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Abstract. Assume two different communities each of which maintain their
respective opinions mainly because of the weak interaction between them. In
such a case, it is an interesting problem to find the necessary strength of inter-
community interaction in order for the two communities to reach a consensus.
In this paper, the information accumulation system (IAS) model is applied to
investigate the problem. With the application of the IAS model, the opinion
dynamics of the two-community problem is found to belong to a wider class of
two-species problems appearing in population dynamics or in the competition
of two languages, for all of which the governing equations can be described in
terms of coupled logistic maps. Tipping diffusivity is defined as the maximal
inter-community interaction such that the two communities maintain different
opinions. For a problem with a simple community structure and homogeneous
individuals, the tipping diffusivity is calculated theoretically. As a conclusion
of the paper, the convergence of the two communities to the same value is
less possible the more overall interaction, intra-community and inter-community,
takes place. This implies, for example, that the increase in the interaction
between individuals caused by the development of modern communication tools,
such as Facebook and Twitter, does not necessarily improve the tendency towards
global convergence between different communities. If the number of internal links
increases by a factor, the number of inter-community links must be increased by
an even higher factor, in order for consensus to be the only stable attractor.
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1. Introduction

Often social networks are composed of weakly connected clusters, or communities. The
inter-community links between individuals are less than those within the community.
When the inter-community interactions are few, the opinions can differ from one
community to another. In such a case, it is an interesting question to ask under what
condition the two communities reach a common consensus or can maintain different
opinions. In [1], this problem is treated using a local majority rule on randomly chosen
triplets applied to a system composed of two fully connected core communities and some
inter-community links. In the present paper, we apply the information accumulation
system (IAS) model [2] to study essentially the same situation of two internally highly
connected communities with a comparably low number of inter-community links.

The IAS model describes a dynamic process through which information accumulates
in an agent. Information can represent opinion, knowledge or emotionality for a specific
issue, and is described as a real number from the interval [−1, 1]. Thus, IAS is a
kind of continuous opinion dynamics model [3]–[5]. In these models the evolution of
opinions is invariant to additive shifts of the opinion space. If all initial opinions were
increased by a constant, dynamics evolve essentially the same, just always shifted by
that amount. This shift-invariance is not the case in the IAS model, where the extreme
opinions −1 and +1 serve as natural extremes of opposite opinions. Different signs of
information represent two opposing opinions for a specific issue. Thus, in contrast to
binary models of opinion formation [1], [6]–[8] in which just two opinion states can be
represented, IAS can also represent the relative strength towards one of the two opinions.
For example +0.9 can represent ‘strong preference for Coca-Cola’ while −0.1 represent
‘weak preference for Pepsi’. The state zero represents a natural ground state with no
preference. In that sense our model is similar to the ‘continuous opinions and discrete
actions’ (CODA) model [9, 10], where a continuous opinion is transformed to a discrete
action by its sign. For a general overview on opinion dynamics models in physics see [11].
Our two-community case has also relations to studies of competition between two species
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in population dynamics [12] or between two languages, as in [13]–[15]. One underlying
theoretical question is the understanding of coupled logistic maps [12, 16].

The dynamics of the information an agent holds in the model is dominated by
two factors, the volatility of its old information, and information input of parts of the
information of its neighbors. The volatility of the old information quantifies the rate of
forgetting of information. The strength of the impact of an agent on the opinions of others
is called its diffusivity.

The dynamical forces of the IAS model make it also a natural candidate for a simple
model of collective emotions. In a dimensional approach on the representation of emotion,
usually the dimension of valence (‘good’ versus ‘bad’) turns out, after a factor analysis, to
be most dominant (see [17, 18]). This can be naturally represented on the scale [−1, 1] with
zero as the neutral ground state. Thus, the IAS model is of interest in the understanding
of emotions as a collective social phenomenon [19].

In the following we present a simplified version of the IAS model in section 2, which
we restrict to the two-community case under small news. We consider that agents in
a community have the same number of intra-community links towards members of the
same community and the same, lesser number of inter-community links towards members
of the other community. This implies uniform intra-community diffusivity and uniform
inter-community diffusivity of information. The dynamical behavior in this case is fully
characterized analytically. The system has different attractors depending on the volatility,
the intra-and the inter-community diffusivity. For high volatility naturally only the ground
state zero is attractive. With rising diffusivities two other attractors evolve, one, where
both communities agree on a positive opinion and an analogous one where both agree on
a negative opinion. There also exists a region where attractors of opposing opinions of the
two communities exist. Section 3 applies the IAS model to the question of two coexisting
languages. The most interesting fact is that the coexistence of opposing opinions or
languages can become attractive and stable when the overall diffusivity rises even when
the ratio of inter- versus intra-community diffusivity stays constant. This implies that
modern diffusivity-enhancing communication technologies need not raise the tendency
towards global convergence in opinion or language between different communities. On the
contrary, the ratio of the number of inter- versus intra-community links must be higher
to ensure convergence to a consensual state.

2. Information accumulation system model with two communities

A simplified version of the IAS is expressed in terms of an iterative map as follows.
Consider n agents. The information of agent i at time step t is labeled yt

i . With time
running in discrete steps agent i updates her information by the update map

yt+1
i = (1 − Δ)yt

i +
∑

j∈Γi

ωyt
j(1 − |yt

i |). (1)

Equation (1) shows that the information of agent i at time step t+1 is made up from two
different contributions. The inheritance term (1−Δ)yt

i, where 0 < Δ ≤ 1, is the volatility.
When the rest of the terms are neglected, information will decay to the ground state zero.
Thus, Δ can be seen as a rate of forgetting the old information (‘volatility’ is meant here
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in the thermodynamic sense of information ‘vaporizing’ to the ground state, and not in
the stochastic sense quantifying the standard deviation of noise as used in finance.)

The second contribution to the information at the next time step is the diffusivity
term

∑
j∈Γi

ωyt
i , which reflects the interactions between the agents in the system. The set

Γi is the set of neighbors of agent i. The parameter 0 ≤ ω < 1 is called diffusivity. Upon
interaction, a neighbor j delivers part of its information, a fraction of ω to agent i. Thus,
it can be seen as the loudness of the voices of the neighbors. The factor (1 − |yt

i |) is a
saturation factor. It guarantees that the size of the information is limited to |yt

i| ≤ 1 at
all time steps (when some bounds on the parameter space and the initial conditions are
respected).

The simplified version is derived from a general form of the IAS model presented
in [2]. The derivation is presented in appendix A together with some more details about
the interpretation of terms in different contexts. In the following we restrict the model
to a two-community situation and fully characterize its dynamics with respect to initial
conditions, volatility, inter-, and intra-community diffusivity.

Assume a social network with two communities and where every individual in the
system has m0 intra-community and mX inter-community neighbors. Thus, weak inter-
community interaction is described by m0 > mX . We further assume that the initial
information of all the individuals in the same community is the same. With this
assumption, yt

1, yt
2 represent the information level of the individuals in the communities

1 and 2 at time step t.
With the definition of inter-community diffusivity and intra-community diffusivity as

Ω0 = m0ω, ΩX = mXω,

equation (1) simplifies to the following system

yt+1
1 = τyt

1 + (Ω0y
t
1 + ΩXyt

2)(1 − |yt
1|) yt+1

2 = τyt
2 + (ΩXyt

1 + Ω0y
t
2)(1 − |yt

2|). (2)

For convenience, let us define the information modes of the system depending on the
signs of y1,i and y2,i. For example, the PN-mode denotes positive yt

1 and negative yt
2.

Analogously, the PP-, NN-, and NP-mode for different signs in of yt
1 and yt

2 being both
positive, both negative, or negative and positive. For a system in the PN-mode at time
step t, equation (2) can be written as

yt+1
1 = τyt

1 + (Ω0y
t
1 + ΩXyt

2)(1 − yt
1) yt+1

2 = τyt
2 + (ΩXyt

1 + Ω0y
t
2)(1 + yt

2). (3)

Similarly, for the PP-mode, the following equations hold.

yt+1
1 = τyt

1 + (Ω0y
t
1 + ΩXyt

2)(1 − yt
1) yt+1

2 = τyt
2 + (ΩXyt

1 + Ω0y
t
2)(1 − yt

2). (4)

The equations for the NP-mode and NN-mode are analogous with just switched signs in
the last factor of the last summand in both equations. Given initial conditions y0

1, y0
2,

the iterative maps given in equations (3) and (4) can be updated for later time steps.
One of the key interests of the present study is on the information modes of the steady
state solutions. The evolving mode depends on the three key parameters of the system,
Δ, Ω0, and ΩX . The steady state solution depends also on the initial condition. For
example, an initial condition y0

1 > 0, y0
2 > 0 always drives the system to a PP-mode while

y0
1 > 0, y0

2 < 0 may drive it to a PN-mode (but it need not). Figure 1 shows ten different
trajectories embedded in a general picture of the dynamical behavior.
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Figure 1. (top) Phase diagram in the (Ω0,ΩX)-plane, parameterized by Δ. Note,
that the system cannot be regarded as having community structure in the region
ΩX > Ω0. The region is included for theoretical reasons. (center) Basins of
attractions for all attractive fixed points in the (y1, y2)-plane for certain (Ω0,ΩX)
and Δ = 0.2. The color-axis shows the value of Y1 of the corresponding fixed
point. The corresponding value of Y2 is either equal to Y1 in the PP/NN-mode,
or equal to −Y1 in the PN/NP-mode. There are two basins of attraction for
different values in the coexistence zone to demonstrate how borders change.
(periphery) Exemplary trajectories for initial conditions (y0

1 , y
0
2) as marked in

the basins of attractions.
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The steady state solutions can be found by iteration of the updating maps, with
random initial conditions. Another convenient method is solving the fixed point equations
obtained by setting yt+1

1 = yt
1 = Y1 and yt+1

2 = yt
2 = Y2 in equations (3) and (4). Then,

(Y1, Y2) denotes a fixed point. The equations for the fixed points for the PN-mode are
obtained from the maps for the PN-mode given in equation (3),

Y1 = (1 − Δ)Y1 + (Ω0Y1 + ΩXY2)(1 − Y1)

Y2 = (1 − Δ)Y2 + (ΩXY1 + Ω0Y2)(1 + Y2).
(5)

It can be easily shown that equation (5) has a trivial solution Y1 = Y2 = 0 and
a skew-symmetric solution of Y1 = −Y2. The skew-symmetric solution defined as
YPN = Y1 = −Y2 > 0 is easily obtained from equation (5):

YPN = 1 − Δ

Ω0 − ΩX
, when Ω0 − ΩX ≥ Δ. (6)

Notice, that under certain conditions also another pair of fixed points exists in the PN-
mode. They have a lengthy analytical form, are unstable and not attractive, therefore
they are reported in appendix B.

Following the same process, we can find the analytic solutions for the PP-mode. The
PP-mode also has the trivial solution and a unanimous solution Y1 = Y2 = YPP. The
unanimous solution is

YPP = 1 − Δ

Ω0 + ΩX
, when Ω0 + ΩX ≥ Δ. (7)

If the conditions (6) and (7) are not satisfied, only the trivial solution is possible. No other
solutions but those explained were found from the PN-mode and PP-mode equations.
Table B.1 in the appendix gives a concise overview of all these fixed points.

Figure 2 shows all the steady state solutions that can be obtained for the case Δ = 0.2,
ΩX = 0.2Ω0. (We omit only the unstable fixed points mentioned in appendix B.) The
condition ΩX = 0.2Ω0 is taken as an example case. For the small diffusivity case of
Ω0 + ΩX < Δ, or Ω0 < 0.167, only the trivial solution is possible. For Ω0 ≥ 0.167,
both the PP-mode and NN-mode are possible. In the PP-mode the solution becomes
Y1 = Y2 = YPP and in the NN-mode Y1 = Y2 = −YPP. The PN-mode is possible at
a higher intra-community diffusivity and small enough inter-community diffusivity. The
condition for the PN-mode is Ω0 − ΩX ≥ Δ or Ω0 ≥ 0.25. It is important to observe
that there exists a parameter range in which solutions in the PN-mode are unstable but
attractive on a thin basin of attraction. Thus, they can only be observed analytically and
not in simulations.

Solutions in the PN-mode can also be stable. For example, figure 3 shows stable
solutions in the PN-mode for ΩX ≤ 0.088 for the case of Δ = 0.2 and Ω0 = 0.4. Let us
consider a critical inter-community diffusivity ΩT

X = ΩT
X(Δ, Ω0) defined as the maximum

value of ΩX under which solutions in the PN-mode can be stable. It can be obtained
analytically through an eigenvalue analysis for the linearized system of equation (3). The
critical inter-community diffusivity is obtained for the condition that the eigenvalue equals
one. The result is

ΩT
X = Ω0 + 1

2
Δ − 1

2

√
Δ2 + 8Ω0Δ. (8)

doi:10.1088/1742-5468/2010/06/P06005 6
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Figure 2. Solutions obtained for the case Δ = 0.2, ΩX = 0.2Ω0. Lines denote
analytic solutions and symbols denote stable solutions which can be obtained by
numerical computation with random initial values.

Figure 3. Dependence on inter-community diffusivity (Δ = 0.2, Ω0 = 2.5ΩX ⇔
ΩX = 0.4Ω0). For a given intra-community diffusivity, coexistence (PN- or
NP-mode) is possible only when the inter-community diffusivity is below some
threshold.

Figure 1 shows a phase diagram of solutions in the (Ω0, ΩX)-plane with axis’
parameterized by Δ. The parameterization of the (Ω0, ΩX)-plane in units of Δ is general,
as for joint scaling e.g. by a positive constant c as Ω′

0, Ω
′
X , Δ′ = cΩ0, cΩX , cΔ all solutions

and conditions are exactly the same because c cancels out, as can be easily checked. The
entire parametric space can be divided into two regions, a trivial one and a non-trivial
one, divided by the line Ω0 +ΩX = Δ from equation (7). The trivial region appears when
the diffusivities are so small that no meaningful level of information can be accumulated.
The only solution possible in this region is (0, 0).

doi:10.1088/1742-5468/2010/06/P06005 7
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The non-trivial region can be further divided into two zones, the consensus zone and
the coexistence zone. The largest part of the parametric space is occupied by the consensus
zone, in which only solutions in consensual modes (PP and NN) are stable. The trivial
solution (0, 0) becomes unstable, though it is still attractive on the anti-diagonal of the
(y1, y2)-plane (y1 = −y2) when Ω0 −ΩX < Δ. For Ω0 −ΩX > Δ the trivial solution (0, 0)
loses attractivity and two unstable solutions in the PN/NP-mode evolve which are again
attractive, each on its half of the anti-diagonal of the (y1, y2)-plane. Unstable solutions are
neglected in classifying the zones, because they are only of theoretical interest. The line
(Ω0, Ω

T
X(Ω0)) divides the non-trivial region into the consensus zone and the coexistence

zone. The coexistence zone appears when the inter-community diffusivity is relatively
low. In the coexistence zone, both the consensual (PP and NN) and the coexistence (NP
and PN) modes are possible. The realization of each depends on initial conditions.

Figure 1 also shows five basins of attraction of fixed points in the (y1, y2)-plane
for certain values in the (Ω0, ΩX)-plane when Δ = 0.2. The basins of attraction were
computed numerically for a fine grid in the (y1, y2)-plane. The structure of the zones
appear to be the same for different values of Δ. Further on, some trajectories are
shown and attached to certain points in the basins of attraction, which mark their initial
conditions.

In order for the two communities to maintain different opinions, the inter-community
diffusivity should be below ΩT

X . Consider two mutually isolated communities that have
inherited their own opinion or social norm for years. Now what will happen if the two
communities begin to interact with each other? When the interaction is still low enough,
they can maintain their respective style of life. When the inter-community interaction
is increased above the critical level, a small perturbation of the PN-equilibrium can lead
to convergence to a PP/NN-equilibrium. Thus, one of the two communities may discard
their traditional opinion to adopt the foreign one. Tipping has occurred. For this reason,
we call the critical inter-community diffusivity tipping diffusivity.

In the following we study the consequences of a general increase in diffusivity, as we
experience through modern technologies such as the internet and mobile phones. To that
end, let us consider the diffusivity ratio φ = ΩX/Ω0 which represents the ratio between
the sizes of the inter-community diffusivity to that of the intra-community diffusivity.
Naturally, it should hold that φ < 1. Consequently, we define the tipping diffusivity
ratio as

ΦT =
ΩT

X

Ω0
, (9)

and study how it depends on the inter-community diffusivity. Below the tipping diffusivity
ratio, the PN-mode is stable and thus coexistence of opinions is possible. In figure 4, ΦT

is plotted against the intra-community diffusivity Ω0 for three values of the volatility
Δ. In [1], the tipping ratio is calculated as a ratio between the number of interface
nodes to that of the core community nodes. In an example calculation, the tipping
ratio was obtained at about 0.32, which does not depend on the characteristic of the
individual agents. The value of 0.32 is quoted to compare with the results shown in
figure 4. The tipping ratio of the present study depends on the volatility and the inter-
community diffusivity. We can observe: (i) the lower the volatility Δ the higher the
tipping diffusivity ratio ΦT. (ii) The larger the intra-community diffusivity Ω0, the larger
the tipping ratio ΦT.

doi:10.1088/1742-5468/2010/06/P06005 8
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Figure 4. Tipping ratio ΦT as it depends on intra-community diffusivity Ω0.

Observation (i) is quite intuitive meaning that a society does not tip easily when
information does not vanish easily. Observation (ii) means that an increase in the
number of internal links, makes the society more resistant to tipping, even when the
inter-community links are increased with the same ratio. That is what is meant by ‘more
links, less consensus’ in the title of this paper. Similar the tipping ratio rises when the
individual diffusivity (ω) increases while the network remains constant. In other words,
tipping towards consensus gets less likely when voice get louder.

It is evident that this result is a direct consequence of the two important characteristics
of the IAS model. The first one is that the IAS is a continuous model. The second one
is that the diffusion term is an increasing function of the diffusivity. The model in [1]
is not a continuous one, paying no attention to the dependence of the tipping ratio on
the diffusivity or other factors. Furthermore, no known model seems to have a similar
diffusion term to that in IAS, making the result unique.

The ‘more links, less consensus’-effect in this study is interesting looking at
globalization. Modern communication technologies increase the level of diffusivity, but this
does not necessarily increase the tendency towards global convergence between different
communities or civilizations. On the contrary, the result suggests that differences between
civilizations could be strengthened, because the tipping diffusivity is higher even when
intra-and inter-community diffusivity are increased by a constant ratio.

It is interesting to note that the two-community model formulated in terms of the
IAS model is comparable to the two-species model appearing in population dynamics, in
which the governing equation is a set of coupled logistic maps [12]. One can show that
equation (5) in the present study can be transformed into a set of symmetric coupled
logistic maps. The behavior of the coupled logistic maps strongly depends on the type of
the coupling [12, 16]. The type of the coupling for the present study is not a simple one,
therefore all the analysis in this paper was completed without utilizing the knowledge of
the logistic map. Anyhow, the IAS model made a connection of opinion dynamics to well
known problems in population dynamics. For example, we could also apply the IAS model
for the two-language competition problem [13]–[15] for which a coupled logistic map can
be applied [14]. This example follows in section 3.

doi:10.1088/1742-5468/2010/06/P06005 9
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3. Application to language competition

As a possible application of the two-community model described in this study, consider
a language competition problem. After the seminal work of Abrams and Strogatz [13],
a number of papers were published on the language competition problem. The main
purpose of these works is to predict the fate of two or more competing languages in a
system. While the result from Abrams suggests that the two languages cannot coexist
stably [13, 20], other studies predict that both of the languages can survive [14, 21, 22],
depending on conditions. For the latter cases, the mode of coexistence is either through
bilingualism [21] or two monolingual pools [14, 22].

The language models can be classified into two types depending on the variables
used to represent the dominance of the languages. In most of the models, as in the
original model of Abrams and Strogatz, the governing equation is described in terms of the
population size [14] or concentration of population [13, 20, 22]. The governing equation is
formulated either in a mean field approximation or by agent-based models. These models
are discrete ones in the sense that each of the individuals is classified as speaker of one of
the two languages in competition, A or B. Bilingualism cannot be described in two-status
models. This is comparable to another type of model in which the language dominance is
represented by the number of words the agents use [15]. For example, an agent can have
up 20 words, 10 words from each of the two languages A and B. If two agents with different
vocabularies meet, each of them can update their vocabulary through a learn-and-forget
process. An agent is not described simply as a speaker of A or B, and bilingualism can be
represented. Actually, agent-based simulations resulted in most cases in a homogeneous
bilingual society [15].

Similar to the work of [15], we can apply IAS to the language competition problem. We
assume two communities 1 and 2, initially using language A and language B respectively.
We assume that the total number of words in each of the languages is Vw. In general, an
agent can have a mixed vocabulary of words from A and B. We define the information to
be used in IAS as

y1 = (vA
1 − vB

1 )/Vw y2 = (vA
2 − vB

2 )/Vw. (10)

In this equation, subscripts 1 and 2 denote the community, superscripts A and B denote
the language, and v denotes size of vocabulary. Thus, vB

1 represents the number of words
from B in the vocabulary of the agents in community 1. The size of vocabulary of the
agents 1 and 2 is denoted as

V1 = vA
1 + vB

1 V2 = vA
2 + vB

2 . (11)

The definition of y1 and y2 simply means the fraction of the excessive number of A-words
over B-words in the vocabulary of each of the agents 1 and 2, respectively. A positive
(negative) value of y1 and y2 means that there are more (less) A-words in each of the
agents. It naturally follows that |y1|, |y2| ≤ 1. An agent whose information level is very
close to 0 is a bilingual person, or sometimes an agent without language. We can call a
person with positive (negative) information as a person of language A (B), regardless of
their community.

Now let us apply the IAS model. One time step means one generation. yt
1 describes the

language usage of an average adult of society 1 at generation t. The volatility reflects the
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limited inheritance from the agent’s parents. Diffusivity means the cumulative influence
from the neighbors the agent interacts with through their lifetime. If an agent interacts
with their parents or neighbors with an A-excessive vocabulary, it learns some part of
the excessive vocabulary and their vocabulary will move in the A-excessive direction.
Assume that the two societies 1 and 2 are initially separated from each other, which
means that ΩX = 0. Without inter-community diffusivity, the agents in community 1
(2) have vocabularies purely composed of A-words (B-words). The values of these two
variables can be calculated easily and will be shown below for an example case. When the
two communities begin interaction, the values of y1 and y2 will change, depending on the
diffusivities Ω0, ΩX as well as the volatility Δ. For relatively small values of ΩX , the two
communities will reach the PN-mode, which is a coexistence mode. But for larger values
of ΩX ≥ ΩT

X , tipping will occur and one of the two languages will become extinct.
As an example case, assume the total number of words in language A and language

B is given by Vw = 100 000, respectively. Also, Δ = 0.2, Ω0 + ΩX = 0.3, for both of
the societies and initially the members of community 1 use only words from language A
(which implies y0

1 > 0), while members of community 2 use the same amount of words
but only from language B (which implies y0

2 = −y0
1 < 0). We want to see the change with

the increase in the inter-community diffusivity. Increase in inter-community diffusivity
means a decrease in intra-community diffusivity, as we are assuming Ω0 + ΩX remains
constantly 0.3.

For isolated societies with ΩX = 0 (and thus Ω0 = 0.3), the system remains in
the PN-mode when it starts in the PN-mode. The values of y1 and y2 are given by
y1 = −y2 = 1 − Δ/Ω0 = 1 − 0.2/0.3 = 1/3 (see equations (6) or (7)). For the completely
isolated case vB

1 = vA
2 = 0 it follows from equation (10) that an agent of community 1

has a vocabulary of size about 33 000 A-words. Similarly agents of community 2 have
vocabularies of about 33 000 B-words. If volatility decreases or diffusivity increases, the
vocabulary of the agents increases, too.

When the inter-community diffusivity is not zero but relatively small such that
0 < ΩX < ΩT

X is satisfied, the solution is still in a PN-mode. Assume ΩX = 0.02
(meaning Ω0 = 0.28). When Ω0 is given, we can calculate the tipping diffusivity from
equation (8). For Ω0 = 0.28, it is ΩT

X = 0.031. Also the solution can be easily obtained
from equation (6) as y1 = −y2 = 1 − Δ/(Ω0 − ΩX) = 1 − 0.2/(0.28 − 0.02) ≈ 0.23. Now,
the reduced value of y1 compared to the isolated case means that the vocabulary of agents
of community 1 is an unequal mix of words from the two languages. Equation (10) gives
the following relation

vA
1 − vB

1 ≈ 0.23 × 100 000 = 23 000. (12)

Agent 1 has in their vocabulary 23 000 A-words more than B-words. To find the respective
number of A-words and B-words in the vocabulary another equation is needed. For this
we assume that the size of vocabulary is maintained fixed as long as Ω0 + ΩX is constant.
In this case, we have

V1 = vA
1 + vB

1 ≈ 33 000. (13)

Solving equation (12) and (13) together, we get vA
1 ≈ 28 000 and vB

1 ≈ 5000. Analogously
for community 2.

Compared to the isolated case, each of the agents has replaced about 5000 of their
domestic words with foreign words. At a value of ΩX = 0.05 (and Ω0 = 0.25), the

doi:10.1088/1742-5468/2010/06/P06005 11

http://dx.doi.org/10.1088/1742-5468/2010/06/P06005


J.S
tat.M

ech.
(2010)

P
06005

Tipping diffusivity in information accumulation systems

tipping diffusivity is ΩT
X = 0.018. Tipping occurs and the solution is either in the PP-

mode or in the NN-mode. In the PP-mode, the solution is given from equation (7),
y1 = y2 = 1−Δ/(Ω0 + ΩX) = 1/3, meaning about 33 000 A-words only for all the agents
in the system.

Notice that we could apply the same procedure for the case Ω0 + Ωx ≤ Δ. In this
case we reach a vocabulary of size zero, which means no language. Thus, the trivial
region corresponds to a primitive society in which there is essentially no language. It is
remarkable that the solution (0, 0) is not a stable solution in the non-trivial region (see
figure 1). This means that perfect bilingualism is never obtained in communities with
language of vocabulary size larger than zero.

In studies using Abrams and Strogatz type of models, the results show that the
two competing languages cannot coexist [13, 20] in general. But in some special cases, the
coexistence was predicted to be possible. Abrams speculated that the language decline can
be slowed down by strategies such as policy making, education and advertising to increase
the prestige of the endangered languages [13]. In a spatial model, the coexistence mode was
obtained only within a narrow zone around the geometrical border of the two interacting
societies [22]. In terms of IAS, Abrams’ strategy, especially education, is equivalent to
increasing the intra-community diffusivity, thus increasing the tipping diffusivity also.
The situation in [22] corresponds to the case where the inter-community diffusivity is very
low. The absence of perfect bilingualism being a stable solution is contrary to the results
of [15], in which almost all the simulations ended up with bilingualism.

The present paper is not mainly dedicated to the language problem. The language
problem is treated to show how the two community model could be applied to other
problems. It can be modified to incorporate the details that might be necessary for
the specific field of application. For example, to realize the concept of a prestigious
language [13], an asymmetric community model will be necessary. Although an extremely
asymmetric case was treated with a concept of tipping news [23], general cases could
be treated with asymmetric inter-community diffusivities. A merit of the IAS model as
applied to language competition problems is that it indicates the average size and content
of vocabulary of the individual agents, which is never found in existing models. In its
application to language problems, IAS shows possible stable outcomes in a single phase
diagram. Refining the model remains a topic for future studies.

4. Conclusion

In this paper, we applied the IAS model to a two-community problem which was previously
studied in [1] with a different model of opinion formation. The main purpose of the
paper was to identify the condition under which two communities can reach consensus or
maintain opposite opinions or different languages. The condition was found analytically
for a system composed of homogeneous agents. While the study in [1] suggests that there
is a tipping ratio of inter-community to intra-community links between the individuals
above which the two societies cannot maintain opposite opinions, the present study shows
that the tipping ratio also depends on the diffusivity, meaning the strength of interaction,
between the individuals. The most important message of the present study is that the
tipping ratio increases with the increase in the intra-community diffusivity. This implies
that the increase in interaction between individuals caused by modern communication
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tools can serve to stabilize the coexistence mode rather than enhancing the convergence
of different societies.
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Appendix A. Information accumulation system model

The version of the IAS model presented in equation (1) is a simplified version of the
general equation for the information of agent i at time step t as

yt+1
i = τiy

t
i +

(
xt

i +
∑

j∈Γi

λiωjy
t
j

)
(1 − |yt

i|). (A.1)

Information of agent i at time step t + 1 is made up from three different contributions.
The inheritance term τiy

t
i, where the factor τi ≤ 1 is the individual inheritance rate of

agent i, representing personal memory. Part of the yesterday’s information is carried to
today. The counterpart of the inheritance rate τi is the volatility Δi = 1 − τi. It is set
homogeneously equal to Δ. The quantity xt

i denotes the news and represents information
from an external source, it is usually thought to be stochastic. In the present study, we
only treat a small news problem in which we assume xt

i = 0. The term
∑

j∈Γi
λiωjyj,i

is the diffusivity term, which reflects the interactions between the agents in the system,
with term ωj is being the diffusivity of agent j and λi being the absorption rate of agent
i. In the present study ωj is uniformly equal to ω and λi is omitted. (Note that one can
also see it the other way round.) The factor (1 − |yt

i |) is the saturation factor as in the
simplified version.

In the context of information seen as emotion the inheritance term reflects the fact
that the intensity of the emotion should naturally decay towards the ground state zero
if it is not further triggered by certain stimuli. These stimuli can be delivered in two
ways, either externally by the news term, which then represents external stimuli, or by
the emotions of its neighbors by ‘emotional contagion’ (see [19]). For example a Facebook
user can become sad about the death of Michael Jackson mainly because all their friends
are sad about it. This information can be propagated easily (often automatically) to a
large number of people in modern communication platforms.

The IAS can successfully model situations in which a belief about certain information
can be sustained for a long time in a community. Examples are the long lasting geocentric
theory of the universe until it was replaced by the heliocentric theory, or the wide variety
of cultural systems in communities that are sustained for a long time through social
inheritance. In terms of emotions the IAS can model self-enforcing collective emotions
towards certain issues, which may lead to long term behavioral norms, e.g. how snuffling
is perceived in different cultural contexts, or what emotions colors of certain styles of
clothing trigger.
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Table B.1. Complete list of nine possible fixed points and conditions for their
existence, attractivity, and stability.

Mode Position Exists Unstable and attractive
Stable and
attractive

00 (0, 0) Always (i) and ¬(ii) attractive on y1 = −y2 ¬(i)
PP (YPP, YPP) (i) — (i)
NN (−YPP,−YPP) (i) — (i)
PN (YPN,−YPN) (ii) (ii), ¬(iii) attractive on y1 = −y2, y1 > 0 (iii)
NP (−YPN, YPN) (ii) (ii), ¬(iii) attractive on y1 = −y2, y2 > 0 (iii)
PN (YPN1,−YPN2) (iii) — —
PN (YPN2,−YPN1) (iii) — —
NP (−YPN1, YPN2) (iii) — —
NP (−YPN2, YPN1) (iii) — —

Definitions Conditions

YPP = 1 − Δ
Ω0 + ΩX

(i) Ω0 + ΩX > Δ

YPN = 1 − Δ
Ω0 − ΩX

(ii) Ω0 − ΩX > Δ

For YPN1, YPN2 see (B.1) and (B.2) (iii)
( (Ω0 − ΩX)2

Ω0 + ΩX
− Δ

)
(Ω0 + ΩX − Δ) > 0

For Ω0,ΩX ,Δ > 0 it holds: (iii) ⇒ (ii) ⇒ (i)

Appendix B. Nonsymmetric unstable fixed points in the PN/NP-mode and a full
list of fixed points

When solving equation (3) for fixed points of the PN/NP-mode, a quadruple of unstable
fixed points may exist. Consider

YPN1 =
(Ω0 − ΩX)(Ω0 + ΩX − Δ) − (Ω0 + ΩX)

√
C

(Ω0 + ΩX)(Ω0 + ΩX − Δ) + (Ω0 + ΩX)
√

C
(B.1)

and

YPN2 =
(Ω0 + ΩX − Δ) +

√
C

2Ω0

(B.2)

with abbreviation

C =

(
(Ω0 − ΩX)2

Ω0 + ΩX

− Δ

)
(Ω0 + ΩX − Δ),

then one can check that under the conditions Ω0 +ΩX > Δ, Ω0 > ΩX , and C > 0 it holds
YPN1, YPN2 > 0. If these conditions hold, then the fixed points (A,−B) and (B,−A) exist
for the PN-mode and (−YPN1, YPN2) and (−YPN2, YPN1) for the NP-mode. These fixed
points are also shown in the basins of attraction in figure 1 (two basins of attraction on
the right-hand side). One can also check that C = 0 solved for ΩX leads to equation (8)
for the critical ΩT. Thus, these unstable fixed points exist when the skew-symmetric fixed
points in PN/NP-mode are stable.

Table B.1 gives a full list of all fixed points and their conditions for existence,
attractivity, and stability. This table accompanies figure 1 to give a complete dynamical
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overview. The three horizontal lines between the fixed points in the table correspond to
the three lines in the phase diagram in figure 1 which are arranged clockwise around the
point (Δ, 0) (solid, dotted, solid) and to the three conditions in the table (i), (ii), and (iii).
At every line a pitchfork bifurcation occurs. First, the stable trivial solution undergoes a
supercritical bifurcation into two new stable fixed points and becomes unstable. For the
second line let us focus on the anti-diagonal of the (y1, y2)-plane. On this line the trivial
solution is still stable but after the second transition it undergoes a second supercritical
pitchfork bifurcation into two new fixed points which are stable on the anti-diagonal (but
unstable on the full plane) while the trivial solution becomes unstable also on the anti-
diagonal. Finally, at the third line the globally unstable fixed points on the anti-diagonal
undergo subcritical bifurcations where they become stable and each bifurcates into two
new unstable fixed points.
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