to a snapshot-based approach since we do not
focus on real-time analysis.

Description of Evaluation Network

We consider a mobile-based instant messaging plat-
form such as WhatsApp or Facebook run on a
mobile for harvesting data of users and some addi-
tional informations such as their geographical posi-
tion as well as their exchanges flow over time. Based
on the collected data, we build an instant messaging
network (IMN) that is represented by a social graph
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where nodes are the users and link the communica-
tion between them (e.g., real-time texts or calls). In
this respect, a set of users are identified as the seeds,
and once a seed texts or calls a new phone number,
we add it as a new node and set the corresponding
link. A link is created after a call or a post as well as
any reaction related to it. For example, all individ-
uals who comment or who like as well as who share
a post of someone are linked to him or her.

Node’s Information
For each node, we gather the following
informations:

 Identifier: It helps identifying each user in a
precise and unique way (e.g., number, phone
numbers, user profile, etc.).

* Arrival time: It gives the time that a node
comes into the network.

Link’s Information
The following informations characterize each link:

+ Direction: It shows who initiates the interac-
tions and who reacts.

»  Weight: It keeps the intensity of the communi-
cation expressed in terms of the number of mes-
sages or number of calls during a time window.

* Location: It indicates the geographical position
of the nodes at the beginning of their
communication.

* Duration: It represents the time that lasts each
interaction. Actually, if the nature of the interac-
tion is a voice call, thus, the duration is the period
that two nodes talk each other from the beginning
till they hang over. However, if the communica-
tion is based on real-time texts, we set a short-
time threshold (called user active chat slot T,,)
beyond which we consider that the interaction is
over. That is, we have the same communication
between two nodes if the delay of any two sub-
sequent messages is shorter than T, . If one of
the users waits more than the user active
chat slot, then, we consider he initializes a
new communication even if he is answering a
message belonging to the previous communi-
cation. The intuition behind this copes well
with the instant messaging philosophy where
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individuals tend to text in a real-time fashion in
such a way that messages from a user have their
response instantaneously.

Network Changes Information
We distinguish a set of changes that may affect the
overall structure of the network and its communities:

* Incoming node (IN): A node that does not yet
belong to the network.

* Vanishing node (VN): A node is considered as
vanishing if its communication rate is equal to
zero during a given time window.

* Incoming link (IL): It reflects the first time two
nodes start exchanging.

+ Vanishing link (VL): A link is considered as
vanishing if one of the nodes that share it
vanishes.

* Growing link (GL): A link with an increasing
weight, thanks to the higher communication
rate of the corresponding nodes at a given
time window.

In short, our social graph is a directed
and weighted ego network, and it is made of
people who send texts or make call between
them. Moreover, the graph is dynamic and we
set a variant time windows to capture the network
evolution. In other words, for each time window,
we extract a snapshot and checks whether a given
community structure evolves or not.

Example of Instant Messaging Network

In this section, we show how to build an instant
messaging network from a real-time discussion fol-
lowing, for instance, a Facebook post. There are two
situations that may happen after a post: (1) someone
reacts to the post directly, and (2) someone reacts to
one of the comments of the post. Hence, the net-
work is built based on all the individuals that partake
to the exchange flow of posts and/or comments. In
this respect, we have the following:

* A link is created between a person who adds a
post or a comment and the ones who react to it. If
the person reacts to a same post/comment several
times, we just add a weight on the link that
represents the number of comments he/she made.



Instant Messaging for Detecting Dynamic Ego-Centered Communities

i Md Shoaib Elias
01

¥ Amaar Mauritanie
e

Like - Repl

e Reply ©1
n Ahmed Mohamed

Like Reply ©1

& Amaar Mauritanie

Like Reply ©1
FI Hamedy Brahim
“ Like Reply ©2
& Amaar Mauritanie

Like Reply ©1

*

H Fagih Khoerurrizal Mansur

Like - Rep
n Ahmed Mohamed

Like  Reply © 4
n Faaih Khoerurrizal Mansur

n Ahmed Mohamed

n Khater Zeine Dine

Ahmedou Bamba lchedou

1113

q Doss Aburass

Like Reply ©1
n Ahmed Mohamed

Like - Reply

l! Doss Aburass

Like - Reply

n Ahmed Mohamed

Like Reply ©1

l'! Doss Aburass

Like - Reply ©1
F Haroldo Ramirez
£

Like Reply ©1
n Ahmed Mohamed

Like Replv @1

ar Shawon Kumar
-_—

e - Reply ©1

""}e Jeremy Talanay

Like - Reply ©1
n Badawi Mady

ke - Reply ©1

2

Cheikh Mohamed Ali

f'.:

-

ke  Reply ©1

Instant Messaging for Detecting Dynamic Ego-Centered Communities, Fig. 1 Screenshot of an instant discussion

on Ahmed’s post on Facebook

* The link direction goes from the person who
makes a reaction to the person that owns the
posts or comments.

Figure 1 shows an example of instant discus-
sion on Facebook. The post is created by the user
named Ahmed Mohamed. For data privacy rea-
sons, the message contents are hidden. From this
discussion, we extract the corresponding social
graph as depicted on Fig. 2.

Dynamic Ego-Centered Community
Detection

As pointed out in the section, we rely on the
snapshot-based approach to find out and track
ego-centered communities over time. The algo-
rithm starts by finding out the ego nodes that we
choose between the most central nodes. Ego

nodes are considered as the ones that may influ-
ence, for instance, the rest of the network. Actu-
ally, our solution is devised on two aspects: (1) a
community detection algorithm that takes into
account the features of an instant messaging net-
work (IMN) and (2) a mechanism to find out
community changes over time.

IMN Community Detection

For each ego node, the algorithm identifies the
nodes that will form its community by creating
first a seed before adding any nodes that may
increase the cohesion of the group. The group
cohesion is estimated by a quality function that
we define later in this section.

Finding the Seed

To identify the seed of a given ego node, we rely
on its direct neighborhood. In this respect, we
have a random and a nonrandom approach. For
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corresponding to the instant discussion shown in Fig. 1

both cases, the seed is made by considering the
ego node with one or more of its neighbors.

Random Seed In this case, we choose randomly
one or more nodes among the neighbors of the ego
node. It is trivial to observe that the seed is differ-
ent for successive initializations, which may lead
to different community structures.

Nonrandom Seed This approach considers the
nodes with a higher degree centrality as well as a
higher communication intensity with the ego
node. Since the links are oriented, for each neigh-
bor, we sum the weight of the incoming link and
the outgoing ones in order to calculate its commu-
nication intensity with the ego node. This
approach has the advantage to consider almost
the same seed for successive initializations.

Shaping the Community of a Given Seed

Since we address a dynamic network, we consider
both the topological structure of the network and the
intensity of communication over time. Once a seed
is identified, we build the ego-centered community
by adding in a straightforward manner other nodes

while trying to maximize the cohesiveness of the
group. In this respect, we define a quality function
that captures how cohesive is a group.

Quality Function to Measure a Group
Cohesion There are several solutions that propose
an approach measuring the cohesion of the group,
for instance, the functions described in Shi and
Malik (2000), Clauset (2005), and Chen et al.
(2009). The work of Ngonmang et al. (2012)
assesses the community cohesion by using the
degree sum of internal nodes versus the outgoing
links from the community. However, the main draw-
back is the noninclusion of communication intensity
in the calculation. In a context of a dynamic net-
work, the communication rate may intensify or van-
ish and should, therefore, be integrated to evaluate
the group cohesion over time. The method proposed
by Lu et al. (2013) takes into account the intensity of
communication by weighting the links. However, it
neglects the topological dimension, i.e., two links of
the same weight and having different degrees are
considered equivalent.

To overcome these drawbacks, we propose a
new quality function that combines both the
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communicational and the topological aspects to
address the IMN features.

Actually, our quality function is based on the
two well-known community definition criteria: (i)
the separation from the rest of network and (i7) the
internal cohesion.

The first criterion is taken into account by
dividing the sum of weights of outgoing links by

wg“’
the lower this ratio, the more the group is isolated
or separated from the rest of network. That is, the
intensity of the communication within the nodes
of C is higher than the communication between
nodes of C and the rest of the network.

The second criterion is addressed with the topo-
logical aspect of the community. Basically, if the
number of links of a community is significantly
greater than the number of its nodes, thus, the
subgraph representing the community is highly
dense. That is, each node of the community is
almost linked to all other nodes and indicates how
cohesive is the structure. Therefore, the proportion
Vel

E.| assesses at what level the community is cohe-

sive. The quality function is defined as follows:

E sout
WC

§ in
Wwe

the sum of weights of incoming links

. Thus,

Vel

(D
where

* ZWmu
shared between a node inside C and another
outside of it.

* >, means the weights sum of the links that

represents the weights sum of the links

belong entirely in C.
* |Vl is the number of nodes in community C.
* |E(| is the number of links in C.

In conclusion, when 1/(C) = 0, then, both the
internal cohesion and the separation from the rest
of the network are satisfied. In other words, a good
community, in our definition, is the one with a
low-quality function value.

Step-by-Step  Ego-Centered = Community
Detection Let G = (V) E) be a weighted and
directed graph, where V represents the set of
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nodes and E is the set of links. Assume
u € V being an ego node, its neighbors are
represented by the set N, while the seed calculated
by one of the two methods described before is
represented by S,. The community centered on
u is obtained by finding out the nodes that minimize
the quality function value y/(C,,). In this respect, we
formalize the definition of C,, as follows:

C :{{MGV} Y (C) <a if uen,
“T{ueVy | oplu, v)AY(C) <o if ugN,

The first part of the equation is applied for any
node v directly linked to u (i.e., v € Nu).

The second term is introduced to consider
nodes that are two or more steps from the ego
node. p(u, v) means that there is a weighted path
either from u to v or from v to u. The weight of p
is calculated by adding the weight of the differ-
ent links that form the path. The reason for
introducing the second term is to avoid
having an ego node and its direct neighbors as
a community. Moreover, as pointed out in the
previous section, the threshold « has to be set
approximatively equal to 0 to obtain more cohe-
sive group. To build the community of u, we
initialize C,, = §,, and let therefore our algorithm
that works in a three-phase fashion doing the rest
as follows:

* Phase I: Select a node v¢ C,, from Nu or
V- Nu;

* Phase 2: Check if (C,, U v) decreases;

* Phase 3: If the outcome of phase 2 is positive,
thus, adds v in C,,.

These three phases are repeated till y/(C,)
reaches the threshold «. Moreover, in the selection
phase, we ensure that the chosen node is the one
with a higher connection with the ego node or the
members of its community. This strategy ensures
to have a partial order with which nodes are
selected. Nonetheless, the detail of such algorithm
is beyond the scope of this entry, but it works in
such a way that both the topological aspect and
the communication one are well integrated. Fur-
thermore, it is worth noting that in case we build
the communities of several ego nodes, the
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algorithm can detect overlapping communities
since one node can belong simultaneously to sev-
eral communities.

Mechanism of Tracking Community Changes

The question we have to address first is how do we
track the changes: Should we do it in a continuous
manner or a discontinuous one? In our case, we
decide to use the discontinuous fashion since we
do not aim to have the trace of every single change
but the overall change in some particular points.
The first problem raised is to define these particular
points, which we suppose known in this entry due
to a sake of presentation. Basically, we follow the
change of a single community over time by
checking in each particular point whether its struc-
ture has changed or not. In other words, we take a
snapshot for each time point and see how the
structure evolves. To this end, we apply our ego-
centered community construction in a sequential
manner on each snapshot. The outcome of the
snapshot at 7 is compared with the one of 7 + 1
in order to identify changes if ever. As in the
literature, the evolution that may occur is catego-
rized in seven classes: growth, contraction, con-
tinuing, division, merging, birth, and death. In
opposite with the existing solutions, we do not
just limit our analysis on finding the class of the
evolution but what kind of changes in terms of
nodes (IN or VN), links (IL and VL), as well as
communication intensity (GL) are also harvested.
The reason of doing so is to be able to explain what
factors underline the evolution. In our context, this
strategy is very useful since an evolution of a

Instant Messaging for
Detecting Dynamic Ego-

Instant Messaging for Detecting Dynamic Ego-Centered Communities

community is not always conducted by the topo-
logical aspects but with also the behavior of a node
regarding to an ego node during a time window.

Moreover, we found interesting to introduce
vanishing node (VN) in order to identify nodes
that stay inactive for a long time. However, an ego
node cannot be considered as a VN since it can
stop communicating with its neighbors that keep
exchanging between them. However, a commu-
nity disappears when the number of its nodes is
lesser than a fixed number. For example, if we
consider that a community is composed at least of
N nodes, then an ego community will disappear if
we have less than N — 1 nodes.

lllustrative Examples

We illustrate our overall approach in this section
by first showing how our quality function is used
to detect community of a given network and how
we track community over time.

Community Detection

Consider the network depicted on Fig. 3 been the
initial network made of by 13 nodes and 15 links.
We choose three ego nodes based on their central
position.

We portray in Table 1 how communities are
detected. We start with node 6 and add node 7 to
form S6 and we calculate /(Cg). Afterward, we
review one by one the neighbors of node 6, and
whenever adding of one its neighbors decreases
the value of /(Cs), we do it and move forward to

.
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the next neighbor. If ever an addition of one
neighbor increases /(Cg), we reject it and move
forward. This is done till there is no more nodes
that may minimize y/(Cg). For instance, if nodes
9 and 8 are added first to C, thus /(Cs) value
decreases, while the addition of nodes 4 and
10 will do the opposite. That is, nodes 7, 9, and

Instant Messaging for Detecting Dynamic Ego-Cen-
tered Communities, Table 1 Illustration of the commu-
nity detection procedure

Ego node: node 6

V (Ce) W(Ce) Decision
{6,7} 1.5 Added
{6,7,9} 0.64 Added
{6,7,9, 8} 0.08 Added
{6,7,9, 8,4} 0.84 Rejected
{6,7,9,8, 10} 0.76 Rejected
Final Cg: 6,7, 8,9

Ego node: node 10

V(Cio) W(Cho) Decision
{10, 11} 2 Added
{10, 11, 13} 0.375 Added
{10, 11, 13, 12} 0 Added
{10, 11, 13, 12, 6} 0.68 Rejected
Final C10: 10, 11, 12, 13

Ego node: node 4

V(Cy) Y(Cy) Decision
{4, 3} 4 Added
{4,3,2} 0.5 Added
{4,3,2,1} 0.14 Added
{4,3,2,1,6} 0.55 Rejected
{4,3,2,1,5} 0.06 Added

Final C4: 1,2,3,4,5

Instant Messaging for
Detecting Dynamic Ego-
Centered Communities,
Fig. 4 Detected
communities by our
algorithm in the illustration
network
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8 belong to Cg, while 4 and 10 are rejected. How-
ever, if nodes were selected with the following
orders 4, 10, 9, and 8, thus, nodes 4 and 10 should
be included in Cg since their addition decreases
the /(Cs) value. However, this situation will
never happen because our algorithm ensures that
nodes with a higher connection are first used,
which ensures a certain non-strict partial order
when adding nodes.

After building Cg, we find out C;o and C,; by
repeating the same process. Finally, we draw the
corresponding communities in Fig. 4 with differ-
ent colors.

Tracking Community Evolution
In this paragraph, we illustrate our community
tracking mechanism. To this end, we consider
two snapshots of a network captured at times
T and T +1 as depicted on Fig. 5. As one may
observe it, the network taken at time 7'is made of
three communities (each community with a given
color). Precisely, we have C, = {1, 2, 3, 4, 5},
Cs = {6, 7, 8,9}, and Co = {10, 11, 12, 13}.
At T+ 1, the changes that occur on the overall
structure are as follows:

* 02 vanishing nodes (VN), namely, nodes 1
and 11

+ 02 vanishing links (VL): (4, 5) and (6, 10)

* 04 incoming links (IL): (5, 10), (10, 6), (8, 9),
and (8, 10)

Moreover, when we apply our ego-centered
algorithm, we found three categories of evolution:
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Instant Messaging for
Detecting Dynamic Ego-
Centered Communities,
Fig. 5 Two successive
snapshots of a dynamic
network
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* A growth with Cg gaining two more nodes and
becoming Cg ={6, 5,7, 8,9, 10 }

* A contraction with C4 loosing two node C4 =
{2, 3,4}

e A death of Cy

In Fig. 6, we portray the new community struc-
tures of the snapshot T+1.

Key Applications

The propositions described here can be applied in
several situations such as in epidemiology and
information and/or opinion diffusion.

Snapshot T

Qe

) ‘10w

>\/>—1 —»@474 73

™,

Snapshot T+1

Epidemiology Control

Most infectious diseases spread through close social
links or interactions of human populations. These
interactions are a good channel within which disease
contagion spreads and leads to an outbreak. That is
the reason why social network methods have been
included in epidemiological studies in the earlier
1980s. The goal of doing so is to elucidate the
impact of the human social behavior in the spread
of infectious diseases. In this perspective, our ego-
centered community detection can be applied to
identify nodes with higher risk. In this respect, the
ego-node is considered as the infectious individual,
and finding out all nodes that belong to its
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Instant Messaging for Detecting Dynamic Ego-Cen-
tered Communities, Fig. 6 Detected communities by
our algorithm in snapshot T+1
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community gives information about individuals
who should be under control for avoiding an out-
break. Moreover, since we keep geographical posi-
tions of the nodes, hence, we may assess whether a
risk is real or not and when an action has to be taken
for preventing new infections.

Information and/or Opinion Diffusion

Our mechanism of tracking community changes
figures out how links evolve over time. There-
fore, it reveals links that are more likely to spread
information, which are not well depicted by the
overall structure. Precisely, our mechanism
points out intense and strong links as well as
well as infrequent and weak ties. Actually,
when a link appears and disappears over time, it
is trivial to understand that such a link has a
low probability to diffuse information. In other
words, based on the outcome of our solution,
someone has the information whether an infor-
mation should be diffused in one time slot
or whether it will take a while to reach the
targeted node.

Future Directions

The ongoing works related to this entry are
twofold:
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* Time window size. We plan to propose a
mechanism for setting the time window size
in such a way that captured snapshots contain
enough changes. In fact, the time window
size has a real impact on the outcomes of
our tracking community evolution. A small
size is cost consuming, while a large size
leads to the miss of paramount and pertinent
changes in a real-time basis. In this respect,
we aim at calibrating the time window
in such a way we capture the effective
structure changes while minimizing the com-
putational cost.

» Strict total order for building a community.
We formalize and generalize our concept
of ordering nodes to select when constructing
a community. We recall that when two
nodes have the same position w.r.¢ the ego
node, we choose one of them in a random
fashion. That is, our detection algorithm is
not determinist. We envision to face such a
drawback by setting a total order selection of
nodes in order to make a unique outcome of
the algorithm.
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Synonyms
Board interlocks; Corporate elite; Interlocking

directorate network; Old boys network; Power
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Glossary

Interlocking A link between two organizations

directorate: that emerges when at least one
person is a member of both
organizations’ board of directors
simultaneously

Interlocking  The cumulative set of

directorate interlocking directorates that

network: together form a network of

1121

linkages between a set of boards
of directors

SNA: Social network analysis

Definition

An interlocking directorate is a link between two
organizations that emerges when at least one per-
son is a member of both organizations’ board of
directors simultaneously. The cumulative set of
interlocking directorates together forms an
interlocking directorate network. These networks
are analyzed from a variety of perspectives with a
variety of tools. They are often seen as an expres-
sion of concentration of corporate power and are
studied on a national and a global level.

Introduction

Since the emergence of the modern corporation in
the nineteenth century, managerial power has
been in the hands of a relatively small group of
people, often referred to as the business elite.
Within this group, a substantial number of indi-
viduals sit on the board of directors of multiple
companies. By combining multiple board posi-
tions, these individuals create “interlocking direc-
torates” between companies. As a result, this
rather small group of individuals can, potentially,
coordinate management decisions, share informa-
tion and practices, and enforce norms in different
company contexts.

This publicly visible concentration of eco-
nomic power in the hands of a few and its mani-
festation in extensive networks of interlocking
directorates led to a rising interest in this phenom-
enon. A significant set of studies on business elites
emerged, beginning in the early twentieth century.
Questions include the nature and delineation of
the business elite and the causes and conse-
quences of this phenomenon for the company
and its stakeholders over time (e.g., Mizruchi
1996). The development of social network ana-
lyses further pushed this line of work considering
that it is a beautiful and compelling example of a
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social network, and data are relatively easy to
gather from public sources.

Once the data are collected, the set of compa-
nies, directors, and their linkages form an “affili-
ation,” or “two-mode” network, from which a
“one-mode” company-by-company network and
a director-by-director network can be induced.
These networks can be seen as a reflection of
economic power structures and raise a variety of
different questions which have been approached
with different perspectives and by applying dif-
ferent network analyses.

Historical Background: Network
Analyses from Local to Global

Since the early days of interlocking directorate
research, most of the empirical research was
concerned with national networks of interlocking
directorates. The analyses were highly descriptive
at first, and the networks were seen as a social
structure that fosters communication, coordina-
tion, and cohesion among the corporate elite
within their specific institutional setting (e.g.,
Scott 1985a). Occasional comparative approaches
initially focused on general statistical network
properties such as density and centrality and
showed large differences (e.g., Stokman et al.
1985). More recently, cross-country comparative
studies benefit from the insight that network prop-
erties are typically nonlinear and that both local
(such as clustering) and global network (such as
average distance) properties need to be taken into
account (e.g., Kogut 2012).

National networks of interlocking directorates
have lost part of their theoretical and empirical
significance in the wake of increasing interna-
tional board interlocks, which first emerged in
the 1970s (Fennema 1982). The global dimension
of the interlocking directorate networks draws
more and more attention over time. The network
spanned the north-Atlantic and remained fairly
stable even during times of globalization. Even
in 1996, the international network remained a
superstructure based on resilient national business
communities (Carroll and Fennema 2002). This
has changed considerably since the turn of the

Interlocking Directorate Networks

century. Corporate boards are increasingly nation-
ally diverse, and international board membership
is becoming common practice among the corpo-
rate elite. This builds a transnational elite network
of interlocking directorates (Van Veen and Kratzer
2011; Heemskerk 2011; Carroll et al. 2010).

For some, this emerging international network
is a tell-tale sign of the long-awaited transnational
capitalist class. Others see is as the emergence of a
global network of pipes and prisms — to use the
wordings of Podolny — that might serve as the
cornerstone of a global business community rem-
iniscent of the national business communities
throughout the twentieth century. However, in
the first decade of the twenty-first century, the
transnational network continues to be dominated
by western-industrialized world, and the lion’s
share of the growth over the past decade is real-
ized within Europe (Carroll 2010) (see Fig. 1 for
the European network of border-crossing inter-
locks in 2010).

Interlocking Directorate Networks;
Different Perspectives and Different
Questions

Overall, interlocking directorates’ research can be
divided along two axes which generates four dif-
ferent fields of study. First, the level of analysis
can be either the “actor” or the “network.” Sec-
ond, the unit of analysis can be either the individ-
ual director or the company. When combining
these two axes, four research perspectives can be
derived (see Table 1) (Scott 1985b; Heemskerk
2008, pp. 33-38). Scholars, therefore, typically
concentrate on either the interorganizational or
the interpersonal projection (although, recently,
advances have been made to study the full bipar-
tite network) (e.g., Robins and Alexander 2004;
Kogut 2012).

When studying individual directors on an
actor level, attention will be drawn to individual
attributes of the members in the network. It draws
special attention to the “social capital” of individ-
ual directors. On the one hand, questions about
elite family and educational background and
career trajectories are relevant here, as well as
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Interlocking Directorate Networks, Fig. 1 The European network of border-crossing interlocks in 2010

studies on how “new” groups, such as women and
foreign directors, enter the corporate elite. On the
other hand, it raises questions regarding board
composition such as how board members use

their social capital for private (such as job search
and information gathering) and company-related
purposes (such as profit and corporate
legitimacy).
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Interlocking Directorate Networks,
Table 1 Classification of different interlocking director-
ates approaches

Units of analysis

Level of Corporation Individual
analysis | Actor Resource Social capital
dependence
Network | Coordination | Class
of markets hegemony
Financial Inner circle
hegemony Transnational

capitalist class

When studying individual directors on a
network level, a network analysis investigates
networks where directors are the nodes
connected through their mutual board member-
ships. Questions include how the “inner circle”
of individual directors operates as a group,
whether there are traces of power or influence,
and how the network of board interlocks reflects
class cohesion. More recently, in the wake of
globalization, the internationalization of these
hitherto national elite networks has become
more and more relevant (which we discuss
below in more detail).

When we shift to the other mode of the affili-
ation network, the company perspective becomes
dominant. Now, individual directors are instru-
ments to reach company goals. With this idea
in mind, scholars study single companies on an
actor level to determine how they are embedded
in the wider network. Questions focus on why
certain individual directors might be useful for
companies in order to manage “resource depen-
dencies.” Board members are seen as a personal
linkage to important, but external, resources.
Finally, one can study companies on a network
level where firms are the network nodes,
connected through mutual board members.
This perspective has dominated the literature
over the past decades and includes investiga-
tions into the dispersion of corporate gover-
nance practices through the network and on the
influence of network position on company per-
formance. Throughout the twentieth century, a
key issue has been whether a restricted set of

Interlocking Directorate Networks

companies — such as banks — dominates groups
of other companies by being more central in the
network.

Research  on interlocking  directorates
flourished during the 1970s and 1980s when it
was proven to be a rich empirical foundation to
institutionalism and structuralism. The explosion
of research on interorganizational relations has
increased the importance, and research has
become even more prominent in the 1990s. How-
ever, despite its virtues, research on interlocks has
always attracted critique as well. It has been crit-
icized for being an overstructured approach and
not leaving enough room for agency. The theoret-
ical multiplicity in the field made it attractive to
many but also hampered a cumulating knowledge
base. Furthermore, a call for caution is in order
regarding a too simple notion of the utility of
interlocks: some matter more than others. Corpo-
rate board interlocks can best be understood as an
opportunity structure.

Future Directions

After more than a century of interlocking direc-
torates’ research, the field remains vibrant and
innovative. As the (global) society and economy
rapidly transforms, so do the networks of corpo-
rate boards. Some observers stress the decline or
fragmentation of national business elites and call
into question their relevance in tomorrow’s econ-
omies (Mizruchi 2013; Chu and Davis 2016).
Others see the stability of the global board inter-
lock network in the wake of the financial crisis
(Heemskerk et al. 2016) as an indication of its
continuing relevance.

These developing questions about the role,
nature, implication, and naissance of interlocking
directorates will, therefore, prove a veritable
ground for academic attention. Three develop-
ments will be especially important in the near
future. First, there will be a growing availability
of large datasets: big data. This opens up multi-
layered analysis of truly global elite networks
with hundreds of thousands of nodes. Although
data quality continues to be an issue, it assists in
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answering key empirical questions on the com-
position and connection of corporations and
its elites across the globe. It also allows for a
much needed comparative approach that moves
beyond the well-studied cases of a few
western industrialized countries (e.g., Naudet
and Dubost 2016). This is particularly important
since novel work in the realm of business
history has revealed how the role and function
of board interlock networks differ across time
and different institutional settings (David and
Westerhuis 2014).

Second, recent methodological advances intro-
duced longitudinal actor based modeling in SNA.
Methods such as stochastic actor-based modeling
and temporal exponential random graph modeling
allow us to study the generative mechanisms that
drive interlock formation and the wider network
dynamics. Third, the context in which interlocks
emerge will receive increasing attention. Although
there has been attention paid to rough classifica-
tions such as bank-based versus market-based
financial systems, more fine-grained attention to
governance regimes and elite formation will drive
new research (e.g., Van Veen and Elbertsen 2008).
This will become even more important when
emerging economies such as China, Brazil, and
India integrate in the corporate elite networks. For
instance, the role of politics in (international) net-
works of interlocking directorates will rise in rele-
vance, not in the least due to a growing number of
corporations and investors in the world being state
controlled. As a result, pressing questions will
begin to emerge about the precise relationship
between political and business elites. This opens
important avenues for further research on how
economic power is organized in an era character-
ized by an evolving global economy.

Cross References

Economic Network Analysis Based on Infec-
tion Models

Interorganizational Networks

Managerial Networks

Top Management Team Networks
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Synonyms

Global Internet hyperlink networks; International
Telecommunications Networks

Glossary

Hyperlink network analysis where the
network analysis  links connecting nodes are
(HNA) hyperlinks

International anetwork where the nodes are
Communication  nation-states linked by
Network (ICN) information flows
International the relatively stable pattern of
hyperlink hyperlinks among nations
structure (HIS)

International the exchange of information
Information among nations regardless of
Flow (IIF) specific channel or media

a set of research methods for
identifying structures in
social systems based on the
patterns of relations among
system components

the measurement of aspects of
the World Wide Web,
including websites, web
pages, parts of web pages,
words in web page hyperlinks,
and web search engine results

Social network
analysis (SNA)

‘Webometrics

International Hyperlink Networks
Definition

An international hyperlink is the technological
capability that enables a website to link seam-
lessly with another globally, generally through
the click of a mouse. Hyperlinking between
websites functions as a navigational tool allowing
for different collections of information throughout
the world. International hyperlink network analy-
sis provides a framework not only for examining
the structure of global communication networks
(the pattern of relations among the nodes based
upon the frequency of hyperlink connections) but
also for understanding the wider pattern of the
ways in which nation-states establish links with
one another for the exchange of resources.

Introduction

The World Wide Web may be defined as a distrib-
uted hypertext system consisting of a network of
content and hyperlinks, with billions of interlinked
pages. The Web has no engineered architecture,
and it may be considered a self-organized system
with a well-defined structure of linkage that implies
an underlying social structure (Chakrabarti
et al. 1999). This entry examines the evolution of
the Web’s emergent social structure at the level of
nation-states. It reviews the research of interna-
tional hyperlink networks since 2000, the begin-
ning of international hyperlink studies.

Key Points

Linkages between countries have changed signif-
icantly as the global information infrastructure has
evolved over the past decade. Appadurai (1990)
posited that globalization processes take place via
five flows: the movement of people, science and
technology, capital, media and information con-
tent, and political ideologies. Messages circulated
through online networks have been fundamen-
tally altering our perception of globalization.
For example, we no longer think of globalization
only in terms of economics but also in how it
impacts, science, education, and the arts. Castells
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et al. (2007) identified the emergence of a
“networked society” that is being created by
hypertext websites and other new media. He
claimed that all messages people communicate
through networked media create a new space
that is both local and global at the same time.
That is, transnational message flows pave the
way for increasingly individualized and
networked places in cyberspace.

Historical Background

The Internet represents a technological revolu-
tion that makes use of computer networks to
share distributed information. It has changed
the geography-bounded nature of communica-
tion toward greater interconnectedness, making
globalization possible (Barnett et al. 2001,
Berners-Lee 1999; Park and Thelwall 2006).
Scholars have argued that its diffusion has the
potential to alter the structure of the relations
among the nations of the world by limiting the
impact of geography on communication (Gra-
ham 2001). Some have argued that global com-
munication systems strengthen worldwide social
relations in the information age and that cultures
are shaped and clustered across national borders
(Barnett and Sung 2006). The reconfiguration of
communication and the globalization of cultures
are indeed important features of an Internet-
mediated society.

The structure of international telecommunica-
tions may be understood from two different per-
spectives: the increased centralization and
increased diversification of communication
flows. According to the first perspective, the
global communication network is rooted in a
broader perspective of economics emphasizing
the asymmetry between information-rich and
information-poor countries from the framework
of world systems theory (Barnett and Park 2005;
Lee et al. 2007). World systems theory calls into
question the modernist assumption that nations
are independent. This theory claims that nations’
development can only be understood by consid-
ering the systematic ways in which societies are
linked to one another within the context of a larger
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network of material, capital, and information
exchanges.

In line with world systems theory, the global
structure may be described in terms of three types
of structurally equivalent nations — the core, the
periphery, and the semi-periphery — which are
related to each other economically. A network
composed of these three types may show a cen-
tralized hub structure where one or several domi-
nant nodes are noticeably more central than the
other nations that are not directly connected to
each other (Barabasi 2002). In the international
communication network in which the ties consist
of the flows of information, there are interactions
between the center hub and the periphery along
the spokes but not along the rim from one periph-
ery nation to another (Galtung 1971).

The lack of direct interactions among periph-
eral nations can lead to a condition in which
communication flows through the core, to asym-
metric physical distances where central nodes are
geographically proximate to each other and
peripheral nodes are relatively closer to the center
than to each other, and to a dependent network
position that subsequently influences a nation’s
ability to control the flow of goods and services
and information among nations because the net-
work defines which pathways between nations are
available (Lee et al. 2007). Due to the stable
differences in national economies, the peripheral
societies specialize in the production and export
of labor-intensive, low-wage, low-technology
goods desired by the core and the semi-periphery.
In return, the core produces capital-intensive,
high-wage, high-technology goods that are
exported to the periphery and the semi-periphery,
which engages in both core-like and periphery-
like activities. Although some disputes exist
regarding the classification of specific nations
into the core, semi-peripheral, and peripheral cat-
egories (Smith and White 1992), each nation’s
membership in one of these three categories
tends to be relatively stable.

World systems theory has a number of impli-
cations for the examination of international tele-
communications and globalization: (1) the
structural position of a country determines its
potential for social and economic development
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and its interaction patterns, (2) the structural
position of a country is a result of its interactions
with other countries, and (3) the relationships
among the network’s nations are relatively sta-
ble, changing only as the distribution of modes of
production changes for semi-peripheral nations
(Barnett 2001; Barnett et al. 2001; Barnett
etal. 1999).

The second approach for examining the global
communication network focuses on the increasing
trends of decentralization, regionalism or cultural
pluralism, and the emergence of clusters in
peripheral areas (Barnett 2001; Lee et al. 2007;
Matei 2006; Robertson 1992). Although world
systems theory was initially created to describe
global interactions during the industrial age,
recent research has demonstrated its suitability
for examining the flow of international informa-
tion but concluded that world systems theory is
inadequate to describe the complexities of inter-
national communication (Barnett and Choi 1995;
Barnett et al. 1999). These trends toward both
centralization and decentralization may be consti-
tutive features of contemporary global circum-
stances and be important in determining the
future trajectories of the international telecommu-
nications network.

According to this perspective, the structure of
the international telecommunications network
may be determined by factors other than eco-
nomic relations, including countries’ geographi-
cal locations and language spoken (Barnett and
Choi 1995), the religion practiced (Barnett
et al. 1999), and culture (Barnett and Sung
2006). Prior studies have suggested that subsys-
tems formed by geographical, social, or cultural
homophyly and interdependence acts against the
centralizing forces of globalization (Huntington
1996). Such dynamics can lead to a network dif-
ferent from the traditional core—periphery model
and create a multilayered network where central
hubs coexist with multiple lower-level core
regions (Lee et al. 2007).

Although considerable research has analyzed
international telecommunications traffic (Barnett
2001; Lee et al. 2007), few studies have examined
the Internet’s international structure. The Internet
is a packet-switched network unlike the
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telephone, which devotes a single circuit to each
individual message. Consequently, the origin and
destination of individual messages cannot be
determined (Barnett and Park 2005). An alterna-
tive approach that can allow the examination of
the Internet’s international traffic is the analysis of
inter-domain hyperlinks.

Research Review

Beginning of International Hyperlink
Research

The first large-scale study of the international
Internet hyperlink examined the bilateral hyper-
links among the Organization for Economic Co-
operation and Development (OECD) (Barnett
et al. 2001). The number of inter-domain hyper-
text links embedded in domains associated with
all twenty-nine OECD countries (country code
top-level domains [ccTLDs] such as .ca for Can-
ada) and six generic top-level domains (gTLDs)
(.com, .net, .int, .gov, .edu, and .org) was gathered
for July 1998. These countries represented
approximately 96% of Internet traffic. Not
included in the analysis were non-OECD mem-
bers. Because no single top-level domain (TLD)
represented Internet traffic for the USA, .edu, .us,
and .gov were combined to designate the
USA. The other gTLDs (e.g., com, .org, .int, and
.net) were not included in this group because those
were not exclusively from the USA. The results
indicated that .com was the most central node,
followed by .net.

The USA was the most central country acting
as the network’s hub or the nucleus of the World
Wide Web, followed by the UK, Canada, Ger-
many, and Australia. Most peripheral in the net-
work were Iceland and Turkey. A reasonable
explanation for this structure is that the Internet
was developed in the USA and that it has low-cost
bandwidth. At that time, it accounted for 58% of
all Internet hosts and 94 out of the top
100 websites were based in the country (Cukier
1999). The correlation between centrality and
GDP was .974 (p < .000), indicating that a
nation’s position in the network was a function
of its total wealth. Cluster analysis revealed that
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the OECD nations and gTLDs formed a single
group centered about the .com—.net dyad. There
were no subgroups due to geography, language, or
culture.

Based on the assumption that sites are inter-
nally fully navigable, and the interlinkage
between sites becomes the main factor in deter-
mining the accessibility of web-wide content,
Bharat et al. (2001) found that there was a much
higher number of intranational or site links than
ties to other countries. Typically, only 1% of links
were to websites in another country. When the
links among the most central countries were
removed, geographical, linguistic, and political
factors impacted the structure of the Web.

The structure of the Web was related to a num-
ber of exogenous variables and older networks
(Barnett et al. 2001). The older networks include
the international telephone, air traffic, trade, sci-
ence citations, and student flow networks. Other
variables were language and asynchrony, defined
as the difference in time zones between national
capitals. Physical distance, however, was not
related to the structure of international hyperlinks.
The cost of communicating via the Internet was
unrelated to distance. The combined effects of
transportation, telecommunications, science,
asynchrony, and either trade or student flow
accounted for between 62% and 64% of the vari-
ance in network structure, with transportation the
most significant determinant. These results char-
acterized the Internet as an autopoietic system
(Barnett 2005), growing through the self-replica-
tion of the existing telecommunications network
but evolving to accommodate physical displace-
ment and the ability to rapidly exchange and store
vast amounts of information other than voice.

Expansion of the Research

Barnett and Park (2005) expanded on earlier
research by gathering data in January 2003 on
the number of bilateral inter-domain hyperlinks
among nations. They investigated 47 nations
including all OECD member countries (except
Poland) and six gTLDs. Notable additions were
Brazil, India, China, Russia, South Africa, Israel,
Singapore, and Indonesia. The TLDs represented
approximately 98% of Internet traffic. Again,
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because no single TLD totally represents the
USA, .edu, .mil, .us, and .gov were combined to
represent the USA (.usa). The hyperlink network
in 2003 was completely interconnected. As in
1998, the USA, Australia, the UK, China, Japan,
Canada, and Germany were central, while Uru-
guay, Luxemburg, the UAE, Thailand, and Slova-
kia were peripheral. When link direction was
considered, the USA was the most central in
terms of in-degree, followed by Indonesia, India,
Italy, and France, while Uruguay, the UAE, and
the Czech Republic were the most peripheral.
While Germany, the UK, US, and Australia were
central in out-degrees, the UAE and India were the
most peripheral. Again, the results revealed a sin-
gle group centered about the .usa—au dyad, the
two most central nodes.

Barnett and Park (2005) compared the hyper-
link network to one represented by bilateral band-
width capacity. Bandwidth describes the physical
network that transports packets of data from
point-to-point as opposed to the TCP/IP for
which geography is irrelevant (Townsend 2001).

These connections are nondirectional. The
density of the bandwidth network for the countries
indicated that 18.5% of the possible direct hyper-
links were present. The USA was by far the most
central country, followed by the UK, Germany,
Hong Kong, Singapore, Japan, and France; most
peripheral were Iceland, Lithuania, Morocco,
Croatia, and Guatemala. There were three major
groups: (1) English-speaking countries (the USA,
the UK, Canada, Australia, and New Zealand)
with Northern Europe (Scandinavia, Belgium,
and the Netherlands) and East Asia, (2) Latin
America, and (3) Franco-German Europe (France,
Germany, Austria, Italy, Spain, Switzerland, and
Czech Republic). The network resembled a
wheel, with the USA at the hub and spokes to
individual countries and clusters of nations. The
USA dominated Internet flow due to its position in
the network. While there were links entirely
within Europe and the Asian-Pacific region and
limited links within Latin America, intercontinen-
tal links primarily went through the USA Further,
even the connections within specific regions may
have been routed through the USA because of
limited within-region bandwidth. Clearly, the
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USA was in position to act as an information
broker or gatekeeper.

Previously, Townsend’s (2001) examination of
Internet bandwidth concluded that every region
and nearly every country has a direct Internet
connection to the USA and direct connections
between other countries are less common. Fur-
thermore, direct connections between different
major regions such as Asia and Europe are prac-
tically nonexistent. This structure dictates that the
US Internet infrastructure functions as a massive
switching station for traffic that originates and
terminates in foreign countries. The hyperlink
and bandwidth networks correlated .412
(p = .000) (Barnett and Park 2005). Additionally,
there was a strong relationship (r = .847,
p = .000) between both networks’ centralities,
indicating that the physical infrastructure of the
Internet is an important determinant for which
countries communicate via this medium.

Reconstruction of the Research

Park et al. (2011) examined the structure of the
international hyperlink network in 2009 and how
it changed from 2003. Data was collected in May
2009 using Yahoo. Yahoo had indexed about
47 billion websites at that time (http://www.
worldwidewebsize.com/). Over 9.3 billion hyper-
links among 33.8 billion sites from 273 TLDs
were examined. Again, three TLDs reserved for
the exclusive use of American institutions, .edu, .
gov, and .mil, were combined with .us to form a
node for the USA. Because .com, .org, and .net are
not exclusive to the USA, they were not included.
This may have resulted in an underestimate of the
centrality of the USA and other countries that rely
heavily on gTLDs. The 2009 international hyper-
link network was completely interconnected. The
USA had the largest in-degree centrality, followed
by Germany, the UK, France, Japan, and Spain,
while Germany had the highest out-degree cen-
tralities. The G7 and several European Union
countries were central in the 2009 network.
Also, Brazil and Russia emerged as core coun-
tries integrating more peripheral nations. Brazil
linked South America, and Russia linked the
former Soviet Republics. Additionally, it appears
that for the first time there were regional,
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cultural, and linguistic groupings, a Latin Amer-
ican group, cliques centered about Russia and
China, and a Scandinavian group, as well as a
core group.

Park et al. (2011) investigated changes in the
World Wide Web by comparing the hyperlink
relations among 47 countries in 2009 with the
same nations from 2003. The results for the two
points in time were similar. The USA was still the
most central country along with Germany, the
UK, France, Japan, and Spain. The semi-periph-
eral countries included the Netherlands, Austria,
Switzerland, Belgium, Australia, Brazil, Mexico,
China, India, and Russia. The UAE, Israel, Esto-
nia, Uruguay, and Luxembourg were the most
peripheral. Various measures of centrality corre-
lated at an average of .80, suggesting stability in
the network. The overall correlation between the
2009 and 2003 networks was only .406 (p < .01).

There were some interesting changes. First, the
international hyperlink network became more
highly centralized. The composite Gini score of
2009 network was 0.466. It was only 0.291 in
2003. The greatest departures from the predicted
changes were for the most central countries.
Europe as a whole, especially Germany, became
much more central. The UK, France, Spain, Italy,
and Japan’s out-degree centralities grew more
than expected. The USA, Germany, the UK,
France, Japan, and Spain’s in-degrees grew more
than expected. Second, Brazil, Russia, India, and
China showed various changes. Brazil grew more
than predicted, and Russia grew as predicted.
China had fewer outward links than expected.
This was probably due to internal domestic
growth or the use of the Chinese language,
which limits its contacts with the West. India had
fewer inward links than expected. Third, the cen-
tralities are distributed as a power curve (Barabasi
2002), suggesting disproportionate growth in the
number of hyperlinks by the more central coun-
tries, supporting the notion of preferential attach-
ment (Barabasi and Albert 1999). Fourth, while
there was only one group in 2003, regional, cul-
tural, and linguistic groupings formed in Latin
America, Scandinavia, and around China and
Russia, suggesting that hybridization, increased
centralization toward core-peripheral countries,
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and increasing autonomous diversification of
semi-peripheral countries took place.

While investigating the structure of global
Internet connectedness, Seo and Thorson (2012)
attempted to measure key structural changes in
bandwidth and the centrality of digital nodes.
Using a combination of bandwidth metrics and
centrality indicators, they demonstrated how the
global information infrastructure evolved
between 2002 and 2010 and especially how sev-
eral countries in the Middle East rose to promi-
nence as good nodes mediating strong intra-
regional networks. The results showed that a
total amount of international Internet bandwidth
has significantly increased in a manner reminis-
cent of the familiar power law from 931,319 Mbps
in 2002 to 37,424,671 Mbps in 2010. The USA
was the most important country in the 2002 Inter-
net network based on both eigenvector centrality
and degree, followed by the UK, Germany,
France, Italy, Singapore, the Netherlands, and
China. In 2010, the USA maintained the highest
degree, but its eigenvector centrality was second
to the UK. The density of the global Internet
network was 0.030 in 2002 and it rose to 0.034
in 2010. Total international Internet bandwidth
within the Middle East and North Africa
(MENA) region has increased considerably
between 2002 and 2010. The total MENA band-
width was 2,096 Mbps in 2002 and increased to
375,798 Mbps in 2010. The growth in the Internet
bandwidth within the region showed a power-law
pattern similar to that found in worldwide band-
width capacity.

Chung et al. (2014) investigated international
hyperlink networks and their content in terms of the
.com domain, the most ubiquitous generic top-level
domain. They examined the kinds of global
websites linked to .com, what the linked contents
were, and who were dealing with the hyperlinks.
The results showed the hyperlink network of
websites with outgoing hyperlinks to .com
websites indicated the dominant centrality of the
USA, whereas that of those with incoming hyper-
links from .com websites illustrated a
core—periphery structure centered about the USA
and other wealthy countries. The most globalized
topics covered by websites linked to .com websites
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were business, the Internet and computers, recrea-
tion and entertainment, and personal interests.
Many of the websites with outgoing hyperlinks to
.com websites used only one non-English lan-
guage. The predominant use of English by
websites with outgoing hyperlinks to .com
websites demonstrated the centrality of countries
using English as the mother language in hyper-
linked societies on the Web. Inferring international
dotcom according to Alexa.com (Alexa 2012), the
most frequently visited gTLD websites were .com
websites. For example, of the 120 most frequently
visited gTLD websites (including .net and .org)
listed on Alexa.com, more than 90% were .com
websites, and the percentage of Internet visitors to
those websites followed the power-law distribu-
tion. However, including other gTLDs should pro-
vide a better understanding of the structure of
hyperlink.

Barnett et al. (2016) have described how the
structure of the international hyperlink network
has changed since 1998. In particular, it describes
the hyperlink structure in 2010 and how it has
changed over the last few years. The international
hyperlink network is highly concentrated about a
few central domains, the identity of which is
dependent on the selected lens. In the overall
network, .com is by far the most central node,
accounting for 32.8% of all hyperlinks. An addi-
tional 13.2% may be attributed to other gTLDs, .
org and .net. Among the ccTLDs, Japan, the UK,
Germany, and China account for another 22.9%.
Together, these seven TLDs account for almost
75% of the world’s 14.3 billion hyperlinks. When
only the ccTLDs are examined, the six most cen-
tral nodes (.jp, .uk, .de, .ft, .es, and .usa) account
for 38.5% of the hyperlinks, and when focusing
only on the 87 nodes with the decomposed
website data included, the five most central
nodes (.jp, .uk, .de, .cn, and .usa) involve 56.5%
of the links. These findings are consistent with
world systems theory, which suggests that the
global system may be characterized by unequal
exchanges between information-rich and informa-
tion-poor countries (Barnett et al. 1996; Chase-
Dunn and Grimes 1995; Choi 2011; Wallerstein
1974). Building on what the McNeills has drawn
from the history of the human Web (McNeill and


http://alexa.com
http://alexa.com

1132

McNeill 2003), van Dijk (2012) has recently
made a similar point that the basic idea of those
who think that the Internet is decentralizing on a
global scale and necessarily undermines the
national state and is just as one sided as the oppo-
site idea of the centralization of control by the
national state. The state will not wither away or
even dissolve into virtual relationships of horizon-
tal types of organization appearing on the Internet.
Both visions are one sided, since networks consist
not only of (horizontal) connections but also of
(vertical) centers and nodes.

Key Applications

The key application in this area is to collect some
inter-hyperlinking data across countries. The
interlinking data have been mostly obtained from
commercial search engines. AltaVista was fre-
quently employed in early 2000 but closed its
hyperlink search options after Yahoo acquired it
in 2004. Yahoo renewed the AltaVista’s hyperlink
commands in the name of “Site Explorer” in Sep-
tember 2005. Furthermore, Yahoo enabled
researchers to automatically download a large vol-
ume of international interlinkage data using its
application programming interface (API) function.
Google has also a search option for hyperlink data.
Although Google could run incoming hyperlink
queries, there is no option in Google for retrieving
bidirectional ties between a pair of country code
top-level domains (ccTLDs) (e.g., .kr for South
Korea). However, Yahoo discontinued its API
option for interlinkage data in April 2011 and
finally stopped its popular Site Explore service in
November 2011. Now Yahoo’s web search ser-
vices are currently being moved to Bing. But, the
successful transition of link command to Bing has
not been made yet until August 2012. Alterna-
tively, Thelwall and Sud (2012) recently proposed
to replace hyperlink searches with URL citation
searches with the Bing search API facilities. Inter-
national hyperlink analysis has been used to predict
economic and political development and to
describe the changing landscape of international
relations, including to predict international conflict
and state sponsorship of terrorism (Barnett et al.
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2013). Recently, Google’s search engine has been
employed to determine the hyperlink connections
among the world’s universities (Barnett et al.
2014).

Future Directions

An important issue that remains unresolved in
international hyperlink research is how imperfect
spatial information (the generic TLDs may be
hosted anywhere in the world) alters the structure
of the network (Grubesic and Murray 2005). Past
research has not included gTLDs, creating an
inherent bias in the analysis of the international
hyperlink network links in the examination of the
links among ccTLDs. That is, it does not account
for the geographic locations of .com, .net, or.org.
As a result, the connectivity of the USA and other
nation-states that rely heavily on domains other
than ccTLDs are underreported. The gTLDs were
not included due to the difficulty in determining
which countries these websites reside in and who
links to these sites (Rosen et al. 2011).

Based on the assumption that decomposing .com
leads to a more accurate description of the interna-
tional hyperlink network, Barnett et al. (2011)
investigated adjusting hyperlink networks using
information from Alexa.com on the percentage of
international Internet users for the most frequently
visited gTLDs. They decomposed the three gTLDs
(.com, .org, and .net) into the countries in which
their users reside and distributed the links propor-
tionally to the ccTLDs. Then they compared the
results obtained with the traditional methods. The
adjusted hyperlink network showed significant
changes in the centrality of several countries. The
USA’s out-degree centrality increased dramatically
and its centrality changed in more than any other
country (see Figs. 1 and 2).

The size of the concentric circles indicates the
hyperlink connection density among countries.
The thickness of the line connecting the two
nodes is proportional to the connection density
between the two nodes. Only those ties exhibiting
more than 500,000 hyperlinks are shown. N = 87.

Also, the notability of several countries in Asia
such as China, Japan, and India increased, probably
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due to their economic ties with the USA and due to
the Chinese language search engines baidu.com,
qq.com, and taobao.com. On the contrary, the cen-
trality of countries that did not heavily rely on
gTLDs such as European countries decreased. Cor-
relations between the two sets of centrality scores

showed that the addition of TLDs did not change
the network centralities a great deal. The correla-
tions ranged from .90 to .93 depending on the
measure. The cell-wise correlation indicated that
there were systematic differences between the two
networks (r = .755, p = .00). The top 20 residuals
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involved the USA (13), China (5), Japan (4), the
UK (2), France (2), Korea (2), Germany (1), Spain
(1), Canada (1), and India (1) (Barnett et al. 2011).

The size of the concentric circles indicates the
hyperlink connection density among countries.
The thickness of the line connecting the two
nodes is proportional to the connection density
between the two nodes. Only those ties exhibiting
more than 1.5 million hyperlinks (three times the
hyperlink network excluding .com, based on three
times the degree difference) are shown. N = 87.

Although this research more precisely defined
countries as nodes on the Internet by
decomposing gTLDs based on where their users
reside, these adjustments were not based on the
volume of hyperlink connections. Rather, they
were based on the proportion of Internet users
from each country that used certain websites.
The hyperlinks to and from gTLDs were distrib-
uted to various countries based on their residents’
website use, which assumed that this was an accu-
rate proxy for the distribution of hyperlink
connections.

Cross-References

Combining Link and Content for Community
Detection

Extracting and Inferring Communities via Link
Analysis
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Synonyms

Alliances; Chains; Clusters; Consortia; Emer-
gency response networks; Firm networks; Gover-
nance networks; Interfirm networks; Joint
ventures; Organization sets; Organizational net-
works; Policy (domain) networks; Problem solv-
ing networks; Public sector networks; Regional
networks; Service delivery networks; Supplier

networks; Temporary organizations; Whole
networks

Glossary

Engineered Networks that are
networks consciously created and

have common goals, i.e.,
alliances and consortia.
Participants have a mutual
awareness or even a
common identity as
network members (see
Doz et al. (2000); Provan
et al. (2007))
Organizations connected
only through contracts or
formal arrangements
Organizations connected
by personnel flows or
personal communication
without a formal relation

Formal relation

Informal relation

Inter-organizational Marketing

Interorganizational
relation

Dyadic link between two
organizations in the form
of exchange of information
and knowledge, tangible
and intangible resources,
board interlocks, alliances,
joint venture, consortia,
etc. (see Galaskiewicz
(1985); Cropper

et al. (2008)). Essential
building block for the
formation of
interorganizational
networks

Indicates who or what is
part of the network and
what is defined as being
outside the network.
Represents first step in
every network analysis.
For different boundary
specification strategies, see
Laumann et al. (1983)
Networks that emerge as
an aggregate out of dyadic
or triadic interactions and
relationships between
actors. Network
boundaries are often
ambiguous and are
determined by the
researcher (see “Network
boundary™)

Network boundary

Serendipitous or
emergent networks

Definition

Wherever three or more organizations interact,
we talk about interorganizational networks (two
being a dyadic relationship). Interorganizational
networks are in principle social networks. In the
broadest definition and based on the general defi-
nition of social networks, they can therefore be
characterized as a set of organizations connected
by a set of linkages. Examples of interorgani-
zational networks are networks in policy making
(Laumann and Knoke 1987; Schneider et al. 2003),
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innovation (Powell et al. 1996), public service
delivery (Provan and Milward 1995), or alliance
formation (Doz et al. 2000; Gulati 1998).
Interorganizational networks are the aggregate
of the formal and informal relationships between
the organizations as independent entities and the
formal and informal relations between their mem-
bers, if they act at least partially in their function
as organizational members (interorganizational
relations). Interorganizational networks can be
emergent or engineered. In the first instance,
they exist as social systems on the basis of dyadic
or triadic interactions. They do not necessarily
have a common goal. Also, the participating orga-
nizations do not need to possess a joint identity or
even a conscious knowledge of each other beyond
their direct contacts. Examples are policy net-
works or alliance networks where different alli-
ances are connected through joint membership of
companies. Engineered networks on the other
hand are interorganizational networks that are
consciously created often by a lead organization
or more bottom-up by professionals in different
organizations. Examples are R&D consortia,
emergency response networks with detailed
plans and exercises, and service delivery networks
in health and human services. In empirical reality,
however, emergent and engineered processes
often coincide or are sequential, i.e., an emergent
network might at some point become formalized.
Related to but conceptually distinct, networks
of organizations are also often seen as a form of
governance, i.e., as a way to coordinate human
(inter)action (Powell 1990). In this context, net-
works are often juxtaposed against markets and
hierarchies and characterized as systems, in which
actors are autonomous but interdependent and
coordination takes place primarily through
exchange and negotiations rather than through
fiat (hierarchy) or price competition (market).
Here, four interaction modes can be distinguished:
Buy, make, ally, and join (Raab and Kenis 2009).
Make and buy do not  constitute
interorganizational networks, since no interaction
between different organizations is required
(make) or the transaction is completed on a
(spot) market. In case of ally, an organization
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forms bilateral relationships with other organiza-
tions to secure access to resources, reduce uncer-
tainty, or gain legitimacy. In case of join, a group
of organizations together consciously forms a net-
work and produces an output at the level of the
network (Raab and Kenis 2009). It should be
noted, however, that these interaction types are
mostly analytical and that we often see mixed
forms in empirical reality. For example, long-
term buyer-supplier relationships that started off
as market transactions might gain more character-
istics of a network over time, and networks can
also include elements of fiat.

The common thread through these different
conceptualizations is that interorganizational net-
works are social systems formed by vertically
integrated formal organizations that are involved
in complex interactions and the exchange of mate-
rial and nonmaterial resources (including infor-
mation and knowledge).

Introduction

Interorganizational networks matter at three
levels. For individual organizations, their net-
works influence their power position within a
sector, influence the access to new knowledge,
and generally determine opportunities and con-
straints. For the networks themselves (network
level outcomes), how they are structured and
governed influences to a great extent what out-
comes they produce and in case of engineered
networks to what extent they are able to achieve
their goals. For the wider community or society,
the way they are structured and governed deter-
mines the positive or negative effects these net-
works might have, for example, in terms of
innovative spillovers or policy making. For each
of these three levels, a large body of literature has
emerged. Most of the theories for the explanation
of outcomes at the level of the individual organi-
zation, however, are applications or adaptations of
general social network theory (see Borgatti and
Halgin (2011)). On the other hand, networks are
often used merely as a metaphor or social network
concepts, and analytic techniques are used to test
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and further develop other theories like diffusion
theories or power theories. It is mainly in public
management, where some progress has been
made toward a separate theory of network effec-
tiveness (Provan and Milward 1995). Despite
conceptual ambiguities, interorganizational net-
work research has been widely conducted in the
social sciences and economics. Economists, eco-
nomic geographers, political scientists, sociolo-
gists, organization, and (public) management
scholars study organizational, network, and soci-
etal effects of interorganizational networks. Econ-
omists and management scholars are mostly
interested in the questions, which governance
mechanism Yyields transaction cost advantages
and which structural positions in networks gener-
ate the most benefits for individual organizations.
Economic geographers and sociologists are inter-
ested in the effects of different network character-
istics like centralization, clustering, or density on
the performance and innovative capacities of
(regional) networks and their wider impact on
regional economies. Political scientists study the
power structures, decision-making, and policy out-
comes that networks of political and societal actors
produce in specific policy fields. Public manage-
ment scholars are interested in the effectiveness of
networks in public service delivery or emergency
management based on their structural features,
resources, context factors, and governance.

Key Points

Interorganizational networks are most of the time
analyzed as “pipes,” i.e., organizations are
connected by relationships that facilitate the flow
of tangible and intangible resources, very often
tacit or explicit knowledge and information.
These ties are also crucial for the coordinative
function of interorganizational networks to pro-
duce collective outputs. From the perspective of
an individual organization, it is assumed that the
formation, change, continuation, and termination
of ties are driven by purposeful exchange and
calculated investments in social capital and at
least a heuristic cost-benefit or a risk-opportunity
reasoning. An organizations’ position in the
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network is then assumed to determine opportuni-
ties and constraints as having access to resources
or being able to mobilize political support. The
resulting social capital on the level of the individ-
ual organization affects a variety of outcomes like
innovative capacity, political influence, or finan-
cial performance. However, this theoretical rea-
soning is based on two assumptions. First, it is
assumed that material and immaterial resources
flow through organizations, despite the fact that
two different subunits within the organization
which connects two other organizations are
involved in the interaction, i.e., it is assumed that
differentiated organizations are integrated enough
that they function more as valves and not sink-
holes and that paths are still completed (see Ghosh
and Rosenkopf (2014)). Second, it is assumed that
organizational actors have at least partially an
accurate assessment of the indirect ties of their
direct partners, i.e., have a somewhat accurate
representation of the relationships beyond their
first-order zone and can at least heuristically pre-
dict the centrality and influence position of the key
actors in the network. Very recent empirical work
shows that the latter assumption has to be at least
qualified (Knoben et al. 2012), since the accuracy
of perceptions about the network structure and
other actors’ positions seems to rapidly decrease
beyond the direct contacts (first-order zone).
From the perspective of the whole or entire
network, the interactions between organizations
form collective social capital that helps govern
the network and is usually seen as positive for
the achievement of outcomes like innovative
capacity of networks, client well-being or satis-
faction, the creation of policy outputs, or the gen-
eral performance of networks. In case of
engineered networks, this effect is attempted to
be strengthened by making conscious choices
about the governance mode of the network (Pro-
van and Kenis 2008); see for a recent summary of
the field and related cases Sydow et al. (2016).

Historical Background

Even though the idea of organizations having
external relations goes far back into the twentieth
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century, it took until the 1960s to really identify
interorganizational relations and networks as a
specific field of research. In his now seminal
piece, Evan (1965) introduced a “theory of
interorganizational relations” and the notion of
an organization set, i.e., a focal organization and
its direct interactions with organizations in its
environment (Evan 1965, p. B220). The discus-
sion and research on interorganizational networks
intensified in the 1970s both theoretically and
empirically, took off in the 1980s, and matured
in the 1990s. Interestingly, discussions developed
in many different areas in the social sciences,
economics, and (economic) geography as a reac-
tion to the increasing connectedness of social,
economic, and political processes. Next to the
(perceived) changes in empirical reality, advances
in organization theory like contingency or
resource dependence theory and the development
of social network analytic techniques as a toolbox
pushed the agenda forward. In that process, some-
times scholars took note of the other fields; very
often, however, theoretical insights were devel-
oped in ignorance of each other. Conceptually,
one can distinguish approaches that were devel-
oped by departing from the organization as a
single entity and looking beyond its borders
from systemic approaches that started with a per-
spective on a whole industrial sector, a policy
field, geographical region, an area of service
delivery, or even an entire economy. The first
group has mainly been concerned with the oppor-
tunities, benefits, and constraints for individual
organizations, i.e., characteristics of organiza-
tions’ relations, an organization’s structural posi-
tion in a network, or characteristics of the network
it is embedded in have been used as independent
variables to explain outcomes at the organiza-
tional level. This has been the dominant perspec-
tive in economics and management. Theoretically,
core discussions revolved around the effects of
embeddedness (Granovetter 1985; Uzzi 1997)
and structural positioning in networks in terms
of brokerage and/or centrality (Burt 1992) on
growth, survival, innovative capacity, or other
performance indicators of organizations. In terms
of methods, we can observe an increasing appli-
cation of quantitative social network analysis in
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studies on interorganizational networks due to the
development of concepts and algorithms since the
1970s, user-friendly software like UCINET, and
the spread of personal computers in the 1990s.
With the improvement of the methodological
apparatus for quantitative analysis, more and
more quantitative network data have been col-
lected since the 1990s, and it became possible to
also build, process, and analyze large databases,
for example, in the area of alliance networks
(Gulati and Gargiulo 1999) and innovation (Schil-
ling and Phelps 2007).

The second group of approaches investigates
what the structures of interorganizational net-
works look like, what their antecedents are, how
they evolve, and what the consequences are for
outcomes at the network or system level. In addi-
tion, questions of influence and power as well as
the governance of economic and political systems
have been very important in this area. Within
these approaches, it was less network theoretical
discussions that initially triggered a lot of research
but rather empirical descriptions and the curiosity
about the structural characteristics  of
interorganizational networks. In addition, “net-
work” was often used as an empirical tool to
operationalize and test relational concepts from
other theories in the social sciences like power or
diffusion theories in different fields within the
social sciences. First, community power studies
in the early 1970s demonstrated the importance of
organized action and provided an empirical basis
in the controversy with Marxist theories, which
dominated the discourse in sociology at the time
(Laumann and Pappi 1976). Another prominent
application especially in sociology was the study
of interlocking directorates as a way to investigate
the mechanisms of coordination or power struc-
ture in sectors or whole economies (Mintz and
Schwartz 1985). Second, the discussion on feder-
alist systems (Hanf and Scharpf 1978) and policy
networks (Laumann and Knoke 1987) showed the
great importance, organizations, and their evolv-
ing networks had gained for policy making and
public administration. Third, a broad discussion
has evolved since the 1980s in regional econom-
ics, economic geography, and economic sociol-
ogy about which interorganizational network
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arrangements between private enterprises, (semi)-
state actors, and knowledge institutes or universi-
ties are most advantageous for regional develop-
ment, regional innovative capacity, and
competitiveness as production was transformed
from mass production to knowledge-intensive
flexible specialization (Saxenian 1990). A very
broad theoretical discussion, however, that went
across these different fields evolved around the
question, under what conditions which gover-
nance form, i.e., market, hierarchy, or network,
would be most effective and efficient. This dis-
cussion was very much triggered by the ideas of
Williamson (1975) and later Powell (1990). In
terms of methodology, the dominant approach in
this group has been (comparative) case studies,
increasingly with a combination of qualitative
narrative analysis and quantitative network
analysis.

Interorganizational Networks: Main
Theoretical Approaches

Within the field of interorganizational network
research, we can distinguish at least nine theoret-
ical perspectives, if one combines the three main
units of analysis, the organization, the dyadic
relationship, and the whole network, in terms of
antecedents and outcomes in a 3 x 3 table (see
Raab et al. (2012)), since many empirical studies
and major theoretical contributions combine the
perspective of at least two cells. The most prom-
inent combinations in the theoretical discussion in
the field so far have been the following: (1) the
effect of organizational characteristics including
structural network positions like centrality on
organizational level outcomes, (2) the effect of
dyadic interorganizational relationships on out-
comes at the organizational level, (3) the effect
of organizational and dyadic characteristics on tie
formation, and (4) the effect of network charac-
teristics on network level or system level out-
comes. As discussed above in the historical
background section, theoretical contributions
came from many different fields in the social
sciences and economics. However, similar to the-
ory development in the field of intraorganizational
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networks, major theoretical discourses originated
in sociology on social networks in general which
have recently been summarized as core elements
of a network theory by Borgatti and Halgin
(2011). Core theoretical contributions in this
regard, which were strongly picked up in the
research on interorganizational networks, have
been made by Granovetter (1973) with his idea
of the strength of weak ties and the embeddedness
of social actors, including organizations in wider
webs of social relations (Granovetter 1985). In
addition, the discussion on different forms of
social capital, i.e., Burt’s structural holes approach
(1992, 2005) and Coleman’s (1988) idea of clo-
sure in social systems, has been a major discourse
in the field. Actually, a lot of research was trig-
gered by two theoretical controversies, namely,
the controversy between Burt and Coleman’s
ideas on social capital and between Granovetter’s
(1985) embeddedness approach and Williamson’s
(1975) transaction cost perspective. The latter
controversy revolved around the question, what
determinants are most important for the behavior
of organizations and especially their tie formation.
While Williamson (1975) claimed that ties would
be formed on the basis of the nature of an eco-
nomic exchange like frequency, asset specificity,
and uncertainty, Granovetter (1985) argued that
such a view was “undersocialized” and neglected
the fact that social actors are embedded in social
relations with the exchange partners themselves
but also with third parties and beyond. As a con-
sequence, predictions about the behavior of social
actors and their tie formation had to take these
wider social relations into account including their
history and potential future. The first controversy
(Burt vs. Coleman) revolved around the question,
what the most advantageous tie or network struc-
ture (form of social capital) is, for an organization
to be embedded in. Is it a brokerage position
(structural hole, Burt), where the partners of an
organization are not linked to each other and an
organization can therefore play out its partners
against each other or is it a position, in which the
partners are all connected to each other (closure,
Coleman) and therefore trust and common norms
can develop? In 2005, Burt resolved this contro-
versy by combining the two perspectives, i.e., he
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now argued that a position is most advantageous
for an organization, if it is embedded in a densely
connected cluster and that cluster is then in a
brokerage position between other clusters. Such
a constellation maximizes both local trust build-
ing and access to novel information.

A third contrasting discussion was between
again Williamson’s (1975) transaction cost theory
and Powell’s (1990) claim that networks formed a
third and distinct form of governance that was not
simply a combination of characteristics of markets
and hierarchies. The questions what distinct forms
of governance are under which conditions likely
to arise and be effective were broadly discussed in
(economic) sociology, in political science, as well
as in management and organization science. “Net-
work” was thus mainly discussed with “market”
and “hierarchy” as the reference points. As a
result, networks were often treated as if they
were all the same even though empirical evidence
was mounting that very different types of net-
works exist and that especially engineered net-
works can be governed quite differently.
Consistent with this more recent view, Provan
and Kenis (2008) have suggested three ideal
types (they call them modes) of network gover-
nance, which they argue can lead to effective out-
comes depending on a number of contingencies.
With regard to these engineered networks, we see
a somewhat independent theory development in
public management which is concerned with the
evolution, functioning, and especially the effec-
tiveness of interorganizational networks (Provan
and Milward 1995).

Especially with regard to general conceptuali-
zation and the formation of dyadic ties from the
perspective of the individual organization, valu-
able theoretical contributions also came from
organization theory. Aldrich (1971) was one of
the first who started to conceptualize the environ-
ment of organizations as consisting of other orga-
nizations with concrete linkages among each
other. This perspective further developed in the
resource dependence theory (Pfeffer and Salancik
1978) by combining it with general exchange
theory. Resource dependence theory states that
all organizations are dependent on other organi-
zations for resource inputs, since they cannot
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produce everything themselves. Depending how
strong this (asymmetric) dependency is, organiza-
tions try to control and cope with these dependen-
cies through internal measures but also by
forming ties to other organizations, for example,
in the form of crossover board memberships to
stabilize the relationship.

lllustrative Example(s)

In the following, a few empirical studies are
briefly discussed. They have been selected and
are grouped according to their primary unit of
analysis (individual organization, network, sys-
tem/community). Two of the most prominent
studies that focus on network effects for the indi-
vidual organization are the study by Uzzi (1997)
on “Social Structure and Competition in Interfirm
Networks: The Paradox of Embeddedness” and
by Powell et al. (1996) on the “Inter-organiza-
tional Collaboration and the Locus of Innovation:
Networks of Learning in Biotechnology.” Uzzi
(1997) conducts an ethnographic analysis at
23 women’s better-dress firms in the New York
City apparel industry and attempts to explore and
explain the “links between social structure, micro-
behavioral decision-making processes, and eco-
nomic outcomes within the context of
organizational networks” (Uzzi 1997, p. 61).
Departing from Granovetter’s notion of
embeddedness, Uzzi shows that firms perform
best, if they manage to position themselves in an
“integrated” network environment that is consti-
tuted of a mix of “arm’s-length” and “embedded
ties.” Arm’s-length ties are understood as relation-
ships on the basis of market exchanges, while
embedded ties are long-standing close and special
relationships in which tacit knowledge can be
transferred.

Powell et al. (1996) demonstrate in their study
about the interorganizational network which
forms the organizational infrastructure of the bio-
technology industry mainly in the USA that in
industries like biotech where knowledge is com-
plex and rapidly expanding and the sources are
widely dispersed the networks rather than the
individual organizations become the carrier of
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innovation. This is due to the fact that in such
industries new knowledge is and cannot be pro-
duced within the confines of a single organiza-
tion or through simple market transactions but is
rather created through access to general knowl-
edge flows and intensive interaction with organi-
zational partners. They show in addition that as
the locus of innovation shifts to the network
level, that access to the knowledge flows in the
network becomes crucial. Therefore, the higher
the number of R&D alliances and the better they
are managed in t0, the higher the number of
alliances and central connectedness in tl with
subsequently stronger organizational growth in
t2. The network was constructed of firms
being active in or having an affinity with the
biotechnology industry and various R&D and
investment ties.

Compared to the first group of studies that have
the organization as the unit of analysis, the num-
ber of studies investigating outputs and outcomes
at the network level is relatively small. This is due
to the fact that organization level outcomes are of
greater importance to management scholars and
data requirements are very challenging for stud-
ies that focus on the network level as the unit of
analysis (Provan et al. 2007). In their seminal
study “a preliminary theory of network effective-
ness,” Provan and Milward (1995) compared
four interorganizational networks in the area of
mental healthcare in the USA and developed a
theoretical framework that could explain the
level of network effectiveness in terms of client
well-being/quality of life. The networks
consisted of around 30 organizations that were
involved in taking care of mentally ill people and
their linkages such as client referrals, joint pro-
grams, case coordination, and service contracts.
They found that network structure in the form of
centralized integration, direct nonfragmented
control, and the context factor resource munifi-
cence and system stability had a positive effect
on network effectiveness.

Human and Provan (2000) conducted a com-
parative case study of two networks of 22 and
23 small-and medium-sized companies in the US
wood processing industry. Both networks were
structurally similar and had a network

Interorganizational Networks

administrative organization that coordinated net-
work activities. The types of ties that were
included in the analysis were business, friendship,
and information linkages with the other firms in
the network. Human and Provan were interested
in describing the evolution of the two networks
especially with regard to the development of legit-
imacy and its impact on the survival of the net-
works. The authors collected two rounds of data in
order to be able to conduct a longitudinal analysis.
They identified three dimensions of network legit-
imacy that were crucial: “network as an entity”,
“network as a form”, and “network as interac-
tion”. They found that the network which first
addressed internal and then external legitimacy
could sustain its activity, while the other network
ceased to exist.

A lot of studies, which investigate the effects or
implications of interorganizational networks on
the wider system or community, can be found in
fields, which have a wider system perspective as
regional economics, economic geography, sociol-
ogy, and especially political science. With regard
to the latter, policy (domain) networks were a very
prominent object of study during the 1990s and
2000s. In one of the most ambitious empirical
research projects, Laumann and Knoke (1987)
conceptualized the US energy and labor policy
domains as large interorganizational networks
that develop out of the participation of political
actors (legislators, governmental agencies, inter-
est groups, etc.) in political events and their
engagement in political exchange relations.
Through these exchanges, power positions of
political actors are constituted and become visi-
ble. Subsequently, power distributions among
these actors in combination with their political
interests have significant consequences for policy
making and policy outputs.

In a widely cited study, Owen-Smith and
Powell (2004) combine insights from economic
geo-graphy, economic sociology, and organi-
zation theory to analyze the flow of knowledge
and information through a regional sectoral
interorganizational network, i.e., the Boston Bio-
technology community. On the basis of research
and development ties between public research
organizations such as universities and knowledge
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institutes and private companies such as diagnos-
tic biotechnology firms, venture capitalists, and
pharmaceutical companies, they conduct a quan-
titative network analysis to visualize the
interorganizational network and calculate the
betweenness centrality of organizations. The cen-
trality scores are then used in regression models to
determine to what extent membership and central-
ity of an organization in a network will influence
the innovative outputs of firms. Even though the
unit of analysis is the single firm, the study is
exemplary in systematically collecting detailed
relational data on a regional sectoral network
and demonstrating the mechanisms that lead to
increased innovative capacity also of entire
regions or geographical agglomerations. One of
their main findings in this regard is that geo-
graphic propinquity and centrality matter espe-
cially in networks that are dominated by private
knowledge regimes as in their biotechnology
case. Here, knowledge and information were
transferred through rather closed channels and
not through open channels as we might find
them in networks that are dominated by public
research organizations. Thus, Owen-Smith and
Powell (2004, p. 17) argue that two characteristics
of interorganizational networks that are indepen-
dent of structure, i.e., propinquity and institutional
characteristics with regard to the knowledge
regime, transform network effects of information
flows.

Key Applications

The field of interorganizational relations and net-
works has especially since the 1990s produced a
large amount of empirical studies on a large vari-
ety of topics. During the late 1980s and early
1990s, scholars primarily focused on describing
the characteristics of networks. Since the late
1990s, more and more work is also conducted on
the antecedents (Gulati and Gargiulo 1999) and
especially the outcomes of interorganizational
networks. While the 1990s were characterized
by a positive normative bias about networks
being beneficial for organizations and societies
alike, work in recent years has taken a more
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neutral and empirical stance. Networks are now
regarded as one of the several possible gover-
nance mechanisms, and the question then arises,
under what circumstances they are effective. In
addition, while the discussion during the 1990s
focused on the comparison between market, hier-
archy, and network as the three ideal typical gov-
ernance forms, more recent work demonstrated
that networks themselves can differ considerably
and can be governed quite differently. Provan and
Kenis (2008) suggest three governance modes for
networks: the self-governed network, in which all
participants jointly take on coordination and con-
trol; the lead organization mode, where one of the
participating organizations mainly determines the
course of action; and the network administrative
organization, where a separate entity is founded to
take on coordination and control. In addition, a
strand in the public management literature on
“collaborative networks” emphasizes the distinct
management processes within networks like “acti-
vating, framing, synthesizing, and mobilizing”
(Agranoff and McGuire 2001). Also more
recently, more and more studies focus on the
dynamics and evolution of interorganizational
networks (Ahuja et al. 2012) and the temporari-
ness of many interorganizational networks (Jones
and Lichtenstein 2008).

Future Directions

Due to a strong structuralist tradition, studies on
interorganizational networks have for a long time
been rather static, i.e., concentrated on the analy-
sis of relational and organizational data at one
point in time. Moreover, data collection about
interorganizational networks is very time con-
suming and risky, since for every network,
access to often more than a dozen organizations
has to be achieved. In addition, agency was often
assumed but not further investigated. Therefore,
one of the most promising avenues for further
research is the inclusion of network processes in
the study of interorganizational networks (see
also Ahuja et al. (2012); Kilduff and Brass
(2010)). In more detail, these are studies in the
following areas:
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1. Studies which empirically demonstrate the
assumed causal relationships between certain
structural characteristics and outcomes of
interorganizational relations and networks, for
example, between centrality and organiza-
tional performance.

2. Studies that look at actions of individuals and
organizations in interorganizational relations
and networks over time. Especially interesting
but also very challenging are studies that apply
a multilevel perspective, i.e., combine
interorganizational and interpersonal relations
(see Lazega et al. (2008)). In addition, once we
take agency in networks seriously, we need to
know much more what actors know about their
network environment, how they use that infor-
mation, and how it influences their decisions
and behavior (see Knoben et al. (2012)).

3. Studies that analyze and explain process pat-
terns of interorganizational networks or use
them to explain various outcomes for both
engineered and emergent networks.

4. Studies that describe and analyze the dynamic
evolution and change of networks and their
antecedents for engineered and emergent net-
works alike.

5. Studies which investigate the effect of time in
interorganizational networks. Despite the fact
that many interorganizational networks are
temporary, i.e., their existence is limited from
the outset with regard to a certain time period
or until they achieve a certain outcome or state,
the effect of time has been rarely questioned in
studies on interorganizational networks. The
core question in that regard is to what extent
the limited or short duration influences tie for-
mation, trust building, or the general coordina-

which outputs or even outcomes. For a long
time, networks seemed to be the solution for
many problems that were connected to market
and state failure. However, the initial optimism
in the 1990s has subsided, and after more than two
decades of empirical research, scholars are in gen-
eral much more realistic. However, more research
is still necessary in this area and also here we need
to combine structural characteristics of networks
with (management) processes, agency, network
governance, and context factors to make progress
in our understanding of interorganizational net-
works and their outputs or even outcomes. In
that endeavor, a configurational approach together
with Qualitative Comparative Analysis (QCA) as
an analytical tool is very promising (see Raab
et al. (2012)). With QCA it is not only possible
to more systematically analyze data in cases of
small and medium sample sizes, a notorious prob-
lem in interorganizational network research (Pro-
van et al. 2007), but it is also possible to
systematically explore the different configurations
of causal conditions that might lead to a certain
output. A configurational approach also focuses
on the identification of necessary and sufficient
conditions for certain outputs as well as equifinal
and conjunctural causation. These characteristics
of the configurational approach make it highly
valuable not only for academic research and the-
ory building but also for supporting the formula-
tion of relevant management and policy
recommendations.

Cross-References

Futures of Social Networks: Where Are Trends

tion process. Since many interorganizational
networks are actually constituted by projects,
a combination with the project literature is
likely to be beneficial (see Jones and Lichten-
stein (2008)).

A second interesting and important avenue

especially in public management and policy mak-
ing is the question what makes networks effective
and under which conditions do they produce
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Synonyms

Company chart; Informal network; Informal orga-
nization; Interpersonal networks; Organizational
blueprint; Organizational grapevine; Organiza-
tional social capital; Prescribed versus emergent
organizational structure

Interpersonal Networks

Glossary

Embedded Organizational members

relation connected through both
a formal and an informal
relation

Formal Organizational members

relation connected only through
authority or workflow
interdependence

Informal Organizational members

relation connected only through a
personal tie without a formal
relation

Membership ~ Organizational members who are

relation part of the same unit but not
connected through a formal or an
informal relation

Definition

Intraorganizational networks are the aggre-
gate of the formal and informal relationships
between the members of an organization.
Depending on the presence or absence of formal
and informal elements in the tie between two
members of the organization, four elementary
types of intraorganizational relationships can be
distinguished. Together they form the intraorga-
nizational network.

Formal relationships can be based both on
vertical authority relations between a hierarchical
superior and a collaborator and on horizontal
workflow interdependencies between peers. For-
mal “relations” are often documented in the orga-
nizational chart or blueprint. They define
legitimate routes for interaction, advice, approval,
and the transmission of information. The chart
does not necessarily say much about the actual
frequency or importance of the specific formal
relationships.

Informal relationships in the narrowly defined
sense are personal ties between members of the
organization who are not connected through a
formal relationship. Informal personal ties can
be positive or negative and weak or strong,
depending on the level of mutual expectations
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and obligations, the frequency of interaction,
and the degree of multiplexity of their relation
(arelation is multiplex if it consists of more than
one dimension, e.g., friendship and the
exchange of advice). Commonly studied infor-
mal relations are often categorized into “affec-
tive” (interpersonal trust, friendship) and
“instrumental” (e.g., advice, communication)
ties. More recent organizational network studies
also pay attention to negative relations and “sour
social capital,” like distrust, betrayal, mobbing,
foes, and gossip.

Embedded relations consist of ties in which
both parties are connected through both a formal
and an informal relationship (e.g., a boss and
his collaborator have a friendship relation).
Embedded relations can be consistent or incon-
sistent, depending on the degree to which the
logic and objectives of the formal and the infor-
mal relation conflict with or mutually support
each other (Soda and Zaheer 2012). For exam-
ple, an embedded relation is inconsistent if func-
tionally interdependent team members are also
friends, and friendship norms lead to positively
biased evaluations of the quality of each other’s
work.

Finally, even if they are not connected through
a formal (authority or workflow interdependence),
an informal, or an embedded relationship,
employees can still be connected through a mem-
bership relation. Simply being part of the same
organization subunit or (temporary) project can be
highly relevant for how employees behave
towards each other. Three types of membership
relations can be distinguished. In a one-dimen-
sional membership relation, employees perceive
themselves as being part of one unit. In a multi-
dimensional membership relation, employees are
part of several units (e.g., a project group, a
department, a committee). These units can overlap
and/or be nested. Ambivalent membership rela-
tions emerge where boundaries between organi-
zational (sub)units dilute, and/or formal
membership criteria are subject to multiple inter-
pretations (e.g., should interns or workers from
temp agencies who join a team — often for consid-
erable periods — be considered as members of the
organization?).
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Most research on intraorganizational networks
focuses on the study of informal relationships
and insufficiently specifies the formal or embed-
ded context of the informal ties and has paid
only scant attention to the role of membership
relations.

Introduction

Intraorganizational networks matter at three
levels. For individuals, their personal network at
work influences opportunities, perceptions, and
behavior during all stages of their contact with
the organization: from getting hired to getting
promoted and getting fired and from learning the
tricks of the trade to getting ones job done. For
workgroups, the structure of the informal network
matters during all phases of the production pro-
cess (input, throughput, and output). For example,
it can be decisive in a workgroup’s ability to
coordinate, to sanction free riders, to prevent and
solve conflicts, and to foster creativity and inno-
vation. On the level of the organization, the con-
figuration of formal and informal structures is a
key element of its governance structure. Some
even see “network forms of organization” as a
specific (new) organizational form, characterized
by enduring exchange relations that “lack a legit-
imate organizational authority to arbitrate and
resolve disputes that may arise during the
exchange.”

For each of these levels, a wide array of litera-
tures and theories has emerged. There seems to be
no subfield that did not try to incorporate social
networks into their research agendas. Organiza-
tional behavior scholars, labor market researchers,
decision theorists, to name but a few, study
individual level effects of intraorganizational net-
works. Small-group researchers from all social sci-
ence disciplines are interested in the antecedents,
processes, and consequences of intraorganizational
network structures. Economists and sociologists
use theories of organizational governance to ana-
lyze under which conditions network organizations
yield transaction cost advantages compared to
other governance structures, in particular hierar-
chies and markets.
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Key Points

Intraorganizational networks are traditionally ana-
lyzed as “pipes” connecting organizational posi-
tions and their incumbents. The major mechanism
is one of instrumental relationalism: the forma-
tion, change, and effects of networks are driven by
purposeful social exchange, motivated by calcu-
lated investments in social capital, and governed
by straightforward cost-benefit reasoning. An
individual’s network position determines his or
her opportunities to have access to scarce material
and immaterial resources — like information,
resources, and social support. The resulting level
of social capital of individuals and workgroups, in
turn, affects a large variety of outcomes, ranging
from individual performance, career prospects,
creativity, well-being, and job satisfaction to the
innovativeness and flexibility of workgroups and
organizations.

More recent approaches emphasize that
intraorganizational ties also function as “prisms”
through which individuals frame social expecta-
tions and obligations. The major mechanism is one
of constructive relationalism: intraorganizational
networks are the result of cognitively mediated
functional interdependencies. This shifts the
focus from social exchange of goods and services
to the sustaining or hampering role of social ties
for joint production. This approach endorses a
more complex behavioral model, in which the
cognitive activation of network perceptions, the
institutional and cultural context, and relational
signaling processes are important elements for
modeling the emergence, dynamics, and effects
of intraorganizational networks.

Historical Background

The study of intraorganizational networks is
strongly intertwined with four developments in
the social sciences. First, the “discovery” of the
informal organization is usually attributed to the
so-called Hawthorne experiments, carried out in
Western Electric’s Hawthorne plant between 1924
and 1932. In particular, sociometric data from the
“bank wiring room experiments” showed the

Intraorganizational Networks

impact of informal ties on performance: indepen-
dently of the formal structure, informal cliques
emerged, developing and enforcing productivity
restricting group norms to the point that the intro-
duction of individual performance related pay
even decreased performance. The Hawthorne
studies marked a shift in perspective in organiza-
tional research from conceiving organizations
as closed and rational systems — self-contained,
pre-designed formal structures that functioned
according to the principles of a rational bureau-
cracy — to seeing “the company behind the chart™:
a natural and open system, with emergent social
relations, highly susceptible to outside influences
and “nonrational” impulses affecting the percep-
tions, emotions, attitudes, and behavioral deci-
sions of its members. The Hawthorne studies
and what later should become known as the
human relations approach sensitized organization
scholars not only to the importance of social rela-
tions, group membership, and identities but also to
a more complex model of human nature than
envisioned by the dominant closed rational sys-
tem framework. Nevertheless, these theoretical
developments had only marginal impact on the
emerging field of intraorganizational social net-
work studies.

Second, a major impulse came from organiza-
tional ethnographies, carried out in the tradition of
the Manchester School. They combine the appli-
cation of sociometric data collection techniques
with an in-depth ethnographic case study
approach which allows them to uncover not only
relational patterns but also the norms, rules, and
mechanisms behind social dynamics. Four early
studies exemplify this approach. One of the first
longitudinal intraorganizational network studies
was carried out in a Canadian furniture retail
sales store during the 1950s (French’s 1963).
This descriptive study maps the friendship rela-
tions of 25 salesmen at three points in time, the
negative relations at one point in time, and the
pattern of (non)compliance to informal norms
(“don’t snitch to management,” “don’t steal a
regular customer from a colleague™), regulating
the functional interdependencies among them.
Kapferer’s (1969) research in a Zambian mine
focused on the development and resolution of
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conflict among 15 workers. Sociometric informa-
tion covered were conversation, joking, job assis-
tance, cash assistance, and personal assistance.
A “crisis in a cloister” is the focus of Sampson’s
(1969) study of a conflict in a monastery, which
resulted in the expulsion of four monks and the
voluntary departure of many others. Retrospective
sociometric information was collected for three
time periods and a large variety of relations,
including liking, dislike, and influence. Finally,
Thurman (1979) studied two major disputes
among 15 employees in the overseas office of a
large international corporation. The structure of
the informal network helped explain the success
and failure of “leveling coalitions” against the
target of the conflict. A common thread in these
and similar studies consists in the finding that
organizational networks are often characterized
by inconsistent embedded relationships in which
informal and formal relations are at odds with
each other.

The third early source inspiring intraorgani-
zational network research was social exchange
theory and its application to small groups.
Homans (1950) analyzed social ties in organiza-
tions as an exchange of social approval (“liking”)
for compliance with group obligations, building
(among others) on a reanalysis of the Hawthorne
bank wiring room experiments, and his own
sociometric study of the “cash posters” in the
accounting division of a firm. In Blau’s (1955)
influential sociometric study of two governmental
tax agencies, civil servants exchange advice for
deference and professional status. But despite the
rich empirical insights produced by the early case
studies in the tradition of the Manchester School
and the strong explanatory potential of the
emerging social exchange and human relations
paradigms, intraorganizational network research
stagnated during the 1960s to the 1980s. Reasons
for this decline were the problem of getting access
to organizations, the sensitive privacy issues
related to sociometric surveys, which usually
require that respondents disclose their identity to
the researchers, and the limited ability to “gener-
alize” from the findings of a single case study.

As a result, during the 1980s, the focus shifted
towards the study of formal characteristics and
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structures of organizations (e.g., centralization,
span of control, size) and to interorganizational
networks (e.g., interlocking directorates), both of
which can be more easily accessed through (pub-
licly available) secondary data sources. The rise of
transaction cost and institutional theories of orga-
nizational governance during the 1980s and 1990s
also sparked some renewed interest for detailed
ethnographic studies of intraorganizational net-
works, in particular for their role in processes of
organizational control (Gargiulo 1993; Wittek
et al. 2003).

Intraorganizational Networks: Theories
and Social Mechanisms

Intraorganizational network research always had a
strong structuralist legacy, which assumes that the
major determinants of human decision-making
behavior, cognitions, or emotions are not their
individual attributes, attitudes, or other psycho-
logical traits but their position in a social structure.
Individuals in similar network positions are
confronted with similar opportunities and con-
straints, which in turn trigger the same kind of
individual perceptions, action opportunities, and
responses. In these constraint-driven structuralist
accounts, there already was little room for a more
grounded behavioral theory and the problem of
“agency.” The surge of new, powerful statistical
parameters and algorithms, which allowed to
detect positions in and “hidden” structural prop-
erties of networks, further reinforced this structur-
alist legacy during the 1970s.

Theories of action in the form of instrumental
relationalism entered intraorganizational network
research in the late 1980s (Jansen 2002) in the
form of two milestone contributions, which still
define the core of the widely applied social capital
approach (Flap and Vdlker 2012). Rational
choice-based exchange theory suggests that net-
work closure is beneficial for norm compliance
and therefore for group performance, because it
fosters social control. Ronald Burt’s (1992) struc-
tural hole theory combines ideas from social
exchange theory with structuralist theories of
power, shifting the attention to the individual
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“network entrepreneur” who actively creates and
strategically exploits structural opportunities as
they emerge due to the absence of ties between
his or her contacts. This framework emphasizes
the disadvantages of network closure and the
corresponding benefits of brokerage positions for
individual achievement. Both the closure and the
brokerage mechanism were frequently subjected
to empirical tests.

During the 1990s, growing dissatisfaction with
instrumental relationalism converged into the
emergence of an alternative behavioral foundation,
relational constructivism (Jansen 2002). It builds
on a more complex model of human nature than the
thin version of rational choice theory that was at the
core of instrumental relationalism. A key role is
reserved for individual identities, institutional
embeddedness, and the cognitive mediation of
functional interdependencies. Rather than being
simple “pipes” for the exchange of resources,
social relations function as “prisms” (Podolny
2001) framing mutual expectations and obliga-
tions. Relational Signaling Theory (Lindenberg
2000) explicates the social mechanisms underlying
the creation, maintenance, and decline of coopera-
tive relations in organizations. It suggests that in
settings with a high degree of functional
interdependence, individuals will constantly screen
each other’s actions for positive or negative rela-
tional signals, in order to assess whether the other
party is still in a cooperative frame.

lllustrative Examples

An empirical study of the impact of network posi-
tions on cognitions of 86 employees of a computer
software firm (Walker 1985) illustrates a structur-
alist mechanism. In addition to the formal
reporting relationship, respondents indicated, for
each colleague, the frequency of “sending” and
“receiving” eight different types of ties (feedback,
problems, extra time, technical information, mar-
keting information, etc.). “Cognitions” reflected
individual employee’s assessment of how
strongly 31 different means (e.g., close contact
with end user during the development phase) con-
tributed to the accomplishment of four different
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types of product goals (performance, generativity,
endurance, and coherence). Network positions
were assessed through structural equivalence ana-
lyses. Two individuals are structurally equivalent if
they have the same pattern of relations to similar
others. Completely in line with structuralist reason-
ing, “network position was found to be a stronger
and more stable predictor of differences in cogni-
tion than the type of function an individual had and
the type of product worked on” (Walker 1985:103).

A longitudinal network study modeling the
emergence of advice relationships among
57 employees of a Dutch housing corporation
(Agneessens and Wittek 2012) illustrates the logic
behind instrumental relationalism. The study
reconstructs the assumptions between the social
capital and the social status approach. Though
both are rooted in a social exchange framework,
their behavioral micro-foundations differ slightly,
with competing hypotheses about the structure of
the advice network being the result. For example,
where the social capital approach predicts an over-
representation of reciprocal dyadic relations and
cyclical triadic relations, the social status approach
predicts the opposite, i.e., an overrepresentation of
nonreciprocal dyads and triads. The analysis yields
partial support for both perspectives: overrepresen-
tation of reciprocal relations at the dyad level
(in line with the social capital approach) and over-
representation of noncyclical triads (in line with the
social status approach).

An ethnographic study on the escalation of
informal conflict management in the management
team of a German paper factory (Wittek et al. 2003)
illustrates the logic behind relational constructiv-
ism. It uses data on 67 conflicts involving 22 man-
agers and 4 waves of sociometric information,
covering a period of 3 years. Social escalation is
defined as the involvement of one or more third
parties in a conflict. Building on Lindenberg’s rela-
tional signaling theory, strong social ties are
expected to foster de-escalation only as long as
the organizational context sustains unambiguous
exchange of positive relational signals. Multilevel
analysis indeed confirms this — but the protective
effect of strong ties disappears through time. The
result is a decline in frame-stabilizing arrangements
in the firm, reflected in a drastic decrease of the
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frequency of meetings, and a major organizational
change through which acts that were previously
considered as strong positive relational signals —
like the provision of unsolicited advice — became
ambiguous, since they could now also be
interpreted as attempts to improve one’s status at
the expense of other team members.

Key Applications

The field of intraorganizational network studies
meanwhile produced empirical studies on a large
variety of topics, covering antecedents, dynamics,
and outcomes of networks at the level of individ-
uals, workgroups, and organizations.

Organizational networks can affect individuals
during all phases of their contact with an organi-
zation. Job seekers with friends occupying a
power position in a prospective employing firm
are more likely to be hired. Once at work, friend-
ship relations play an important role for the social-
ization of new colleagues into the culture of the
organization and learning the tricks of the trade.
A personal network with structural holes increases
the chances for and speed of promotions for senior
men (Burt 1992). Ties to powerful members in the
organization increase the success in salary negoti-
ations, particularly for minorities. Strong ties to
colleagues who are satisfied with their job increase
the likelihood of being satisfied with one’s own job
(Agneessens and Wittek 2008), and consistent
embedded relations increase individual perfor-
mance (Soda and Zaheer 2012). One’s friends are
also targets for organizational voice (Pauksztat
et al. 2011). Being tied to popular others in the
organization protects from becoming the object of
negative gossip (Ellwardt et al. 2012). Finally,
employees who are only weakly embedded into
the informal network of the organization are more
likely to leave, and those who see their friends
leave also are more likely to leave the organization
themselves (Krackhardt and Porter 1985).

At the level of workgroups and organizations,
intraorganizational networks play a role during all
processes related to the input, throughput, and
output. On the input side, the structure of the
informal network influences outside information
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seeking. With regard to throughput, a study of a
multinational electronics company showed that
frequent contact between product development
units increases shared knowledge, which in turn
speeds up projects (Hansen 2002). Finally, a
major concern of intraorganizational network
research has always been the relationship between
network structure and output measures like
workgroup performance. A meta-analysis indeed
reports a positive relationship between the density
of intraorganizational networks and team perfor-
mance (Balkundi and Harrison 20006).

Future Directions

Of the many developments at the current frontier
of the field, three are particularly noteworthy.
First, considerable progress can still be made
with regard to theory formation. Many assump-
tions, mechanisms, and implications of key
hypotheses are still insufficiently explicated, and
formal analysis can yield interesting clarifications.
This holds for theorizing in both the instrumental
and constructivist traditions.

In the instrumentalist branch, game theoretical
analyses of the cohesion-performance mechanism
(Flache and Macy 1996) have demonstrated that
dense informal networks of strong ties may reduce
rather than increase team performance, if one
assumes that team members do not only exchange
social approval for contributions to group produc-
tion — as envisioned in the standard account of
instrumental relationalism — but might also end up
in an unproductive exchange of approval for
approval. Similarly, a formal model of what hap-
pens “if everyone strives for structural holes”
shows that in the long run, stable networks will
distribute benefits equally — implying that net-
work entrepreneurs will not be able to sustain
their structural advantage (Buskens and van de
Rijt 2008). Despite some progress, the study of
network games and their potential implications for
organizations is still in its infancy.

In the constructivist branch, at least two
promising developments can be discerned. The
first one relates to multilevel networks. Though
intraorganizational networks are multilevel by
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nature, it is only recently that they are subject to
systematic theorizing and empirical testing as well
as to statistical modeling (Lazega et al. 2008). The
second one explicates the role of cultural consen-
sus and cognitive social structures for network
processes (Krackhardt and Kilduff 2002). These
efforts benefit from combining insights from cul-
tural theory and cognitive psychology. For exam-
ple, Ma et al. (2011) show that national cultural
contexts moderate the effect of social network
structures on opportunity recognition, with struc-
tural holes increasing opportunity recognition in
individualistic cultures but decreasing it in collec-
tivistic cultures. Investigating the impact of job
threat, another study shows that someone’s status
affects which parts of the network are cognitively
activated in his or her mind (Smith et al. 2012).
Low status individuals were found to activate
smaller subsections of their network than high
status individuals. Cognitive activation of net-
work perceptions is likely to be influenced by
unconscious and biologically based “honest sig-
naling” mechanisms, as is demonstrated by an
emerging area of research using modern informa-
tion technology (“sociometric badges™) to detect
and analyze signaling content of verbal commu-
nication (Pentland 2008).

Second, statistical models for the analysis of
social network dynamics will continue to have a
strong impact on the development of
intraorganizational network research. Though
questions about the origins of intraorganizational
structures are fundamental to the field, the theo-
retical and methodological tools to answer them
are relatively recent. Examples for the former are
studies on the origins of structural holes (Zaheer
and Soda 2009) and the stability of brokerage
positions (Wittek 2001). Stochastic actor-oriented
models (Snijders 2001) have already been suc-
cessfully applied by intraorganizational network
researchers to disentangle selection and influence
effects (e.g., Agneessens and Wittek 2008) as well
as the coevolution of multiple relations (e.g.,
friendship choices and the allocation of power
reputations, Labun 2012). New techniques
enabling to model the dynamics of events in social
networks will further extend the range of possible
applications for the analysis of network dynamics.

Intraorganizational Networks

A final challenge remains the development and
design of network interventions: “purposeful
efforts to use social networks or social network
data to generate social influence, accelerate
behavior change, improve performance and/or
achieve desirable outcomes among individuals,
communities, organizations, or populations”
(Valente 2012:49). Such interventions can take at
least four different forms (Valente 2012): identifi-
cation of individuals (e.g., change agents) based
on some network property; “segmentation,” i.e.,
identifying groups of people whose behavior is to
be changed at the same time (e.g., detecting core
members of a network); “induction,” i.e., stimu-
lating peer-to-peer diffusion of information or
behavior; and “alteration,” i.e., changing the net-
work by adding or removing actors and/or their
relationships or changing the content of the ties.
An example for an alteration intervention is a
study in a call center of a large bank, where
company policy required workgroup members to
schedule nonoverlapping breaks (Waber et al.
2010). After a change in the structure of the breaks
that allowed for more overlap, the social cohesion
of the teams increased significantly. Though the
power of such network interventions is widely
recognized by managers and organizational con-
sultants, controlled experiments that would vali-
date the effectiveness of network interventions are
still rare. This is understandable, given the obvi-
ous limitations of carrying out such real-life
experiments in the field. Given such limitations,
it is understandable that researchers search low
cost and low effort substitutes for in-depth socio-
metric field experiments and longitudinal
intraorganizational network studies. As a result,
there is a big temptation to consider the huge
amount of intraorganizational relational data
that is currently produced through online com-
munication as a substitute for more traditional
forms of intraorganizational network research.
In combination with modern data mining tech-
niques, this kind of data certainly has the poten-
tial to produce useful new insights. However, the
strongest potential for generating new insights
almost certainly lies in the application of the-
ory-guided multi-method research designs,
which allow to adequately assess the role of
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organizational context which will always remain
a major driver behind any intraorganizational
network process.
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Synonyms

Eigenvalue and eigenvector — characteristic value
and characteristic vector; Eigenvalue with the
largest magnitude — dominant eigenvalue; Non-
singular — invertible; Vertex: Node

Glossary

Eigenvalue/ The fundamental entities that

Eigenvector characterize any given matrix and
can be obtained by finding the
roots of the characteristic
polynomial of the matrix or by
iterative methods

Social A research area in social and

Network behavioral sciences that uses

Analysis networks to represent and hence
analyze social phenomena

Iterative A procedure for solving a problem

Method by generating a sequence of
improving approximations to the
true solution of the given problem

Definition

Eigenvalues and eigenvectors are fundamental con-
cepts in linear algebra (Golub and Van Loan 2012;
Golub and Vorst 2000) and are defined as follows:

Definition 1 Let A be an n-by-n real matrix (i.e.,
inR"*"). If there exist a scalar /. € C and a nonzero
vector x € C" such that
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Ax = Jx, (1)
then x is called an eigenvector of 4 with
corresponding eigenvalue A. The pair (4, x) is
called an eigenpair of 4.

When 4 is a triangular matrix, the eigen-
values of A are just its diagonal entries. Thus,
an important strategy in obtaining the eigen-
values is to transform a given matrix into a
simpler form where the eigenvalues can be com-
puted easily. One transformation that can pre-
serve the eigenvalue structure of a matrix is
called the similarity transformation and is defined
below:

Definition 2 Matrix B is said to be similar to
matrix A if there is a nonsingular matrix X such
that B = X' AX. Similar matrices share the same
eigenvalues. Moreover, if x is an eigenvector of 4,
then X' x is an eigenvector of B.

In social network analysis, some problems can
be reduced to finding the eigenvalues and eigen-
vectors of a matrix (Kamvar et al. 2004; Newman
2009; Page et al. 1998; Yin et al. 2012). The
eigenvalues A are the roots of the characteristic
equation det (4 — AI) = 0, where I denotes the
identity matrix of order n. Unfortunately, there
are no direct or easy ways to solve the character-
istic equation for n > 5; therefore, we have to
resort to iterative methods (Golub and Vorst
2000). In this entry, we review some classical
iterative methods for solving the eigenvalue
problem (1).

Eigenvalue Problems from Social
Networks

In social network analysis, the centrality of a
vertex within a network determines the relative
importance of the vertex. It reflects how influen-
tial the vertex (which may be a person or a
webpage) is within the social network (which
may be a social club or the World Wide Web).
One main measure of centrality is eigenvector
centrality (Newman 2009; Opsahl et al. 2010). It
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assigns relative scores to all vertices in the net-
work based on the concept that connections to
high-scoring vertices contribute more to the
score of the vertex in question than connections
to low-scoring vertices. One example is Google’s
PageRank (Austin 2012) which is a special case of
Katz centrality (Katz 1953). The Google matrix
describes the hyperlink structure in the World
Wide Web (Kamvar et al. 2004; Page et al. 1998;
Yin et al. 2012). Below, we explain the associated
eigen-problem in more detail.

A Web graph is a graph where each vertex
denotes a page in the Web and an edge from
vertex v; to vertex v; signifies that there is a
link in page v; pointing to page v;. Let d; be
the number of links from page v;. The Google
matrix A and the PageRank vector x can be
constructed as follows (Kamvar et al. 2004;
Yin et al. 2012):

1. Define the matrix P = (p;) by

1/d; if there is a link from v; to v;;
0 otherwise.

2. The matrix P may contain zero columns. We
replace all zero columns with % 1 and name the
resulting matrix as P. Here, 1 is the column
vector of all ones and n is the order of P.

3. We then construct the Google matrix A = oP
+(1 —a)vl", where o € [0, 1] and v is a
vector satisfying that each component is non-
negative and v/ 1 = 1. The PageRank vector is
the vector x that satisfies

Ax = x 2)

with all components of x being positive and
IIx[l, = 1.

By the Perron-Frobenius theorem (see Horn and
Johnson 1985, p. 508), such a vector x not only
exists but also is an eigenvector corresponding to
the simple eigenvalue 1 of A. As an example,
consider a Web with four pages (vertices) linked
as in Fig. 1. Then
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Fig. 1 Generally speaking, A is very big in social net-
work analysis. Therefore, it is difficult to solve the eigen-
value problem (1) or (2) directly. One has to resort to
iterative methods to find the eigenvalues and eigenvec-
tors approximately. There are two classes of methods:
the partial methods which compute only some eigen-
values and the global methods which compute all the
eigenvalues

00 1/2 0
10 0 0] ;
=101 0o ofF
00 1/2 0
0 0 1/2 1/4
{1 0o 0o 1/4
“lo1 o0 1/4
0 0 1/2 1/4

3/80  3/80 37/80 1/4

A | 71/80 3780 3/80 1/4
~ | 3/80 71/80 3/80 1/4
3/80  3/80 37/80 1/4

Solving the PageRank vector x in (1) gives
x = (0.2138,0.2646,0.3079,0.2138)". The values
of the components of x represent the relative
importance of the corresponding page. Thus, v;
is the most important page and v, is the second
important page in Fig. 1.
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Partial Methods

Power Method
The simplest eigenvalue problem is to find the
eigenvalue with the largest absolute value and a
corresponding eigenvector (Householder 1964;
Wilkinson 1965). The power method is the sim-
plest iterative method for this task. Suppose that
Vi, Vo, . .., V, are n linearly independent eigenvec-
tors of 4 and Ay, A, ..., 4, are the corresponding
eigenvalues with |4;||41]|42]|> -+ >]||Zs|. Note
that v, v, ..., v, form a basis of R".

Given a nonzero initial vector qo, there exist
constants ¢y, ¢y, . . ., ¢, such that

qy = C1V1 +CVo + - - + ¢,V

By the equalities 4 v; = Av;, i = 1,2,..., n, we
have

AqO = C1A1V1 + C2loVo + - -+ Crdn V.
More generally,

k k nk
clilvl + 6‘2/12V2 T+ F e, Va
k
_ k(. (2
= )»1 <61V1 +62(/11> Vo 3)

S\ k
teta(i) ).

Due to the fact that |4, |>|4i|,i =2, ...
k

conclude that (2—1> —0,i=2,...,nas k— oo.

Alqy =

, 1, We can

Therefore, (4*qo)/(c12Y) is a good approximation
to vy for sufficiently large k. This is the basic
motivation of the power method. Let € denote
the error we can tolerate; the power method can
be summarized as follows:

Algorithm 1 The Power Method

Given an initial vector qq
fork=12,...

X = Qk—1/| "M*IHZ
G = Axy

L=
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5. 0 = x'q,

6. if ||g, — Owxill, < €, stop
7.  end for

8. accept 4 =0 and v; = x;

From (3), we see that the convergence rate of
Ja

21
close to 1, the convergence of the power method
is slow.

the power method depends on |$2|. If this ratio is

Inverse Iteration

In order to improve the convergence of the power
method and at the same time to find an eigenvalue
closest to any given value, say o, we apply the
power method to (4 — ol) ! instead of 4 (Parlett
1980). The resulting method is called inverse iter-
ation, and it is based on the following observation:
if 4 is an eigenvalue of 4, then 1/(A — o) is
an eigenvalue of (4 — oI)”', and the magnitude
of 1/(4 — o) relative to other eigenvalues of
(A — ol)”! can be made arbitrarily large by
making o close to A. This leads us to:

Algorithm 2 Inverse Iteration

1. Given an initial vector qqg and a shift ¢
2. fork=13,...

3. X = f]k71/||51k71H2

4, = (A—al) 'x

5. Qk = X/{qk

6. if [|qy — Owxk|l, < €, stop

7. end for

8.

accept A=0+ 9%’ and the corresponding

eigenvector v = x;.

The advantage of the inverse iteration over the
power method is its ability to converge to any
desired eigenvalue (the one nearest ). However,
inverse iteration in general requires calculating
(4 — ol)"" x; (step 4 in Algorithm 2); therefore,
it is less attractive when the calculation is
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expensive. Finally, we remark that the inverse iter-
ation, as well as the power method, can only com-
pute one eigenvalue along with its eigenvector.

Orthogonal Projection Methods

We now turn to the orthogonal projection
methods. Compared to the power method and
inverse iteration, the orthogonal projection
methods can extract a few eigenvectors from a
specified low-dimensional subspace. By choosing
the subspace appropriately, the original eigen-
value problem (1) is reduced to a smaller eigen-
value problem. This is the basic idea of the
orthogonal projection methods. In this section,
we first discuss the general framework of the
orthogonal projection methods: the Rayleigh-
Ritz procedure. Then we introduce a particular
implementation: the Arnoldi method.

Rayleigh-Ritz Procedure
Let S be an m-dimensional subspace of R”, called
the search subspace (Saad 2003). Assume that
(p, u) is an approximation to an eigenpair of 4.
The orthogonal projection method is to seek (i, u)
with u in S by imposing the so-called Galerkin
condition which requires that the residual » = 4
u — u u to be orthogonal to S, i.e.,
(Au—pu) L S. €))
Now, we translate (4) into a matrix problem. Let
41> 92 ---» ¢ be a basis of S and denote Q,,
= (41,492, - - - +q,)- Sinceu € S, it can be written as
u=0,y, yeR" 5)
Then, by the Galerkin condition (4), 1t and y must
satisfy

By = uy (6)

with

By = 0,AQ,,. @)
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Generally, m < n. As a consequence, we can
obtain the approximate eigenvalue u of A by solv-
ing the small eigenvalue problem (6) and then the
associated approximate eigenvector u by the rela-
tion (5). The pair (i, Q,,») is called a Ritz pair,
which is considered as the optimal approximation
to the eigenpair of A in the search subspace S. The
process is known as the Rayleigh-Ritz procedure,
which can be summarized as follows:

Rayleigh-Ritz Procedure

1. Compute an orthonormal basis {q;, g5, - .
of S.Let Q,, = [q15G2> - - - »Gm)-

2. Compute B,, = Q' AQ,,.

3. Compute the eigenvalues of B,, and select the k
desired ones u;,i = 1,2, ..., k, where k < m.

4. Compute the eigenvectors y;, i = 1,2,.. ., k, of
B,, associated with y1;,i = 1,2, ..., k. Then the
corresponding approximate eigenvectors of
Aare u; = Q,y;,i = 1,2, ..., k.

o> Gm}

Arnoldi Method

The construction of the search subspace S can be
done in different ways (Arnoldi 1951). If it is
chosen to be the so-called Krylov subspace

’Am*1q0}7

with the initial vector g, then the orthogonal pro-
jection method becomes the well-known Krylov
subspace method. From the definition of the Krylov
subspace, the Krylov subspace method can be
viewed as an extension of the power method.

The Amoldi method is a Krylov subspace
method. It first utilizes the Arnoldi process to estab-
lish an orthonormal basis, say Q,,, for the Krylov
subspace. Then it performs the Rayleigh-Ritz pro-
cedure to extract the approximate eigenvalues/
eigenvectors of 4. We remark that the Arnoldi
process, in exact arithmetic, is essentially the
Gram-Schmidt procedure applied to go, 4 qo, - - -,
A" go. The process can be described as follows:

Kn(A, qo)zspan{qo,AqO,Aqu, ...

Algorithm 3 Arnoldi Process

1.  Given the initial vector gy and compute

q1 = ‘10/”%”2
2. forj=12,..m
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3. h,-j:qiTqu,i:LQ,.”’j
J
4. W =Ag;— > hyg;
i=1
> h/+1,j = ||Wj 2 if hj+1,j =0, quit
' 4y = wilhipy,
7. end for

From lines 4 and 6 of Algorithm 3, we can
easily deduce the following fundamental relation:

AQm = QmHm + hm+1, mqurlez-m (8)

where e,, denotes the mth column of the m x m
identity matrix, and

hiy o hi hip—1 hiy
hyt  hy hop—1 hay

Hy=1 0 hy han-1 T )
0 0 hnn—l hnn

is an upper Hessenberg matrix, i.e.,h;; = 0 if i > j
+1.
Multiplying both sides of (8) by O, and mak-
ing use of the orthonormality of
G1s- -+ Gms Gy J» We immediately have

0,AQ,, = Hy, (10)

It means that H,, is equivalent to B,, in (7) for
the case where the search subspace S is a Krylov
subspace. Therefore, we can outline the Arnoldi
method as follows:

Algorithm 4 Arnoldi Method

1. Given the initial vector qo.

2. Generate H,, and Q,, by performing m steps
of Algorithm 3;

3. Compute the Ritz pairs and decide which
ones are acceptable;

4.  If necessary, increase m and repeat.

Note that in Arnoldi method, the matrix 4 is
only involved in the matrix-vector multiplications.
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If 4 is large sparse or large structured, and only a
smaller number of eigenvalues/eigenvectors are
needed, the Arnoldi method is an ideal method.

Global Methods

QR Iteration

This method can find all the eigenvalues and eigen-
vectors of a given matrix (Francis 1961; Parlett
1980). Given A € R™", we first find an orthogonal
Qo € R™" | which means that Q{Q, =1, and
compute Ty = QgAQO. Then we construct the
QR iteration as:

{ QR = Ti-1,
Ty =RQy, k=12,...,

where Oy is orthogonal and R, is upper triangular.
Let O = Qy0,-- -0, then Q; is an orthogonal
matrix since all Q; are. It can be verified that T}
= QZAQk , 80 Ty is orthogonally similar to A.
Therefore, T, and 4 have the same eigenvalues.
For the QR iteration, there are two special cases:

1. If 4 has real distinct eigenvalues, then 7} con-
verges to an upper triangular matrix 7:

i ti ... i
r=| 9 2o | gy
0 0 ... twm
with ¢;, i = 1,2,..., n being the eigenvalues

of A.
2. If A has complex eigenvalues, then 7 con-
verges to a block upper triangular matrix T:

Ty T Ty
T— 0: 7:22 T:21 a2
0 0 ... Ty

where each Tj; is either order-one or two block.
If T;; is an order-one block, then it is a real
eigenvalue of 4. Otherwise, it contains a pair
of complex conjugate eigenvalues of 4 (see
Schur 1909, p. 341).
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The computational cost of each QR iteration
will reach O(n*), and the convergence is linear.
However, the computational cost can be reduced
to O(n?) if we choose a suitable O such that T, is
in the upper Hessenberg form (see (9)). The reduc-
tion can be realized with Householder transforma-
tions (Householder 1958).

The QR Iteration with Shifting
Techniques

In order to make the QR iteration more efficient
and robust, the shifted QR iteration strategy
was developed (Stewart 1973). Given pueR
and an upper Hessenberg matrix Ty, construct
Hessenberg QR iteration with shift p:

O =Tr_1 — ul,
Ty = ROy + .

Denote T,_| = (tflk 71)). There exist two ways to
select the shift p at each iteration (see Golub and
Van Loan 2012, pp. 385-388).

1. If u = !~ the iteration is named as the QR

nn

method with single shift.

(e e
2. Ifthe two eigenvalues of | ;"1 71 | are
tnnfl tz(jff b

complex, say g, G, we perform two consecutive
QR iteration steps with complex conjugate
shifts o and 7:

ORy =Ty —al,
Ty = R Q; +al,
ORy =Ty —dl,
Tii1 = ROy +al.

The QR iteration is an effective method for
dense and moderate eigenvalue problems, espe-
cially when all eigenvalues/eigenvectors are
required. The first step of a practical QR iteration
is to reduce the matrix A to upper Hessenberg
form via Householder transformations. However,
for large eigenvalue problems, Householder trans-
formations cannot be used as they destroy the
sparsity or the structure of A. In these cases, the
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orthogonal projection method, such as the Arnoldi
method, is an alternative.

Cross-References

Centrality Measures
Ranking Methods for Networks
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