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Scaling - a systemic property

Small and large systems In engineering, the term "scaling" may be used to describe a
relation between objects and their models. In the exact sciences, however, scaling is a systemic
property, i.e. it relates to the system itself. Scaling describes how certain system properties change
conditional on others, most notably the system size.

Taking the example of a social network, the quantity of interest could be the number of friends
someone has in this social network. Then, the corresponding question would be how the average
number of friends scales with the size of the system, i.e., the total number of members, N , of
the social network. Obviously, if N is ten, the the maximum number of friends is bound to ten,
and the average number should be even less. But what happens if N equals one thousand? Does
the increase in the potential number of friends also leads to an increase in the actual number of
friends? And how does this scale if N approaches ten million?

Discrete and continous measures The example at hand uses a discrete measure of system
size, N . But scaling can be also applied if continuous measures for the system size are used, for
example the volume V or the mass M of a physical system, These should be extensive measures,
i.e. they increase with system size, as opposed to intensive measures which are independent
of size. In fact, these extensive measures are in the limit of large numbers, e.g. for N → 1023

which is the number of atoms in one mole of a given substance, all related by simple linear
transformations: N ∝ V , where the proportionality constant is given by the particle density
(which is the intensive measure), or N ∝ M , with the molar mass of that substance as the
proportionality constant.

Simple transformations Such linear transformations are quite common in geometric scaling,
e.g. a system of length X, width Y and height Z can be scaled to a system with X ′ → aX,
Y ′ → bY , Z ′ → cZ. Isotropic scaling means that the proportionality constants a, b, c are all the
same, otherwise anisotropic scaling is observed. If these constants are larger than 1, the system
is enlarged (or stretched), otherwise the system is contracted.
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Interesting transformations can be observed if some constants are larger and others are less than,
or equal to, 1, or if instead of constants functions are used. An example of a linear function, also
known as shear mapping, would be X ′ → aX+bY +cZ. The famous biologist D’Arcy Wentworth
Thompson has used such transformations in his book On Growth and Form (1917) to describe
the body shape of certain related biological species. An example of a non-linear function would
be X ′ → (aX)2(bY ).

The discussion of such transformation, or deformations, is mostly restricted to the geometric
shape of a system. Instead, we are interested in a very different question, namely how system
properties change with the size of the system. To refer again to the physical system: is it pos-
sible that a very different system behavior, e.g. a phase transition from vapor to water can be
induced/prevented if we just change the size of the system and keep everything else constant?

No scaling - but a natural scale Certain systems are characterized by a natural scale
that remains the same even if the system size increases. For example, the average number of
offspring per human remains roughly the same irrespective of the size of the system (i.e. the
number of mating options). Such systems are often described by the so-called normal distribution,
P (x) ∝ N (µ, σ2), where the location parameter µ is given by the mean value (e.g. the average
number of offspring) and σ2 characterizes the variance. The latter is in statistics often denoted as
the scale parameter as it describes how spread out the distribution is. For normal distributions,
we expect only relatively small deviations from the mean. In plain words: systems with natural
scales are very predictable with respect to that scale, or quantity.
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(a) (b)

(c) (d) (e)

A fundamental difference Networks (a) and (b) each consist of N = 100 nodes representing
users and links depicting their interactions. While the networks at first sight seem to be similar at
first glance, they very different with respect to the number of links, denoted as degree k, of each
user. The degree distribution P (k) gives us the frequency of finding a given degree k in the network.
Network (a) is a so-called random network characterized by a Poisson distribution P (k), shown in (c),
which for large networks converges to the normal distribution N (µ, σ2). I.e., the degree distribution
has a well defined mean, 3 in this case, and a rather small variance. This would not change if we
consideredN = 10.000, i.e. the mean degree would still be 3, while outliers may have 10 or so. Network
(b), on the other hand, is a so-called scale-free network characterized by a power-law distribution
P (k) ∝ k−γ . It is shown in (d), using the same linear scale as in (c) to allow comparison, and in (e)
using a log-log scale. The straight line in (e) indicates that there is a non-negligible probability of
finding few users with a very large degree. Hence, if we increase the network to N = 10.000, we see
a larger number of users with degrees much larger than 3, maybe with degree 300 or 3000, while in
(c) this probability can be safely neglected.
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No natural scale - but scale-free Other systems are scale-free in the sense that no charac-
teristic scale exists. An example from social communication: what is the typical time interval x
at which we reply to a mobile phone call, a post in a chat, a written letter? There is no such
typical time lapse. Instead, we find that any possible value x, from minutes to months, occurs
with a well-defined frequency that is described by a so-called scale-free distribution, also referred
to as a power law, P (x) ∝ x−γ . Scale-free refers to the fact that if we replaced x by cx, where c is
a scaling constant, i.e. if we measured x in days instead of seconds, we still have P (cx) ∝ xγ . Just
the proportionality factor is different and now involves the constant c−γ . Hence, the distribution
P (x) is scale invariant. It depends on only one parameter, the scaling exponent γ, to determine
how often a certain value x appears

Remarkably, for human communication this exponent is γ = 1.5, irrespective of whether we an-
alyze communication in chat rooms, over mobile phones, or the correspondence of Darwin or of
Einstein. Hence, this scale-free distribution captures the very essence of our human communica-
tive behavior. Depending on the value of γ, sometimes not even a mean value µ or a variance σ2 is
defined. In plain words: in scale-free systems, even rare events can happen with a non-negligible
probability.

Not scale-free, but very broad In most real cases, the distribution that determines how often
a certain value appears is not exactly scale-free, but very broad. An example from scientometrics:
How many citations obtains a scientific publication within ten years? The number of citations has
no typical value. Most publications never get cited, while a rather small number of publications
gets cited several thousand times.

The frequency of a given number of citations follows a log-normal distribution, which looks very
skewed, like a power-law, for large numbers of citations, but like a normal distribution for very
small numbers of citations. In particular, it still has a defined mean value µ and variance σ2.
The citations of publications in different scientific disciplines all follow a log-normal distribution,
however, they do not follow the same log-normal distribution. Instead, their characteristic values
µ and σ2 depend on the discipline and indirectly also on the size, i.e. the number of publications
in that discipline.

Scaling the distribution Interestingly, we can rescale these citation distributions. I.e., we
divide the number of citations x by the average number of citations x0 received by all publications
in that discipline published in the same year. Plotting then the scaled distributions P (x/x0), we
see that the log-normal distributions P (x) from different disciplines all collapse into one master
curve.

Hence, we have obtained two insights: (i) we verify that the probability to find a paper with a
given number of citations is described by the scaled distribution P (x/x0), irrespective of scientific
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fields or years, (ii) we have obtained a simple scaling function x → x/x0 that accounts for the
influence of scientific disciplines via the characteristic value x0.

The scaling function comprises two different sizes: the size of the community representing the
scientific discipline and the number of publications in the respective discipline. Remarkably,
these “sizes” enter the description not directly, but indirectly. I.e. the scaling function contains
this information in a nonlinear, and very compact, manner. Finding such simple yet robust and
quite universal scaling functions is one of the ultimate aims of scientific research in the exact
sciences.

Scaling in input-output relations Social and economic systems not only have their specific
structure and dynamics, they also serve a purpose. That means that we can relate their perfor-
mance, or output in general, to other variables, notably the system size or other input variables.
An example from economics: If we increase the input of capital and labor by a factor of two, how
would that impact the output of the system, e.g. the production of some goods?

The most common case is known as decreasing returns to scale (DRS): If we double the input
(e.g. labor), we do not get twice the output but less because, for example, the administrative
costs for hiring and managing a larger workforce have considerably increased. DRS set limits
to further growth because beyond a given production size any further increase of production
is rendered unprofitable. The desired scenario would be increasing returns to scale (IRS): If we
double the input, we get more than twice the output. I.e., the more, the better. Economists argue
a great deal about how to turn DRS into IRS.

Emergence of new systemic properties

More is different The above considerations imply that the system properties do not change
with scale other than the way defined by the scaling functions. But complex systems, i.e. systems
consisting of a large number of strongly interacting elements (usually denoted as agents), also
have the property of emergence. This describes the sudden occurence of new system qualities once
certain critical parameters, known as thresholds or tipping points, are reached. Other common
terms for this sudden occurrence are phase transitions or sudden regime shifts.

An example from physics is conductivity, which is a systemic property. A single atom has no
conductivity. So, how many atoms do we need to observe something like conductivity? For
mercury, one finds that conductivity emerges when the number of atoms increases from a few to
up to 100. Below 10, the system has no conductivity, but above 100, its measurable value cannot
be distinguished from a macroscopic bulk phase with millions of billions of atoms. In plain words:
above a certain system size, the system behaves completely differently.
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Critical mass? Sometimes, it is very difficult to know when this critical size is reached. Actu-
ally, it is not always the size that defines the threshold for the emergence of new system qualities.
Quite often, it can also be the interaction strength between system elements. Weak interaction
may not lead to emerging phenomena, while strong interaction does.

Many variables involved in determining the tipping point are not fixed from the outside as e.g.
boundary conditions, but evolve over time with the dynamics of the system. In a growing system,
the system size increases over time until a critical value is reached. However, information, too,
can be accumulated over time until it reaches a level that changes the systemic behavior.

That means that we need to know not only the critical value, but also the time needed to reach
this value. This makes it so difficult to predict the onset of emergence.

Critical slowing down/ speeding up Once a critical threshold has been reached and a phase
transition or a sudden regime shift has occurred at a particular time tc, we cannot assume that
established regularities still hold afterwards. This also implies a breakdown of scaling relations
which need to be replaced by other relations describing the new phase, or regime.

Remarkably, however, the dynamics of approaching the tipping point of a phase transition fol-
low their own time-dependent scaling laws. This is known as critical slowing down, but critical
speeding up can also occur. It means that, in the vicinity of a tipping point, the system does
not behave just randomly, but shows signatures in the dynamics that indicate a coming phase
transition. They often contain terms of the form (tc − t)α where the scaling exponent α can be
positive or negative. For example, in ecology certain processes such as recovery occur at a much
lower rate than they do otherwise, whereas in economics fluctuations of prices may considerably
increase when approaching tipping points.

Beyond scaling

Change the system Distributions define the probability of a given value, while scaling func-
tions describe how system properties change with system size or with input variables. This allows
us to predict the systemic behavior, on the other hand also sets limits to what should be expected
from a system – and what not.

However, the most interesting question, for both social and economic systems, is how to get
beyond scaling. Because scaling is a systemic property, this implies changing the system. Change,
on the other hand, is a double-edged sword: social and economic systems are adaptive systems.
That means that whatever we propose to “improve” the system will result in a response of the
system in both intended and unintended ways. “Unintended” is not the same as “unforeseeable” –
a systemic perspective could indeed help us to better understand the occurrence of unintended
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consequences. But in most cases, social and economic actors, both on the individual and the
institutional level, have incentives enough not to adopt such a perspective.

From decreasing to increasing returns to scale Physical production is constrained by
material resources, so it naturally obeys decreasing returns to scale. This sets limits to growth
and, hence, to profit. To vastly increase the latter, production has to be transformed to obey
increasing returns to scale.

This happens in the internet economy and is related to the network effect: If the size of a social
network is measured by N , the number of users, we have potentially N2 connections between
all users. If we double N , we get four times more connections, if all of these connections can be
utilized. Knowledge production and other forms of innovations crucially depend on such network
effects.

Increasing returns to scale are also related to the production of non-rivalrous goods, i.e. goods
that can be possessed or used by more than one actor without their value diminishing. Examples
are electronic books, music or video files and other type of information related products, that
can be easily shared (and sold) without further increasing the production costs.

Hence, the digital economy can obey increasing returns to scale. Also the modern financial
industry is able to realize this. While classical stock exchange relies on a limited number of
available assets that have to be possessed to be traded, derivatives are financial products that
no longer require to possess the so-called “underlying” and thus allow the exponential growth of
the financial market.

From decreasing to increasing attention The number of citations is bound by the size
of the scientific community that becomes aware of the respective publication, e.g. by browsing
scientific journals. While the resource, i.e. the size of the community, cannot be easily increased,
the number of publications increases exponentially, which implies potentially less attention per
publication.

To turn decreasing into increasing attention, one has to change the system such that new mech-
anisms generate more awareness for one’s own publication. So, scientists launch new ways of
self-marketing, preferably in social media, to popularize their work. It is then no longer the
scientific quality that drives their increase in citations, it is the impact of social and mass media.

Uninteded consequences The above mentioned changes introduce new feedback cycles in
the system, and the system responds to these via other feedback cycles in a nonlinear and
scarcely predictable manner. Thus, in addition to the intended changes, there are also – always
– unintended consequences if one attempts to overcome the limits set by scaling.
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Increasing returns to scale in the Internet economy attract financial investors seeking extra profit.
This leads to venture investments and drives financial bubbles, as recently seen with the dot-com
bubble. New derivatives, originally intended to diversify risk, result in even more risky behavior
and eventually in financial crises of global scale. The public advertisement of the latest scientific
results in social media, in line with over-simplification and over-selling, leads to a decrease of
reputation not just of individual researchers, but of whole scientific disciplines.

A way out? The only way of mitigating unintended consequences is to better understand the
system by means of a systemic perspective. There are several limits to scaling which need to be
detected and respected.

Bigger is not better: decreasing returns to scale render further growth unprofitable. And increas-
ing returns to scale directly lead to bursting bubbles. Thus, it makes no sense to just stretch
the limits to growth, or to scaling. Moreover, small is not beautiful : the occurrence of emer-
gent phenomena beyond certain thresholds may lead to completely different systems and render
our scaled-up knowledge from smaller systems useless. But more is different. And we need to
understand, in which way.
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