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ABSTRACT
When dealing with networks of several kind, network theory
provides the theoretical framework and the practical tools to
analyze them. Mostly analysis focuses on steady networks,
i.e. networks with fixed topology. However, real-world sce-
narios often deal with (highly) dynamic topologies. As of
today, the question of how to investigate such scenarios, e.g.
defining a meaningful notion of “temporal centrality”, has
generally not been answered. In this poster we present re-
search pointing out the obstacles arising in this endeavor as
well as a possible framework to address those issues, which
we call time-explicit graphs.

General Terms
Dynamic Networks, Network Analysis, time-explicit graphs

1. THE NEED FOR DYNAMIC NETWORK
ANALYSIS

The rise of network analysis over the last two decades
impressively demonstrates the influence new tools and tech-
nologies can have on the way research is done. Often it is the
unifying tool that leads to interdisciplinary exchange: from
physics to sociology, from mathematics to biology. The use-
fulness and success of network analysis basically arises be-
cause of its rather intuitive and widely applicable framework.
However, as of today network analysis deals (almost exclu-
sively) with static topologies. In real-world examples, how-
ever, dynamic topologies are observed: routing networks,
networks of social relationships or coauthorship networks are
just a few examples. Very often the time dimension, and all
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information about the system encoded in this, is neglected
and only the aggregated network is studied. Thus, ques-
tions like “Who is the most influential node?” are reduced
to an aggregated picture, which might lead the researcher
to false implications. This is most intuitively seen in ag-
gregated graphs of social networks: in the aggregated graph
someone who initiated a high number of social links, but
actually never or rarely uses them, might be by far not the
most influential node.

In a recent review [1], Holme and Saramäki present an
overview about theoretical literature dealing with the treat-
ment of temporal networks - but a precise framework is still
missing. When researchers dealt with dynamic networks in
the past, it was mostly from a snapshot perspective, i.e.
considering the adjacency matrix of the underlying varying
graph after certain time intervals and doing static network
analysis on these snapshots. The problem with this ap-
proach is that it does not link the consecutive snapshots
together to a time-global picture, but rather treats them as
separate entities. In such a framework it is hard to study e.g.
the question of possible time-respecting paths [1] in a precise
analytical fashion. Also, it becomes hard to define centrality
metrics that go beyond the obvious aggregation of the values
obtained in the snapshots. What is temporal betweenness?
How should temporal closeness be defined? Is it possible in
the first place to give precise definitions of such, based on
straight-forward analogies from static network theory, given
the new degree of freedom? With this poster, we present a
promising general framework to deal with such situations,
called time-explicit graphs (txg).

2. TIME-EXPLICIT GRAPHS
One of the main questions for the analysis of dynamic net-

work topologies is the possible information flow (in a wide
sense) from node to node. This consideration inspires the
idea to represent the dynamic graph as a static network of
flows, which we call time-explicit graphs1. This framework is
best understood considering the example of figure 1. Start-

1We learned that a similar framework has been presented
recently and independently by Kim and Anderson [2]



Figure 1: Transformation of a series of snapshots of

dynamic graphs to the time-explicit graph.

ing with two consecutive snapshots of a network containing
three nodes, it is possible to rewrite this as a network of
flows as depicted in the middle figure. Here, the vertical
dimension is the time dimension. As can be seen in the left
figure, in the first time step it is possible to have information
flow either from A to B or from B to C. It is this possible
information flow within one time-step, which is encoded in
the middle figure as the two connections from either node
A in the first layer to node B in the second layer and from
node B in the first layer to node C in the second layer. Since
there is no structural information within the vertical layers,
the middle figure can be safely transformed into the figure
on the right. It is this kind of structure, which we call time-
explicit graph. From the simple toy-model in figure 1 there
are already a couple of interesting conclusions one can draw.

• Following the possible information flow, it is seen with-
out any problem that in the dynamically changing
graph there exists exactly one time-respecting path,
which is B1-C2-A3. Assumaning that from one time-
step to another information is either propagated or
lost, this implies that only information starting at node
B at time 1 will still be in the system at time 3, and
will reside at node A.

• Node C might be considered an important (“central”)
node in the network, since it basically links the “past”
to the“future”. Node C is a“temporal short-cut”. This
is in stark contrast to the snapshot-picture of the left-
figure, in which one would have argued that node B
(in the upper) and node C (in the lower) are the most
“central” nodes. Indeed, it is solely these two nodes
which would have a betweenness-score B > 0 in the
snapshot-picture, hence neglecting the “temporal im-
portance” of node C.

Since the time-explicit graph is a static network (to be pre-
cise it is a directed polytree), it is possible to use standard
network-theoretic tools and measures to analyze it. In this
sense, the first observation raised above can be addressed by
calculating the number of connecting paths between the first
time layer and the last time layer. If the timely distance is
t, this can easily be done via checking for non-zero entries
of the matrix (Atxg)

t with Atxg being the adjacency matrix
of the time-explicit graph. For the purpose of general quan-
titative analysis, we provide a set of python scripts on the
web page of the project, based on igraph for python. It is
clear that with this framework we hence transform the addi-
tionally introduced time complexity into complexity of the

size of the studied time-explicit graph. To be precise, given
T − 1 consecutive snapshots of graph topologies, the time-
explicit graph will have T layers of nodes. Since, for the case
of a closed system, the number of nodes is the same in every
layer, say n, the total number of nodes of the time-explicit
graph is N = n·T and hence the size of the adjacency matrix
Atxg is N ×N . Because of the polytree-like structure of the
txg, it is a very sparse graph with at most (T −1) ·n2 edges,
as compared to N

2 = T
2
n
2. This sparsity is beneficial for

storage and time-complexity of computations performed on
the txg. Hence the txg-approach also provides a computa-
tionally promising approach to dynamic network studies.

3. POSSIBLE APPLICATIONS
Extending network analysis to a dynamic topology setting

is not simply of theoretical interest, but has manifold prac-
tical applications. Especially in the area of socio-technical
systems we expect such a framework to be useful. For ex-
ample the question of ad-hoc networking, i.e. networking in
highly volatile routing overlay networks, might benefit from
such a modelling and analysis framework. Especially when
the underlying dynamics (which is the sociological compo-
nent) is known (or can be approximated), the framework
presented here might help to design such systems in some
optimal way. This also goes in-line with the recent effort to
design massive distributed computing systems [5]. Also, the
presented framework might be useful in improving our un-
derstanding of disease-spreading phenomena (e.g. malicious
software) in topologically volatile environments.

4. FUTURE WORK
The work on this framework has just started and there

is still a lot to explore about time-explicit graphs. First,
we will continue studying the meaning of “classical” network
metrics in the time-explicit graph picture, which is part of
the bigger goal to establish useful definitions for “temporal
centrality”. Indeed, in a recent comment [4] and working pa-
per [3] we propose exactly such a general definition. Second,
there are many ways to extend and modify the time-explicit
graphs, e.g. including “temporal self-loops” (which might
account for memory on the node side), introducing periodic
boundary conditions (i.e. repeating topology dynamics) or
the study of open instead of closed systems (i.e. varying
number of nodes per time-layer).
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