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For the voter model, we study the effect of a memory-dependent transition rate. We assume that the
transition of a spin into the opposite state decreases with the time it has been in its current state.
Counterintuitively, we find that the time to reach a macroscopically ordered state can be accelerated by
slowing down the microscopic dynamics in this way. This holds for different network topologies,
including fully connected ones. We find that the ordering dynamics is governed by two competing
processes which either stabilize the majority or the minority state. If the first one dominates, it accelerates
the ordering of the system. The conclusions of this Letter are not restricted to the voter model, but remain
valid to many other spin systems as well.
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How fast an out-of-equilibrium system reaches an or-
dered state has been a central question in statistical phys-
ics, but also in disciplines such as chemistry, biology, and
social sciences. Despite its simple structure, the ‘‘voter
model’’ has served as a paradigm to study this question
[1]. It is one of the few spin systems that can be analytically
solved in regular lattices [2]. In physics, it was investigated
how the time to reach the equilibrium state depends on the
system size, the initial configuration, and the topology of
the interactions [3]. Among its prominent properties, the
magnetization conservation has been studied extensively
[4]. Furthermore, the formation and growth of state do-
mains was studied, showing the existence of coarsening
without surface tension in two-dimensional systems [5].
The voter model also found numerous interdisciplinary
applications, e.g., in chemical kinetics [6] and in ecological
[7,8] and social systems [9]. Its properties have also served
to complete the understanding of other spin systems, such
as the Ising model and spin glasses [10].

To assume that transition rates are constant in time is (in
general) not valid for nonequilibrium systems. A good
example are spin glasses, where the effective temperature
of the system changes with the time elapsed since a given
perturbation was applied [11]. In this Letter, we consider
that, for each site, the transition rates are not constant, but
decrease with the time elapsed since the last change of
state (namely, its persistence time). We refer to this change
as increasing inertia. The level of inertia is measured by
how fast the transition rates decrease with persistence time.
Dependent on the context of the voter model, this mecha-
nism has different interpretations. In a social context, the
longer a voter already stays with its current state, the less it
may be inclined to change it in the next time step, which
can be interpreted as conviction. In models of species
competition [7], this would imply that neighboring species
are less likely to be displaced at a later stage of growth.

Obviously, increasing inertia leads to slower micro-
scopic dynamics. Against intuition and in contrast to re-
sults with fixed (homogeneous or heterogeneous) values of
inertia, we find that the time to reach an ordered state can

be effectively reduced. We further find that this phenome-
non exists independently of the exact network topology in
which the system is embedded. We show that the unex-
pected reduction of the time to reach an ordered state is
related to the break of magnetization conservation, which
holds for the standard voter model. This break originates
from the evolving heterogeneity in the transition probabil-
ities within the voter population, which, in the extended
model, depends on the distribution of the persistence times.

The voter model denotes a simple binary system com-
posed ofN voters, each of which can be in one of two states
(often referred to as opinions), �i � �1. A voter is se-
lected at random and adopts the state of a randomly chosen
neighbor. After N such update events, time is increased by
1. In this work, we consider homogeneous networks, where
all voters have the same number of neighbors. In the
standard voter model, the transition rate at which voter i
switches to the opposite state, !V���ij�i�, is proportional
to the frequency of state ��i in fig, the set of the k
neighbors of i, namely

 !V���ij�i� �
�
2

�
1�

�i
k

X
j2fig

�j

�
: (1)

The prefactor � determines the time scale of the transitions
and is set to � � 1. In order to describe the dynamics on
the macrolevel, we introduce the global densities of voters
with state �1 as A�t� and with state �1 as B�t�. The
instantaneous magnetization is then given by M�t� �
A�t� � B�t�. Starting from a random distribution of states,
we have M�0� � 0. The emergence of a completely or-
dered state (which is often referred to as consensus), is
characterized by jMj � 1. The time to reach consensus,
T�, is obtained through an average over many realizations.
The dynamics of the global frequencies is formally given
by the rate equation

 

_A�t� � � _B�t� � �V��1j � 1�B�t� ��V��1j � 1�A�t�:

The macroscopic transition rates �V have to be obtained
from the aggregation of the microscopic dynamics given
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by Eq. (1). A simple expression for these can be found in
the mean-field limit. There, it is assumed that the frequen-
cies of states in the local neighborhood can be replaced by
the global ones. This gives �V��1j � 1� � A�t�,
�V��1j � 1� � B�t� and leads to _A�t� � A�t�B�t� �
B�t�A�t� � 0. For an ensemble average, the frequency of
the outcome of a particular consensus state �1 is equal to
the initial frequency A�0� of state �1, which implies the
conservation of magnetization. It is worth noticing that, for
a single realization, the dynamics of the voter model is a
fluctuation driven process that, for finite system sizes, al-
ways reaches consensus towards either�1 or�1. We now
investigate how this dynamics changes if we modify the
voter model by assuming that voters additionally have an
inertia �i 2 �0; 1	 which leads to a decrease of the tran-
sition rate to change their state

 !���ij�i; �i� � �1� �i�!
V���ij�i�: (2)

Obviously, if all voters have the same fixed value of inertia
�
, the dynamics is equivalent to the standard voter model
with the time scaled by a factor �1� �
��1. Similar results
are obtained if the inertia values are randomly distributed
in the system: higher consensus times are found for in-
creasing levels of inertia. In our model, however, we con-
sider an individual and evolving inertia �i that depends on
the persistence time �i the voter has been keeping its
current state. For the sake of simplicity, the results pre-
sented here assume that the individual inertia �i increases
linearly with persistence time �i,� being the ‘‘strength’’ of
this response, until it reaches a saturation value �s, i.e.,
���i� � min���i; �s	. Choosing �s < 1 avoids trivial fro-
zen states of the dynamics [12]. The rate of inertia growth
� determines the number of time steps until the maximal
inertia value is reached, denoted as �s � ��s=�	.

Increasing � increases the level of inertia within the
voter population, thereby slowing down the microscopic
dynamics. As in the case with fixed inertia, one would
intuitively assume an increase of the average time to reach
consensus. Interestingly, this is not always the case as
simulation results of T���� show for different network
topologies (see Fig. 1). Instead, it is found that there is
an intermediate value��, which leads to a global minimum
in T� [13]. For �<��, consensus times decrease with
increasing � values. Only for �>��, higher levels of
inertia result in increasing consensus times.

For a two-dimensional lattice, shown in Fig. 1(a), we
find �� / 1= lnN. Simulations of regular lattices in other
dimensions show that the nonmonotonic effect on the
consensus times is amplified in higher dimensionality of
the system. Being barely noticeable for d � 1, the ratio
between T���

�� and T��� � 0� (i.e., the standard voter
model) decreases for d � 3 and d � 4. We further com-
pare the scaling of T� with system size N for the standard
and the modified voter model. The first one gives for one-
dimensional regular lattices (d � 1) T� / N2 and for two-
dimensional regular lattices (d � 2) T� / N logN. For d >
2 the system does not always reach an ordered state in the
thermodynamic limit. In finite systems, however, one finds
T� � N. In the modified voter model, we instead find that
T���

�� scales with system size as a power law, T����� /
N� [see inset in Fig. 1(a)], where � � 1:99� 0:14 for d �
1 (i.e., in agreement with the standard voter model), � �
0:98� 0:04 for d � 2, � � 0:5� 0:08 for d � 3, and
� � 0:3� 0:03 for d � 4. For fixed values of �>��,
the same scalings apply.

To cope with the network topology, in Fig. 1(b) we plot
the dependence of the consensus times T� for small-world
networks built with different rewiring probabilities. The
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FIG. 1 (color online). Average consensus times T� for varying values of the inertia slope � and fixed saturation value �s � 0:9.
Sample sizes vary between 103–104 simulation runs. Filled, black symbols always indicate the values of T� at � � 0. (a) 2d regular
lattices (ki � 4) with system sizes: (
) N � 100, (4) N � 400, (�) N � 900. The inset shows how consensus time scales with system
size in regular lattices at � � ��: (�) 1d, (�) 2d, (�) 3d, (�) 4d. (b) Small-world networks obtained by randomly rewiring a 2d
regular lattice with probability: (
) pr � 0, (4) pr � 0:001, (�) pr � 0:01, (�) pr � 0:1, (�) pr � 1. The system size is N � 900.
(c) Fully connected networks (mean-field case, ki � N � 1) with system sizes: (
) N � 100, (�) N � 900, (�) N � 2500, (�)
N � 104. Lines represent the numerical solutions of Eqs. (5)–(7) with the specifications in the text. The inset shows the collapse of the
simulation curves by scaling � and T� as explained in the text.
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degree of each node is kept constant by randomly selecting
a pair of edges and exchanging their ends with probability
p [14]. It can be seen that the effect of reduced consensus
times for intermediate values of � still exist and are
amplified by increasing the randomness of the network.
This result implies that the spatial extension of the system,
e.g., in regular lattices, does not play a crucial role in the
emergence of this phenomenon. This can be confirmed by
investigating the case shown in Fig. 1(c), in which the
neighborhood network is a fully connected one (the solid
lines correspond to a theoretical approximation introduced
below). The inset shows the results of a scaling analysis,
exhibiting the collapse of all the curves by applying the
scaling relations �0 � j� ln��N� ��1j, and T0� �
T�= ln�N=	��0, with � � 1:8�1�, �1 � 1:5�1�, 	 �
7:5�1�. This shows that the location of the minimum, as
well as T�, scales logarithmically with N.

The fact of reaching a final state faster by decelerating
the dynamics microscopically has some resemblances with
the ‘‘slower-is-faster’’ effect discovered in panic research
[15]. However, the origin of the phenomenon discussed
here is quite different, as we can demonstrate by the
following analytical approach. First, note that voters are
fully characterized by their current state �1 and their
persistence time �. Thus, we introduce the global frequen-
cies a��t�, b��t� for subpopulations of voters with state�1,
�1 (respectively) and persistence time �. Thus, these
frequencies satisfy

 A�t� �
X
�

a��t�; B�t� �
X
�

b��t�: (3)

Formally, the rate equations for the evolution of these
subpopulations in the mean-field limit are given by

 _a ��t� �
X
�0
���a�ja�0 �a�0 ���a�jb�0 �b�0 	

�
X
�0
���a�0 ja�� ���b�0 ja��	a�: (4)

Because of symmetry, the expressions for _b��t� are ob-
tained by consistently exchanging A$ B and a� $ b�.

Note that most of the terms in Eq. (4) vanish because for
a voter only two transitions are possible: (i) it changes its
state, thereby resetting its � to zero, or (ii) it keeps its
current state and increases its persistence time by one.
Case (i) is associated with the transition rate ��b0ja��,
that in the mean-field limit reads ��b0ja�� � �1�
�����B�t�. B�t� is the frequency of voters with the opposite
state that trigger this transition, while the prefactor �1�
����� is due to the inertia of voters of class a� to change
their state. For case (ii), ��a��1ja�� � 1���b0ja��,
since no voter can remain in the same subpopulation. I.e.,
in the mean-field limit, the corresponding transition rates
are ��a��1ja�� � A�t� � ����B�t�. Therefore, if � > 0,
Eq. (4) reduces to

 _a ��t� � ��a�ja��1�a��1�t� � a��t�

� �A�t� � ���� 1�B�t�	a��1�t� � a��t�: (5)

On the other hand, voters with � � 0 evolve as

 _a 0�t� �
X
�

�b�a0jb��b��t� � a0�t�

� A�t��B�t� � IB�t�	 � a0�t�: (6)

Because of the linear dependence of the transition rates on
inertia, the terms involving � can be merged into IB�t� and
IA�t�, namely, the average inertia of voters with state �1
and �1, respectively, i.e.,

 IA�t� �
X
�

����a��t�; IB�t� �
X
�

����b��t�: (7)

Expressions (5)–(7) and the corresponding ones for sub-
populations b� can be used to give an estimate of the time
to reach consensus in the mean-field limit. Let us consider
an initial state a0�t� � A�0� � 1=2� N�1 and b0�t� �
B�0� � 1=2� N�1; i.e., voters with state�1 are in a slight
majority. By neglecting fluctuations in the frequencies
(which drive the dynamics in the standard voter model),
these equations are iterated until B�t0�<N�1 (i.e., for a
system size N, if the frequency of the minority state falls
below N�1, the absorbing state is reached). Then, we
assume T� � t0. The full lines in Fig. 1(c) show the results
of this theoretical approach, exhibiting the minimum and
displaying good agreement with the simulation results for
large values of �. For low values of �, fluctuations drive
the system faster into consensus compared to the determi-
nistic approach.

Inserting Eqs. (5) and (6) into the time-derivative of
Eq. (3) yields, after some straightforward algebra, the
time evolution of the global frequencies

 

_A�t� � IA�t�B�t� � IB�t�A�t�: (8)

Remarkably, the magnetization conservation is now broken
because of the influence of the evolving inertia in the two
possible states. For ���� � �
 (that includes the standard
voter model, �
 � 0), we regain the magnetization con-
servation. Interestingly enough, Eq. (8) implies that the
frequency A�t� grows iff IA�t�=A�t�> IB�t�=B�t�.

When the time dependence of the inertia on the persis-
tence time is a linear one, as assumed in this Letter,
inserting Eqs. (5) and (6) into Eq. (7) we obtain an equation
for the time evolution of IA�t� up to first order in �:

 

_I A�t� � A�t�IA�t� ��A2�t� � IA�t� �O��2; aT�: (9)

Here, aT �
P
���sa� contains all subpopulations with

maximum inertia. Equations (8) and (9) correspond to a
macroscopic level description of this model. This system
of equations has a saddle point, A � B � 1=2, IA � IB �
�=2�O��2�, and two stable fixed points, one at A � 1,
IA � �s and another at B � 1, IB � �s. Note that the
saddle point is close to the initial condition of the simula-

PRL 101, 018701 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
4 JULY 2008

018701-3



tions. Neglecting fluctuations, the time to reach consensus
has two main contributions: (i) the time to escape from the
saddle point Ts; and (ii) the time to reach the stable fixed
point Tf; namely T� � Ts � Tf. We then linearize the
system around the fixed points and calculate the largest
eigenvalues 
s and 
f (for the saddle and the stable fixed
points, respectively) as a function of�. A simple argument
shows that Ts;f � lnN=j
s;f���j. At the saddle point, we

find 
s��� �
���������������������������������
1� 20�� 4�2

p
� 2�� 1�O��2�,

which equals 0 at � � 0 and monotonically increases
with �. For larger values of �, where the first order term
expansion is no longer valid, numerical computations show
that 
s continues to increase monotonically with �. This
means that for larger inertia growth rates�, the system will
escape faster from the saddle point, thereby reducing the
contribution Ts to the consensus time T�. On the other
hand, for �! 0, 
s vanishes and the system leaves the
saddle point only due to fluctuations.

Near the stable fixed points the contribution of aT to
Eq. (9) cannot be neglected anymore. We then obtain

f;1 � ��s for �< 1� �s, while 
f;2 � �� 1 for � �
1� �s. Interestingly, both reflect different processes: the
eigenvalue 
f;1 is connected to voters sharing the majority
state which are, at the level of �s, inertial to adopt the
minority one (signaled by 
f;1 being constant). For � �
1� �s, the largest eigenvalue 
f;2 is related to voters with
the minority state that are, for increasing �, more inertial
to adopt the majority state (apparent by the decrease in
j
f;2j).

The contributions Ts and Tf are two competing factors
in the dynamics towards consensus. Qualitatively, they can
be understood as follows: in the beginning of the dynamics,
the inertia mechanism amplifies any small asymmetry in
the initial conditions. While this causes faster time to
consensus for (small) increasing values of �, for suffi-
ciently large values of inertia growth, another process out-
weighs the former: the rate of minority voters converting to
the final consensus state is considerably reduced, too. It is
worth mentioning that the phenomenon described here is
robust against changes in the initial condition: starting
from IA � IB < �s, it holds for any initial frequencies of
opinions. Conversely, starting from A � B � 1=2, it holds
for any IA � IB.

Summarizing, we investigated the role of microscopi-
cally time-dependent transition rates. In particular, we
consider that the microscopic transition rates decrease
with the time elapsed since the last state change of a given
site (called inertia). Counterintuitively, we find that inter-
mediate inertia values may lead to much lower times to
reach the absorbing state, i.e., an accelerated dynamics. It
is important to emphasize that this final state is not an
arbitrary one, but most interestingly, it is always the or-
dered one. The mechanism behind this phenomenon is the
existence of two competing processes near the initial con-
dition and absorbing states. Because of the general ana-

lytical approach taken in this Letter, we emphasize that this
phenomenon is not restricted to the voter model, but is
expected to appear near the absorbing states of any spin
system, whenever the inertia mechanism is present.
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