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Abstract. We introduce a general framework for models of cascade and contagion processes on networks,
to identify their commonalities and differences. In particular, models of social and financial cascades, as
well as the fiber bundle model, the voter model, and models of epidemic spreading are recovered as special
cases. To unify their description, we define the net fragility of a node, which is the difference between its
fragility and the threshold that determines its failure. Nodes fail if their net fragility grows above zero
and their failure increases the fragility of neighbouring nodes, thus possibly triggering a cascade. In this
framework, we identify three classes depending on the way the fragility of a node is increased by the failure
of a neighbour. At the microscopic level, we illustrate with specific examples how the failure spreading
pattern varies with the node triggering the cascade, depending on its position in the network and its
degree. At the macroscopic level, systemic risk is measured as the final fraction of failed nodes, X∗, and
for each of the three classes we derive a recursive equation to compute its value. The phase diagram of
X∗ as a function of the initial conditions, thus allows for a prediction of the systemic risk as well as a
comparison of the three different model classes. We could identify which model class leads to a first-order
phase transition in systemic risk, i.e. situations where small changes in the initial conditions determine a
global failure. Eventually, we generalize our framework to encompass stochastic contagion models. This
indicates the potential for further generalizations.

PACS. 64.60.aq Networks – 89.65.Gh Economics; econophysics, financial markets, business and manage-
ment – 87.23.Ge Dynamics of social systems – 62.20.M- Structural failure of materials

1 Introduction

After the spread of the financial crisis in 2008, the term
‘systemic risk’ could be well regarded as the buzzword of
these years. Although there is no consensus on a formal
definition of systemic risk, it usually denotes the risk that
a whole system, consisting of many interacting agents,
fails. These agents, in an economic context, could be firms,
banks, funds, or other institutions. Only very recently, fi-
nancial economics is accepting the idea that the relation
between robustness of individual institutions and systemic
risk is not necessarily straightforward [1]. The debate on
systemic risk, how it originates and how it is affected by
the structure of the networks of financial contracts among
institutions worldwide, is only at the beginning [2,3]. From
the point of view of economic networks, systemic risk can
even be conceived as an undesired externality arising from
the strategic interaction of the agents [4]. However, sys-
temic risk is not only a financial or economic issue, it also
appears in other social and technical systems. The spread
of infectious diseases, the blackout of a power network, or
the rupture of a fiber bundle are just some examples. Sys-
temic risk – in our perspective – is a macroscopic property
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of a system which emerges due to the nonlinear interac-
tions of agents on a microscopic level. As in many other
problems in statistical physics, the question is how such a
macroscopic property may emerge from local interactions,
given some specific boundary conditions of the system.
The main research question is then to predict the fraction
of failed nodes X in a system, either as a time depen-
dent quantity or in equilibrium. Here, we regard X as a
measure of systemic risk.

In this paper we investigate systemic risk from a com-
plex network perspective. Thus, agents are represented by
nodes and interactions by directed and weighted links of
a network. Each of the nodes is characterized by two dis-
crete states {0, 1}, which can be interpreted as a suscep-
tible and an infected state or, equivalently, as a healthy
and a failed state. In most situations considered here, the
failure (infection) of a node exerts some form of stress
on the neighbouring nodes which can possibly cause the
failure (infection) of the neighbours, this way triggering a
cascade, which means that node after node fails. This may
happen via a redistribution mechanism, in which part of
the stress acting on a node is transferred to neighboring
nodes, which assumes that the total stress is conserved.
There is another mechanism, however, where no such con-
served quantity exist, for example in infection processes
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where the disease can be transferred to an unlimited num-
ber of nodes. In both mechanisms, the likelihood that a
node fails increases with the number of failures in the prox-
imity of the node. This is the essence of a contagion pro-
cess. The specific dynamics may vary across applications,
nevertheless there are common features which should be
pointed out and systematically investigated. Our paper
contributes to this task by developing a general framework
which encompass most of the existing models and allows
to classify cascade models in three different categories.

A number of works have investigated processes of this
type, sometimes referred to as ‘cascades’ or ‘contagion’.
These were mostly dealing with interacting units with
random mixing or, more recently, with fixed interaction
structures corresponding to complex networks. On the one
hand, there are models in which the failure dynamics is
deterministic but the threshold, at which such a failure
happens, is heterogeneous across nodes. For simplicity, we
refer to these as cascade models – even though, accord-
ing to the discussion above, they also involve contagion.
To this class belong some early works on electrical break-
down in random networks [5] and more recent ones on the
fiber bundle model (FBM) [6–8], on fractures [9], cascades
in power grids [10], or cascades in sand piles – the Bak-
Tang-Wiesenfeld model (BTW) [11]. Further work refers
to congestion dynamics in networks, [12], cascades in fi-
nancial systems [13] and in social interactions [14], and
overload distribution (in abstract terms) [15]. The prop-
erties of self-organized criticality of some of these models
are well understood [16,17]. The presence of rare but large
avalanches is of course relevant to systemic risk [18].

On the other hand, there are models in which the fail-
ure of a given node is stochastic but the threshold at which
contagion takes place is homogeneous across nodes. For
simplicity, we refer to this class as contagion models, even
though they can lead to cascades as well. The best known
example is epidemic spreading (SIS) [19,20]. The proper-
ties of these models have been investigated in great detail
on various network topologies, e.g. in the presence of cor-
relations [21] or bipartite structure [22]. However, as we
will see later, we can also include the voter model (VM)
and its variants [23,24] into this class. It is interesting to
note that, while the macroscopic behaviour of FBM and
BTW in a scale free topology is qualitatively similar to the
one on regular and random graphs, the properties of SIS
are severely affected by the topology. The relation between
cascading models and contagion models has not been in-
vestigated in depth, although some models interpolating
between the two classes have been proposed [25,26]

To relate these two model classes of cascades and con-
tagion, in the following we develop a general model of
cascades on networks where nodes are characterized by
two continuous variables, fragility and threshold. Nodes
fail if their fragility exceed their individual heterogeneous
threshold. The key variable is the net fragility z, i.e. the
difference between fragility and threshold. This variable
is related to the notion of ‘distance to default’ used in
financial economics [27]. By specifying the fragility of a
node in terms of other nodes fragility and/or other nodes

failure state, we are able to recover various existing cas-
cade models. In particular, we identify three classes of
cascade models, referred to as ‘constant load’, ‘load redis-
tribution’, ‘overload redistribution’. The three classes dif-
fer, given that a node fails, in how the increase in fragility
(called here the ‘load’) of connected nodes is specified. We
discuss the differences and similarities among these classes
also with respect to models from financial economics and
sociology. For all of the three classes we derive mean-field
recursive equation for the asymptotic fraction of failed
nodes, X∗. Clearly, this variable depends on the initial
distributions of both fragility and threshold across nodes.
For instance, if no node is fragile enough to fail in the
beginning, then no cascade is triggered. We thus compare
how different models behave depending on the mean and
variance of the initial distribution of z across nodes.

As a further contribution, we extend the general frame-
work to encompass models of stochastic contagion. In such
a framework, the failure of a given node is a stochastic
event depending both on the state of neighbourhood and
on the individual threshold. We derive a general equation
for the expected change of the fraction of failed nodes,
from which one can recover the usual mean-field equa-
tions of the SIS model, but interestingly also of the VM,
as special cases.

Our work wishes to contribute to a better understand-
ing of the relations between cascading models, contagion
models and herding models on networks, from the point
of view of systemic risk.

2 A framework for deterministic models
of cascades

In this section we develop a general framework to describe
cascading processes on a network. This framework will be
extended in Section 5 to encompass also stochastic con-
tagion models. On the microscopic side, we characterize
each node i of the network at time t by a dynamic variable
si(t) ∈ {0, 1} characterizing the failure state. The state is
si(t) = 1 if the node has failed and si(t) = 0 otherwise.
Other metaphors apply equally well to our model, e.g. ‘in-
fected/healthy’, ‘immune/susceptible’, or ‘broken/in func-
tion’. On the macroscopic side, the system state at time t
is encoded in the n-dimensional state vector s(t), with n
being the number of nodes. The macrodynamic variable
of interest for systemic risk is the total fraction of failed
nodes in the system

X(t) =
1
n

n∑

i=1

si(t). (1)

If values of X(t) close to one are reached the system is
prone to systemic risk. When trajectories always stay close
to zero the system is free of systemic risk. For simplicity,
in the following, we will consider models which converge
in X(t) to stationary states X∗. So, the final fraction of
failed nodes X∗ is our proxy for the systemic risk of the
system.
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In order to describe various existing models in a sin-
gle framework, we assume that the failure state si(t) of
each node is, in turn, determined by a continuous vari-
able φi(t), representing the fragility of the node. A node
remains healthy as long as φi(t) < θi, where the con-
stant parameter θi represents the threshold above which
the fragility determines the failure. Conversely, the node
fails if φi(t) ≥ θ. In other words,

si(t + 1) = Θ(zi(t)) , with zi(t) = φi(t) − θi (2)

where Θ is the Heaviside function (here meant to be
Θ(z) = 0 if z < 0 and Θ(z) = 1 if z ≥ 0). The variable
zi(t) is called net fragility. As it is defined as the difference
between fragility and failing threshold its absolute value
has the same meaning of distance to default in finance, for
z ≤ 0 [27]. Notice that in the equation above time runs
in discrete steps, consistently with failure being a discrete
event.

This general framework can be applied to different
models by specifying the functional form of fragility. As
we will see, depending on the case under consideration,
φi(t) can be a function of the failure state vector s(t) and
some static parameters, such as the network structure and
the initial distribution of stress on the nodes. It can also
be a function of the vector of fragility φ(t − 1) at previ-
ous times. The latter constitutes a coupled system with
the vectors s(t) and φ(t) as state variables. In any case,
fragility depends on the current failure state and deter-
mines the new failures at the next time step. Thus, cas-
cades are triggered by the fact that failures induce other
failures. Specific models will be described in Section 3.

The interaction among nodes is specified by the (possi-
bly weighted) adjacency matrix of the network A ∈ R

n×n,
with aij ≥ 0. For specific models some restrictions to the
adjacency matrix may apply, e.g. one may consider undi-
rected links, no self-links or some condition on the weights.
In this framework the adjacency matrix of the network in-
fluences the dynamics only as a static parameter, i.e., we
do not consider feedbacks from the state of a node on the
link structure as in [28].

If we assume a large number of nodes, it makes sense to
look at the distribution of the net fragility z(t), in terms of
its density function pz(t). Then from equations (1) and (2)
it follows that the fraction of failed nodes at the next time
step is given by

X(t + 1) =
∫ ∞

0

pz(t)(z)dz = 1 −
∫ 0

−∞
pz(t)(z)dz. (3)

In the cascading process new failures modify over time the
values of fragility of other nodes. We can also formulate
the dynamics in the space of density functions:

pz(t+1) = F(pz(t)). (4)

If we know both the density function pφ(t) of the fragility
at time t and the density function pθ of the failing

Fig. 1. (Color online) Initial configuration of the generic ex-
ample used to illustrate all models. The legend is valid for all
further graphs of this type. The discrete state si is represented
by the shape of the node. A healthy node has si = 0, a failed
one si = 1. A failing node is a node with si = 0 but zi > 0, so
it will switch to the failed state in the next time step. Nodes
are labeled with capital letters. The level of fragility φi (which
changes over time) is indicated inside each node. The failing
threshold θi (constant over time) is indicated as superscript to
the node. The color code specified in the colorbar refers to the
value of net fragility zi = φi − θi.

threshold, we can write

pz(t)(z) = pφ(t)−θ(z) = (pφ(t) ∗ p−θ)(z)

=
∫

pφ(t)(y)pθ(y − z)dy (5)

with ‘∗’ denoting the convolution. The expression above
assumes that fragility and threshold are stochastically in-
dependent across nodes. Depending on the specific model,
the functional operator F , in equation (4), may also in-
clude dependencies on other static parameters. The gen-
eral idea is to find a density pz∗ that is an attractive fix
point of F , so that the asymptotic fraction of failed nodes
X∗ is obtained via equation (3).

3 Specific cascading models

In many cascading processes on networks, the failure of a
node causes a redistribution of load, stress or damage to
the neighbouring nodes. In our framework, such redistri-
bution of load can be seen as if a failure causes an increase
of fragility in the neighbours. In the following, we dis-
tinguish three different classes of models, denoted as (i)
‘constant load’, (ii) ‘load redistribution’, and (iii) ‘over-
load redistribution’. We keep the term ‘load’ because it is
more intuitive. We will show how these model classes are
described in our unifying framework in terms of fragility
and threshold, and how some models known in the litera-
ture fit into these classes. The differences in the cascading
process across the models will be illustrated by taking
the small undirected network of Figure 1 as an example.
For each model, we consider the same initial configuration
with respect to the net fragility zi(0) in which all nodes
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are healthy (i.e. with zi(0) negative). During the first time
step, the value zC of node C is perturbed so that it fails.
The subsequent time steps reveal how the propagation of
failure occurs in the different models.

3.1 Models with constant load

Model class (i) (‘constant load’) assumes that the failure
of a node i causes a predetermined increase of fragility to
its neighbours. The term ‘constant’ does not imply that
the increase is uniform for all nodes (on the contrary, some
nodes may receive more load than others). It means that
the increase in the fragility of node i, when its neighbor j
fails, is the same regardless of the fragility of j and of the
situation in the rest of the system.

We can now distinguish two cases. In the first case,
the increase in fragility of a node i is proportional to the
fraction of neighbors that fail. This is a reasonable as-
sumption if the ties in the network represent for instance
financial dependencies or social influence. In the second
case, the increase in fragility of a node i, when neighbor j
fails, is inversely proportional to the number of neighbors
of node j. In other words, the load of j is shared equally
among the neighbours and thus the more are its neigh-
bours, the smaller is the additional load that each one,
including i, has to carry. We will refer to the first case as
the inward variant of the model because the increase in
fragility caused by the failure of one neighbour depends
only on the in-degree of the node receiving the load. In
contrast, we will refer to the second case as the outward
variant, because the increase in fragility depends only on
the out-degree of the failing node.

We now start by casting in our framework the
well known threshold model of collective behavior by
Granovetter [29]. The model was developed in the con-
text of social unrest, with people going on riot when the
fraction of the population which is already on riot exceeds
a given individual activation threshold. This model has
been more recently reproposed as generic model of cas-
cades on networks [14].

We assume an initial vector of failing thresholds θ, and
initial failing states si(0) = 0 for all i. We define fragility
as simply the fraction of failed neighbors,

φi(t) =
1

kin
i

∑

j∈nbin(i,A)

sj(t), (6)

with nbin(i, A) being the set of all in-neighbors of i in the
network A and kin

i being the cardinality of the set (i.e.
the in-degree of i). This means that a node fails when the
fraction of its failed neighbors exceeds its failing thresh-
old. Consequently, the initial fragility across nodes is zero
φi(0) = 0 for all i and the dynamical equation (2) im-
plies s(1) = Θ(−θ). Thus, nodes with negative threshold
correspond to initial failures at time step t = 1.

Interestingly, we can map our inward cascading
model with constant load also to an economic model of
bankruptcy cascades introduced in [30]. In that model

firms are connected in a network of credit and supply rela-
tions. Each firm i is characterised by a financial robustness
ρi(t) which is a real number, where the condition ρi(t) < 0
determines the default of the firm. Given a vector ρ(0) of
initial values of robustness across firms and a vector s(t)
of failure states, the robustness of firm i at the next time
step is computed as

ρi(t + 1) = ρ0
i −

a

kin
i

∑

j∈nbin(i,A)

si(t) (7)

with nbin(i, A) being the set of in-neighbors of i, kin
i the

in-degree of i, and a a parameter measuring the inten-
sity of the damage caused by the failure. New vectors of
failing state vectors and robustness are then computed it-
eratively until no new failures occur. Mathematically, this
process is equivalent to our inward variant model specified
by equation (6). The equivalence is obtained by defining
fragility φi as in equation (6) and by setting

θi =
ρ0

i

a
. (8)

We note that the model specified in [30] also includes a
dynamics on the robustness inbetween two cascades of fail-
ures, which is not part of our framework.

Let us now turn to the outward variant of the constant
load model. It can be described within our framework by
defining fragility as

φi(t) =
∑

j∈nbin(i,A)

sj(t)
kout

j

(9)

with kout
j being the out-degree of node j. If the network

is undirected and regular, i.e., all nodes have the same
degree, the inward and the outward model variants (6), (9)
are equivalent and lead to identical dynamics. However,
if the degree is heterogeneous, then the number and the
identity of the nodes involved in the cascade differ, as
shown in the example of Figure 2.

Notice that the influence of high and low out-degree
nodes interchange in the two variants, as well as the vul-
nerability of high and low in-degree nodes. In the inward
variant, high in-degree nodes are more protected from con-
tagion as they only fail when many neighbours have failed.
In turn, when a high out-degree node fails, it causes a big
damage if it has many neighbors with low in-degree. In
contrast, in the outward variant, a failing low out-degree
node generates a larger impact on its neighbours since
the load is distributed among fewer nodes. Thus, a high
in-degree node is more exposed to contagion if it is con-
nected to low out-degree nodes. On the other hand, a fail-
ing high out-degree node does not cause much damage to
its neighbors because the damage gets divided between
many nodes. In the examples reported in the figures, the
network is undirected and in-degree and out-degree coin-
cide. Still the roles of high-degree and low-degree nodes
interchange as discussed above.

As another important difference between the two vari-
ants, the maximal fragility is bounded by the value one in
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Fig. 2. (Color online) Illustration of the cascading dynam-
ics for the inward (left) and outward (right) variants of model
class (i) ‘constant load’, based on the general example of Fig-
ure 1. Initially, node C is forced to failure by setting its failure
threshold to zero. Subsequent time steps in the evolution of
the cascade are represented downward in the figure.

the inward variant, while it is bounded by the number of
nodes n in the outward variant, which is realized in a star
network. Further, both variants strongly differ regarding
the impact of the position of the initial failure. Figure 13
(in Appendix B) shows an example, where node I initially
fails (instead of node C in Fig. 2). The cascade triggered
by that event is larger in the outward variant than in
the inward variant, in contrast to what seen in Figure 2.

Eventually, Figure 14 illustrates the dynamics of a cascade
triggered by the failure of node E, which has the highest
degree. This results in a full cascade in the inward vari-
ant, while there is no cascade at all in the outward variant.
This observation illustrates the different influence of nodes
with high degree in the inward and the outward variant,
as explained above.

3.2 Models with load redistribution

Model class (ii) ‘load redistribution’ is our second class
of cascading models. In this class all nodes are initially
subject to a certain amount of load. Actually, in this model
class fragility coincides with load. When a node i fails, all
of its load is redistributed among the first neighbours. This
mechanism differs from class (i) because in class (ii) the
increase in fragility among the neighbours of i depends on
the actual value of i’s fragility and not just on the fact
that it exceeds the threshold. The damage caused by one
failure can thus not be specified a priori.

Models belonging to this class include the fiber bun-
dle model (FBM) [31] and models of cascades in power
grids [32]. In some cases it is possible to define the total
load of the system, which, additionally, but not neces-
sarily, may be a conserved quantity. For instance, in the
FBM a constant force is applied to a bundle of fibers each
of which is characterized by a breaking threshold. When a
fiber breaks, the load it carries is redistributed equally to
all the remaining fibers, so the total load is conserved by
definition. In the context of networks, a node represents
a fiber and if the node fails the load is transferred lo-
cally to the first neighbours in the network. An analogy to
power grids is also possible, with nodes representing power
plants, links representing transmission lines, fragility rep-
resenting demand and threshold representing capacity, re-
spectively.

There are, several ways to specify the mechanism of lo-
cal load transfer. A first variant is the FBM with local load
sharing (LLS) and load conservation, investigated in [6].
We refer to this variant as LLSC. Despite the fact that
load sharing is local, total load is strictly conserved at any
time, due to the condition that links to failed nodes remain
able to transfer load (in other words, links do not fail). A
second variant implies load shedding instead, and we refer
to it as LLSS. In this variant, all links to failed nodes are
removed and the load of a failing node is transferred only
to the first neighbours that are not about to fail. These are
the nodes that are healthy and below the threshold and
thus will be still alive at the next time (although they may
reach the threshold meanwhile). However, if there are no
surviving neighbours, the load is eventually lost (or shed).

In the first variant we can cast the FBM-LLS [6] and
extend it to the case of heterogeneous load and directed
networks.

From now on, we interpret ‘load’ as ‘fragility’, and ‘ca-
pacity’ as ‘failing threshold’. Let φ0 ∈ R

n be the vector of
initial fragility (corresponding to the initial load carried
by each node), and θ the vector of failing thresholds (or
maximal capacity). (For comparison: in [6] the threshold
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θi for node i is denoted by σth
ν with values taken from a

uniform distribution between zero and one. The load of
each node is the same and called σ̄ = σ

n , with σ being the
total load.)

We define

reach1→0
out (i, s, A) = {j | sj = 0, ∃ path of 1-nodes i → j}

(10)
as the set of healthy nodes which are reachable from node
i following directed paths consisting only of failed nodes
(except i). Let kreachout

i be the cardinality of such set.
Moreover, we define

reach0→1
in (i, A, s) = {j | sj = 1, ∃ path of 1-nodes i → j}

(11)
to be the set of nodes from which node i can be reached
along directed paths consisting of failed nodes (except i).
Both sets of nodes defined above have to be computed
dynamically based on the current vector of failing states
s and the network.

Finally, given the initial fragility vector φ0, the failure
state vector s(t), and the network A, we define the fragility
of node i at time t in the LLSC variant as

φi(t) = φ0
i +

∑

j∈reach0→1
in (i,A,s)

φ0
j

#reach1→0
out (j, s, A)

. (12)

We add that for an undirected network and uniform ini-
tial load, such a definition becomes equivalent to the load
concentration factor of node i, as defined in [6].

The assumption that links do not break and remain
able to transfer load is not always satisfactory. Some mod-
els have thus investigated the LLSS variant of the model
in which the load is transferred only to the surviving first
neighbours [8]. In this case the load transfer is truly local
and there is no transmission along a chain of failed nodes.
This implies that during a cascade of failures, at some
point in time the network might split into disconnected
components which cannot transfer load to each other. In
particular, if one of these subnetworks fails entirely, all the
load carried by this subnetwork is shed.

As a consequence of the LLSS assumption, fragility
now is not just a function of the current state vector
s(t) and some static parameters (such as the network ma-
trix and the initial fragility φ0). In contrast, it has to be
defined through a dynamic process as a function of the
fragility vector at previous time t, according to the fol-
lowing equation:

φi(t + 1) =

⎧
⎨

⎩
φi(t) +

∑
j∈failin(i)

φj(t)
#heaout(j)

if si(t) = 0,
φi(t) < θi

0 otherwise,
(13)

with failin(i) being the set of in-neighbors of i which fail at
time t (but have not already failed!), and heaout(j) the set
of out-neighbors of j which remain healthy at time t + 1

failin(i) = {j | j ∈ nbin(i, A), sj(t) = 0, φj(t) ≥ θj},
heaout(j) = {i | i ∈ nbout(j, A), si(t) = 0, φj(t) < θj}.

(14)

Thus, equation (13) is well defined unless heaout(j) is
empty. In this case, there is no healthy neighbour of j
to which the load can be transferred, thus the load has to
be shed. The remaining healthy nodes remain unaffected.

Figure 3 illustrates, as an example, the different out-
comes of the dynamics in the LLSC and LLSS variants.
The initial load is set to one for all nodes, thus the total
load on the system is nine. The values of the threshold are
set in order to have the same values of z = φ − θ at each
node as in the example of Figure 1. As in Figure 2, we set
the failing threshold of node C to one in order to trigger
an initial failure.

On one hand, we could expect that cascades triggered
by the failure of one node are systematically wider in the
LLSC variant than in the LLSS variant because in the
first one the total load is conserved. On the other hand,
in the LLSC, the fragility is redistributed also to indirect
neighbours thus leading to a smaller increase of fragility
per node and therefore possibly to smaller cascades. In
fact there seems to be no apparent systematic result, the
outcome being dependent on the network structure and
the position of the initial failure. In the example shown
in Figure 3 the cascade stops sooner in the LLSC variant
than in the LLSS one, due to the rebalancing of load across
the network. In other cases, however, if for instance node E
initially fails, we find that the load shedding has a stronger
impact and the cascade is smaller in the LLSS case.

3.3 Models with overload redistribution

We conclude our classification with class (iii) ‘overload re-
distribution’. When a node i fails in these models, only
the difference between the load and the capacity is redis-
tributed among the first neighbours. Actually, the over-
load of a node is its net fragility. This class is more real-
istic in applications, where a failed node can still hold its
maximum load and only has to redistribute its overload.

The Eisenberg-Noe model is an important example of
an economic model in which firms are connected via a net-
work of liabilities [33]. When the total liabilities of a firm i
exceed its expected total cash flow (consisting of the oper-
ating cash flow from external sources and the liabilities of
the other firms towards i), the firm goes bankrupt. When
a new bankruptcy is recognized the expected payments
from others decline, but they do not vanish entirely. Thus
the loss spreading to the creditors is mitigated.

With respect to our framework, we can identify the to-
tal liability minus the currently expected payments (from
the liabilities of others) with fragility. Similarly, operating
cash flow corresponds to the failing threshold. The relation
between the Eisenberg-Noe model and the overload redis-
tribution class is discussed more in detail in Appendix A.

Therefore, we adapt the two variants of load redistri-
bution defined as LLSC and LLSS in Section 3.2 to the
case of overload redistribution by subtracting the thresh-
old value in the nominator of equations (12) and (13). We
have

φi(t) = φ0
i +

∑

j∈reach0→1
in (i,A,s)

φ0
j − θj

#reach1→0
out (j, s, A)

. (15)
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Fig. 3. (Color online) Illustration of the cascading dynamics for the two variants of the model class (ii) ‘load redistribution’, based
on the general example in Figure 1. Left: LLSC variant, following equation (12). Right: LLSS variant following equation (13).
Again, initially node C is forced to failure. The dynamics is the same for the two variants in the first time step but it differs in
the subsequent time steps.

as definition of fragility in the LLSC version when links
remain, and

φi(t + 1) =

⎧
⎨

⎩
φi(t) +

∑
j∈failin(i)

φj(t)−θj

#heaout(j)
if si(t) = 0,

φi(t) < θi

0 otherwise,
(16)

as dynamical equation of fragility in the LLSS version
when links break.

Using our small example of Figure 1, the cascading dy-
namics for the model class (iii) is presented in Figure 4.
In general, as we will see in Section 4 this class of models
leads to much smaller cascades, compared to class (ii). In
this example, we have set the initial fragility of node C
high enough so that a large cascade is triggered. A very
high initial overload is needed to trigger a cascade of fail-
ures because this overload is the only amount which is

transferred through the whole system. On a failure noth-
ing new is added to the total amount, because the node
stays with its maximum capacity.

Notice that the models of overload redistribution are
invariant to joint shifts in the initial fragility φ0 and in the
failing threshold θ. In other words, a system with φ0 + c
and θ + c leads to the same trajectory of failure state s(t)
and fragility φ(t)+c. Thus, it is enough to study the model
with φ0 = 0 without loss of generality.

4 Macroscopic reformulations

In the previous section we have seen that the different
classes of cascading models lead to a diverse behaviour,
at least in small scale examples, even if initial conditions
for net fragility are the same. In this section, by study-
ing simple mean-field approximations of the processes
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Fig. 4. (Color online) Illustration of the cascading dynam-
ics for model class (iii) ‘overload redistribution’. Left: LLSC
variant based on equation (15). Right: LLSS variant based on
equation (16).

we find that there are significant differences also at the
macroscopic level. In order to compare the different model
classes under the same conditions, we have set the proba-
bility density functions pz(0) of initial values of the net
fragility to be equal for all models. For the cases (i)
constant load, and (iii) overload redistribution we set
θ = −z(0). Notice, that we can set φ0 = 0 in case (iii)
without loss of generality. For case (ii) load redistribution,
instead, it is necessary to have φ0 > 0 (otherwise there is
no load to redistribute) and we have θ = φ0−z(0). We fur-
ther assume that the initial fragility φ0 is uniform across
nodes in model class (ii).

Even a basic mean-field approach allows for an inter-
esting comparison of the three model classes. To do so,
we replace the distribution of fragility at time t, with the
delta function δ〈φ(t)〉 centered on the mean fragility 〈φ(t)〉.
This is equivalent to assuming a fully connected network
since in such a case equation (6–13) yield the same fragility
for every node. If the two distributions are independent,
from (5) we get

pz(t) = δ〈φ(t)〉 ∗ p−θ. (17)

Convolution with a delta corresponds to a shift in the
variable, so that pz(t) = p〈φ(t)〉−θ, and from equation (3)
we obtain

X(t + 1) =
∫ ∞

0

p〈φ(t)〉−θ(z)dz =
∫ ∞

−〈φ(t)〉
p−θ(z)dz

=
∫ 〈φ(t)〉

−∞
pθ(z)dz = Pθ(〈φ(t)〉) (18)

where Pθ(x) =
∫ x

−∞ pθ(θ)dθ is the cumulative distribution
function of θ. This is equivalent to a change of variable
z(t) = 〈φ〉 − θ in the probability distribution and in the
integral. However, the procedure with convolution can be
carried out also if pφ is not assumed to be a delta function.

At this point, we have to express the mean fragility
〈φ(t)〉 in terms of the current fraction of failed nodes,
X(t). For case (i) ‘constant load’, in a fully connected
network, equations (6) and (9) yield both the following
mean fragility:

〈φ(t)〉 = X(t). (19)

For case (ii) ‘load redistribution’, assuming that the sur-
viving nodes equally share the initial load, we can write
for the mean fragility:

〈φ(t)〉 =
φ0

1 − X(t)
. (20)

This is obtained from equation (12) at microscopic level
by taking the mean over all i on both sides

〈φi(t)〉 =
〈
φ0

i

〉
+

〈
∑

j∈reach0→1
in (i,A,s)

φ0
j

#reach1→0
out (j, s, A)

〉
.

(21)
Now, assuming φ0

i = φ0 for all nodes and the network
as fully connected, we have that:

〈
φ0

i

〉
coincides with φ0;

the sum over the set reach0→1
in (i, A, s) (which now co-

incides with the set of failed nodes) equals nX(t); and
#reach1→0

out (j, s, A) equals n(1 − X(t)), because we count
all healthy nodes. Thus, we obtain

〈φ(t)〉 = φ0 +
nX(t)φ0

n(1 − X(t))
=

φ0

1 − X(t)
. (22)

For case (iii) ‘overload redistribution’, we can proceed sim-
ilarly starting from equation (15). Setting φ0

i = 0, without
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loss of generality, and taking the mean over i on both sides
yields

〈φi(t)〉 =

〈
∑

j∈reach0→1
in (i,A,s)

−θj

#reach1→0
out (j, s, A)

〉
. (23)

Again, we can replace the sum over reach0→1
in (i, A, s) by

nX(t), and #reach1→0
out (j, s, A) by n(1 − X(t)). However,

now the average of the threshold values θj across all failed
nodes (as indicated by the sum) is not simply 〈θ〉. It is
instead the mean of that part of the distribution pθ where
failed nodes are located. These are the nodes with θ ≤ φ(t)
and their probability mass has to sum up to X(t). For
a given distribution pθ and a given fraction X of failed
nodes, the mean threshold of failed nodes is defined as

〈θ〉X =
(∫ qX

−∞
θpθ(θ)dθ

)
/X. (24)

qX denotes the X-quantile of the distribution pθ, i.e. a
fraction X of the probability mass lies below qX :

X =
∫ qX

−∞
pθ(θ)dθ. (25)

Thus, 〈θ〉X is the first moment of θ below the value qX ,
normalized by the probability mass of the distribution pθ

in the same interval. Replacing this into equation (23)
yields as mean fragility for case (iii) overload redistribu-
tion:

〈φ(t)〉 =
−〈θ〉X(t) X(t)

1 − X(t)
. (26)

Notice, that the mean of the threshold of the failed nodes
is negative, thus the minus in front of 〈θ〉X(t) ensures that
fragility is positive.

By replacing the expressions of 〈φ(t)〉 in terms of X(t)
in equation (18) we obtain simple recursive equations in
X(t) for the different cases: for case (i) ‘constant damage’

X(t + 1) = Pθ(X(t)), (27)

for case (ii) ’load redistribution’

X(t + 1) = Pθ

(
φ0

1 − X(t)

)
, (28)

and for case (iii) ’overload redistribution’

X(t + 1) = Pθ

(−〈θ〉X(t) X(t)

1 − X(t)

)
. (29)

As the functions on the right hand sides of equa-
tions (27)–(29) are monotonic non-decreasing and
bounded within [0, 1], X(t) always converges to a fix point
X∗ representing the final fraction of failed nodes.

With these iterations we can study the three different
models systematically on the same initial conditions. We
assume the failing thresholds to be normally distributed

−μ

σσ

pz

X =
∞∫
0

pz(z)dz

Fig. 5. (Color online) Top: illustration of the distribution of
net fragility and geometric interpretation of X. Bottom: initial
fraction of failing nodes X(0) as a function of mean −μ and
standard deviation σ of the distribution of initial net fragility
z(0) = φ(0) − θ. The distribution is assumed to be normal.

such that z(0) ∼ N (−μ, σ) in all three cases. This is guar-
anteed if θ ∼ N (μ, σ) for the cases of constant load and
overload redistribution, and if θ ∼ N (μ + φ0, σ) for the
case of load redistribution. The parameters μ and σ rep-
resent the mean and the standard deviation of the net
fragility. Particularly, σ represents the initial heterogene-
ity across nodes. The initial fraction of failed nodes is thus
X(0) = Φμ,σ(0) where Φμ,σ denotes the cumulative distri-
bution function of a normal distribution with mean μ and
standard deviation σ. The surface of values taken by the
initial fraction of failed nodes X(0) over the plane (μ, σ)
is shown in Figure 5. This is assumed to be the same in
all three cases.

In contrast, the final fraction of failed nodes, X∗,
obtained as numerical solution of the recursive equa-
tions (27)–(29) is shown in Figure 6. Moreover, the dif-
ference between the two previous quantities, X∗ − X(0),
representing the fraction of nodes which fail due to the
cascade process, is shown in Figure 7.

At the macro level, the most important structural
difference between the three model classes concerns the
existence of a discontinuity and its boundaries in the land-
scape of X∗. Since X∗ can be considered an order parame-
ter for our system, regions with different values separated
by a discontinuity indicate a first-order phase transition.
The proximity of the discontinuity, i.e. across the bound-
ary of the phase transition, marks a region of great in-
terest from the point of view of systemic risk. Indeed a
small change in the distribution of initial net fragility can
mean the difference between a negligible cascade or a full
breakdown. In the case of ‘constant load’, we find a dis-
continuity between a region with low systemic risk and
one with high systemic risk, with a separation line that
starts at (μ, σ) = (0, 0) and monotonically increases in μ
and σ. However, above (μ, σ) ≈ (0.5, 0.4) the discontinu-
ity vanishes. In the case of load redistribution, instead, the
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Fig. 6. (Color online) Final fraction of failed nodes X∗ in
mean field approximation. As shown in Figure 5, the values
−μ and σ refer to the initial distribution of z(0) = φ(0) − θ.
The various plots refer to the different model classes. Top left:
class (i) constant load. Top right: class (ii) load redistribution
with initial load φ0 = 0.25. Bottom left: class (ii) with φ0 = 0.4.
Bottom right: class (iii) overload redistribution.

region of full break down is always separated by a discon-
tinuity from the region of partial survival. Interestingly,
the separation line when μ is seen as a function of σ is
not monotonic. For some μ (e.g μ = 0.2 when φ0 = 0.25)
most nodes survive for small σ, half of the nodes survive
for large σ but all nodes fail for intermediate σ. This means
that the system is more robust for low heterogeneity and
high heterogeneity, but more susceptible to systemic risk
in the region of intermediate heterogeneity. Finally, in the
case of overload redistribution the region of full breakdown
is reduced to the line with μ = 0 with no discontinuity to-
wards the region of partial survival.

Figure 8 shows the difference in the final fraction of
failed nodes between the different model classes. For in-
stance, the top left plot shows the difference between class
(i) and (ii), X∗

(i) − X∗
(ii). It indicates that constant load

implies larger fraction of failures than load redistribution,
when the initial load is small (φ0 = 0.25). This, how-
ever, does not hold for small μ and large σ, where more
nodes survive with constant load. Overload redistribution
leads to smaller systemic risk than constant load (top right
part of Fig. 8) and load redistribution (bottom left part of
Fig. 8), except for very high μ and small σ. Interestingly,
there is no model class which leads to smaller systemic
risk in the whole (μ, σ)-plane than the others. Finally,
the parameter φ0 in the load redistribution model has a
monotonic effect: the larger it is the larger is the systemic
risk (bottom right part of Fig. 8).

Fig. 7. (Color online) Net fraction of failed nodes X∗ − X(0)
due to the cascading process. Plots are obtained from those
in Figure 6 by subtracting the initial number of failed nodes
(shown in Fig. 5).

Fig. 8. (Color online) Difference in fraction of failed nodes
between class models. Top Left: X∗

(i) − X∗
(ii). Top Right:

X∗
(i) −X∗

(iii). Bottom Left: X∗
(ii)φ0 = 0.25

−X∗
(iii). Bottom Right:

X∗
(ii)φ0 = 0.4

− X∗
(ii)φ0 = 0.25

.

Even under the basic assumption of a fully connected
network, the analysis carried out so far (denoted in the
following as MF1) was able to provide some insights in the
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relations among the three model classes. The following re-
mark is in order at this point. Mean field approaches have
known limitations. In principle, the foregoing analysis has
little to say about the outcome of individual realizations.
For instance, consider the top right corner of the top left
plot of Figure 6. In that region, X∗ takes intermediate val-
ues around 0.25. Does this imply that one time every four
there is a full breakdown and otherwise no failure? Or,
does it imply that in every realization one fourth of the
nodes fail? Notice that the cascade process is determin-
istic, and that the sources of variability that are relevant
for our purposes are the initial distribution of net fragility
z(0) and the network structure A. Our simulations show
that, in absence of strong correlation in z(0) across nodes
and in absence of strong modularity in the network, the
variability of X∗ across realizations is quite limited. A ro-
bustness analysis is left as future work. For sure, in the
regions in which X∗ is very close to 1 the variability across
realization is negligible and this is a useful result in terms
of systemic risk estimation. Finally, a strong variability
is expected, as usual, in the proximity of the transition
between small and large systemic risk.

The mean-field approach, could now be refined in var-
ious ways, in order to take into account, for instance,
the cases of non-fully connected network, heterogeneous
degree, or even degree-degree correlation, following the
methods that have been applied to epidemic spreading
models [19,21]. These investigation are left as future work.

In the remainder of this section, as an example, we
analyse further the constant load class on a network
in which each node has on average k neighbors (in-
stead of n − 1). This provides a first step to address
the influence of network topology on systemic risk. The
fragility of a node now takes values in the discrete set
{0, 1/k, 2/k, . . . , j/k, . . . , 1}. The probability of each event
corresponds to the probability that j out of k neighbours
fail at the same time, given that each fails with probability
q. If failures among neighbours of a node are independent,
such probability follows a binomial distribution B(j, k, q).
We can further approximate the probability q that a node
fails with the total fraction of failed nodes X . Thus, we
can write the probability density function for the fragility
as follows

pφ(t) =
k∑

j=0

B(j, k, X(t)) δ j
k

with

B(j, k, X) =
(

j

k

)
Xj(1 − X)k−j . (30)

It follows

pz(t) =

⎛

⎝
k∑

j=0

B(j, k, X(t) δ j
k

⎞

⎠ ∗ p−θ

=
k∑

j=0

B(j, k, X(t)) p−θ+ j
k

(31)

from which we can derive recursive equations in X(t) anal-
ogous to equations (27)–(29), to compute X∗. A similar

approach is used also in [26]. We denote this approach
with MF2.

We can further refine the analysis by formulating a
recursive equation for the whole distribution pz(t) rather
than for X(t). This approach can then take into account
the fact that the distribution of z(t) is reshaped (and not
simply shifted) during the dynamics.

For this purpose, we define the partial pdf of healthy
nodes ph

z(t) = 1[−∞,0]pz(t), where 1[a,b] takes value one
on the interval [a, b] and zero elsewhere. The integral of
this function over the whole real axis gives the fraction of
healthy nodes, while the fraction of failed nodes is given
by

X(t) = 1 −
∫ 0

−∞
ph

z(t)dz. (32)

Notice that the total mass of the function ph
z(t) is in gen-

eral smaller than one and decreases over time (therefore,
strictly speaking ph

z (t) is not a pdf). Because ph
z (t) only

counts the healthy nodes, the fraction of currently failing
(and not already failed!) nodes, Xf , is defined as

Xf (t) =
∫ ∞

0

ph
z(t)(z)dz. (33)

We can then write the recursive equation

ph
z(t+1) =

⎛

⎝
k∑

j=0

B(j, k, Xf (t)) δ j
k

⎞

⎠ ∗ (1[−∞,0]p
h
z(t))

=
k∑

i=0

B(j, k, Xf (t))1[−∞, j
k ]p

h
z(t)+ j

k

. (34)

Summarizing, from equation (34) we can solve for the limit
distribution ph∗

z or compute it numerically (after binning
the z-axis). This last method is denoted as MF3.

Methods MF2 and MF3 can be understood as concep-
tually different by focussing on the net fragility of a single
node coming for the distribution. For MF2 we compute
the probability of a node to have a certain net fragility by
its possibilities to have 0, 1, 2, . . . , k failed neighbors, thus
the maximum increase in fragility is k

k over all time steps.
This fits to the inward agent-based dynamics, because we
focus on the receiving node which has k in-neighbors. In
MF3 instead, after each time step the whole distribution
of the net fragility is reshaped. Thus, there is a nonzero
probability that one node gets more than k increases in
net fragility in successive time steps. We compute how the
fraction of currently failing nodes reshapes the distribu-
tion of net fragility. Thus, we focus on the spreading node
here and there is a nonzero probability that one node can
receive more than k increases of 1

k in two successive time
steps, as it is also possible in a network where in-degrees
vary slightly. Thus, MF3 fits to the outwards agent-based
dynamics.

Figures 9, 10, and 11 plot the limit fraction X∗ of failed
nodes in the (μ, σ) plane obtained from the recursive equa-
tions (31) (MF2) and (34) (MF3), as well as a comparison
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Fig. 9. (Color online) Model class (i) ’constant damage’, frac-
tion of failed nodes X∗ on a graph with degree k = 3. Plots
are constructed in analogy to Figure 6. Left: mean field solu-
tion from equation (31) (MF2). Right: mean field solution from
equation (34)(MF3).

with the case of fully connected network (MF1) and a com-
parison between each other. Notice that, similar to MF1,
we still observe in both MF2 and MF3 a discontinuity line
which vanishes as μ and σ increase. The shape of the line
varies in the three analyses. In the third approach, MF3,
the values of X∗ are systematically smaller than in MF2.

Moreover, in MF1 the region of high systemic risk is
less extended than in the other approaches, although for
intermediate values of μ, σ, values of X∗ in MF1 are larger
than in MF2, MF3 (blue regions in Fig. 11). This is due
to the fact that when many links are present, nodes are
spreading the fragility more evenly and so less failures take
place, given the same initial fragility. After the critical
point the avalanche is larger.

On the other hand, approach MF2 always yields larger
systemic risk than MF3 which takes into account the
whole distribution (see Fig. 11). Thus, the inwards version
of the ‘constant load’ model is more prone to systemic risk
than the outward version, this is especially relevant in the
region of very low σ, where MF2 shows full cascades up to
μ ≈ 0.3, while MF3 is already free from full cascades. A
full cascade in MF3 is triggered only for slightly higher σ.

5 Generalization to stochastic cascading
models

5.1 Stochastic description

In Section 2 we have introduced a general model of cas-
cades based on a deterministic dynamics of the state si(t)
of a node i, equation (2), with a sharp transition from
healthy to failed state, at exactly zi = 0. In this Section
we propose a generalization of such process to a stochas-
tic setting. Interestingly, it will be possible to derive the
Voter Model as well as the stochastic contagion model SIS
as particular cases. This exercise will shed some new light
on the connections between cascade models and contagion
models.

Fig. 10. (Color online) Model class (i) ‘constant damage’.
Difference between fraction of failed nodes X∗ on a regular
graph with degree k = 3 (shown in Fig. 9) and on a fully con-
nected network (shown in Fig. 6), based on different mean field
approaches. Left: plot of the difference X∗

MF2 − X∗
MF1. Right:

X∗
MF3 − X∗

MF1. Color code as in Figure 8.

Fig. 11. (Color online) Model class (i) ‘constant damage’. Dif-
ference X∗

MF2 − X∗
MF3 between final fraction of failed nodes

obtained with approaches MF2 and MF3 shown in Figure 9.
Color code as in Figure 8.

We assume that the failure of a node i is a stochastic
event occurring with some probability dependent on the
net fragility, zi(t), but possibly also conditional to the cur-
rent state, si(t). We have in mind a situation in which the
probability to fail increases monotonically as zi(t) = φi−θi

becomes positive. Conversely, nodes can switch from the
failed state back to the healthy state and this is more
likely if z′i(t) = φi − θ′i becomes negative. Notice that we
introduce an asymmetry, as θ′i �= θi in general. Compared
to equation (2), now the dynamics is defined as

si(t + 1) =

⎧
⎪⎨

⎪⎩

1 with pi(1, t + 1|1, t; zi) if si(t) = 1
1 with pi(1, t + 1|0, t; zi) if si(t) = 0
0 with pi(0, t + 1|0, t; z′i) if si(t) = 0
0 with pi(0, t + 1|1, t; z′i) if si(t) = 1.

(35)

Here, pi(1, t + 1|0, t; zi) denotes the probability to find
node i in state 1 at time t + 1, conditional that it was in
state 0 at time t, etc. Obviously,

1 = pi(1, t + 1|1, t; zi) + pi(0, t + 1|1, t; z′i)
1 = pi(0, t + 1|0, t; z′i) + pi(1, t + 1|0, t; zi). (36)
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Fig. 12. (Color online) Probability p = p(1), equation (41),
dependent on z = zi = z′

i for several values of β = β′, to indi-
cate the crossover from a random to a deterministic transition:
(blue) β = 0.05, (green) β = 0.5, (red) β = 5, (black) β = 50.

In the following, we abbreviate the relevant conditional
probabilities as p(1|0, zi) = pi(1, t + 1|0, t; zi), p(0|1; z′i) =
pi(0, t + 1|1, t; z′i) and denote them as transition probabil-
ities (per unit of time). Under Markov assumptions the
Chapman-Kolmogorov equation holds for the probability
to find node i in state 1 at time t + 1:

pi(1, t + 1) = pi(1, t + 1|1, t, zi) pi(1, t)
+pi(1, t + 1|0, t, zi) pi(0, t) (37)

with

1 = pi(1, t) + pi(0, t) (38)

and equation (36). This results in the dynamic equation

pi(1, t + 1) − pi(1, t) = −p(0|1, z′i) pi(1, t)
+p(1|0, zi) [1 − pi(1, t)] . (39)

Stationarity, i.e. pi(1, t + 1) − pi(1, t) = 0, implies the
so-called detailed balance condition:

pi(1)
1 − pi(1)

=
p(1|0; z′i)
p(0|1; zi)

. (40)

A very common assumption for pi(1) is the logit function:

pi(1; β, β′; zi, z
′
i) =

exp(βzi)
exp(βzi) + exp(−β′z′i)

. (41)

The parameters β, β′ measure the impact of stochastic
influences on the transition into the failed state and back
into the healthy state, accordingly. By varying β, β′ the
deterministic case (β, β′ → ∞) as well as the random
case (β, β′ → 0) can be covered. Figure 12 shows the
dependency of the probability p = p(1) with respect to
β for the symmetric case, β = β′, z = zi = z′i.

Fig. 13. (Color online) Constant damage. Example to be com-
pare with Figure 2. Here, node I initially failes.

The transition probabilities can be chosen in accor-
dance with equation (40), (41) as follows:

p(1|0; zi) =γ
exp(βzi)

exp(βzi) + exp(−β′z′i)

p(0|1; z′i) =γ′ exp(−β′z′i)
exp(βzi) + exp(−β′z′i)

. (42)

The parameters γ, γ′ set the range of the functions and
should be equal only if the detailed balance condition
holds. The different thresholds θ, θ′ shift the position of
the transition from one state to the other. The transition
probabilities thus depend on two sets of parameters, γ, β,
θ characterizing the transition into the failed state, and
γ′, β′, θ′ for the transition into the healthy state. These
sets differ in principle, but they play the same role in the
transitions.

5.2 Mean-field equations

In analogy to Section 4, we want to derive a dynamics at
the macro level for the expected fraction X(t) of failed
nodes at time t. To this end, we start from the micro
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Fig. 14. (Color online) Constant damage. Example similar to
the one in Figure 13 but with highest degree node E failing
initially. The example clearly shows a difference in the spread-
ing properties of hubs: in the ‘inwards variant’ the hub spreads
failures to low-degree nodes; the opposite for the ‘outwards
variant’.

dynamics given by equation (39). As a first mean-field as-
sumption, we neglect correlations between fragility and
thresholds across nodes in the network. In other words,
we assume that the values of zi and z′i are drawn from the

Fig. 15. (Color online) Load redistribution. Compare with
Figure 3. Here, node D fails initially. w.r.t to the previous case,
this leads to a propagation of failures in the opposite direction,
in the LLSC variant (links fail), while nothing changes in the
LLSS variant (links remain).

same probability distribution pz(z(t)), regardless of the
identity of the node. The expected change in the proba-
bility pi(1, z, t) for node i is obtained by integration:

E[pi(1, t + 1) − pi(1, t)] =
∫

R

pz(z(t))p(1|0; z)pi(0, z, t)dz

−
∫

R

pz(z′(t))p(0|1; z′i) pi(1, z′, t)]dz′. (43)

To avoid any confusion with the notation, we recall that
pz is the density function of the net fragility z, while
p(1|0; z) is the probability that a node with net fragility z
switches from state 0 to state 1, and finally pi(0, z, t) is the
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probability that node i with net fragility z is in state 0 at
time t.

We now average both sides of the equation above
across nodes. In particular, the average of the r.h.s. yields

∫

R

pz(z(t))p(1|0; z)
1
n

∑

i

pi(0, z, t)dz

−
∫

R

pz(z′(t))p(0|1; z′)
1
n

∑

i

pi(1, z′, t)dz′. (44)

Noticing that, for large n

X(t) = 1
n

∑
i pi(1, z, t)

1 − X(t) = 1
n

∑
i pi(0, z, t) (45)

we get

X(t + 1) − X(t) = (1 − X(t))
∫

R

pz(z(t))p(1|0; z(t))dz

− X(t)
∫

R

pz(z′(t))p(0|1; z′)dz′. (46)

Equation (46) describes the dynamics of the expected
fraction of failures in a system with both heterogeneity
of threshold, θ, or fragility, φ, and with stochasticity in
the cascading mechanism. We can now obtain mean-field
equations for various existing models, by specifying (1) the
transition probabilities p(1|0; z) and p(0|1; z′), and (2) the
distribution pθ(θ) for the thresholds θi.

5.3 Recovering deterministic cascade models

In order to recover the deterministic models of Section 3,
we first notice that in those cases the transition from state
s = 0 to s = 1 is not really conditional to the state at pre-
vious time. Actually, in these models a node changes to
a certain state with a probability which is independent of
its current state. We emphasize, however, that our frame-
work is general enough to cover cases in which failure is
really conditional on s.

For the models discussed in Section 3, we can assume
θ′ = θ and thus z′ = z, and further β = β′, γ = γ′ = 1.
We have then

p(1|0; z) = p(1|1; z) = p(1; z)
p(0|1; z) = p(0|0; z) = p(0; z). (47)

We now set β → ∞, which implies that the transition
probability in equation (42) tends to the Heaviside func-
tion:

p(1|0; z) = Θ(z) ; p(0|1; z) = Θ(−z) (48)

Since, for any real function g it holds
∫

R

g(x)Θ(x)dx =
∫ ∞

0

g(x)dx, (49)

we obtain

X(t + 1) − X(t) = (1 − X(t))
∫ ∞

0

pz(z(t))dz

− X(t)
∫ 0

−∞
pz(z(t))dz. (50)

Because of
∫ 0

−∞ pz(z(t))dz+
∫∞
0 pz(z(t))dz = 1, this finally

yields

X(t + 1) =
∫ ∞

0

pz(z(t))dz. (51)

Equation (51) coincides with equation (3).

5.4 Recovering stochastic models with homogeneous
threshold

In order to recover models of herding and stochastic con-
tagion, we instead keep the stochastic nature of the fail-
ure but we assume that the failure threshold is the same
across nodes, θi = θ, ∀i. In a mean field approximation,
we replace the individual fragility with the average one, so
that also zi is constant across the nodes zi = z ∀i. Then
the probability density of z in Equation (46) is equivalent
to a delta function and the integral over dz drops. The
macroscopic mean-field equation then reads

X(t + 1) − X(t) = (1 − X(t)) p(1|0; z)− X(t) p(0|1; z).
(52)

Equation (52) will be the starting point for discussing spe-
cific contagion models in Sections 5.5, 5.6.

5.5 Voter model

The linear voter model (LVM) is a very simple model of
herding behavior. The dynamics is given by the following
update rule: a voter, i.e. a node i ∈ A of the network, is
selected at random and adopts the state of a randomly
chosen nearest neighbor j. After n such update events,
time is increased by 1. The probability to choose a node j
in state 1 from the neighborhood of node i is proportional
to the frequency of nodes with state 1 in that neighbor-
hood, fi (and conversely for state 0). Consequently, the
transition probability towards the opposite state is pro-
portional to the local frequency of the opposite state. It
is also independent of the current state of the node.

p(1) = p(1|1) = p(1|0) = fi

p(0) = p(0|0) = p(0|1) = 1 − fi (53)

In order to match this dynamics within our framework,
we consider values of β of the order of 1. From Equation
(42), we obtain in linear approximation:

p(1|0, zi) =
γ

2
[1 + βzi]

p(0|1, zi) =
γ′

2
[1 − β′z′i] . (54)
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Fig. 16. (Color online) Load redistribution. Part 1. Compare with Figure 3. Here, node I fails initially. This leads to full
breakdown in the LLSC variant (links remain), while some nodes do not fail in the LLSS variant (links fail) because of a
disconnection in the network.

With θi = θ′i, β = β′, γ = γ′, this matches the transition
probabilities for the LVM provided that:

γ [1 + β(φ − θi)] = 2fi

γ [1 − β(φ − θi)] = 2 (1 − fi) . (55)

This is realized by choosing

γ = 1 ; β = 2 ; θ =
1
2

⇒ φi = fi. (56)

We note that the threshold θ coincide with the unstable
equilibrium point of the LVM, 1/2, that distinguishes be-
tween minorities and majorities in the neighborhood. The
fragility equals the local frequency fi of infected nodes,
and does not depend on the node itself. If a majority of
nodes in the neighborhood has failed, this more likely leads
to a failed state of node i; if the failed nodes are the mi-
nority, this can lead to a transition into the healthy state.

Since the fragility coincides with the fraction of neighbours
in state 1 (or 0), VM fits in the first model class described
in Section 3.1, with the specificity that the failure pro-
cess is stochastic and the threshold is homogeneous across
nodes.

As a consistency check, if we assume for one moment
the failure process to be deterministic, one could directly
apply equation (27). Since the probability distribution of
the threshold would be trivially a delta function δ1/2(θ),
its cumulative distribution would be the Heaviside func-
tion Pθ(X) = Θ(X − 1/2). This would imply that the
dynamics reaches X∗ = 1 as stable fix point as soon as
X(0) > 1/2 and vice versa for X∗ = 0.

Coming back to the usual stochastic VM, in order to
obtain the mean-field dynamics, we now approximate fi(t)
with X(t), i.e. we replace p(1|0, z) = X(t), p(0|1, z) =
1 − X(t) in equation (52). This recovers the well known
mean-field dynamics of the LVM, dX/dt = 0, i.e. the
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expected asymptotic fraction of failures (which differs
from the individual realizations) coincide with the initial
fraction X(0) of failed nodes.

With a similar procedure we can also account for non-
linear VM [24], in which the probability to switch to a
failed or healthy state is a non-linear function of the frac-
tion of failed nodes in the neighborhood:

p(1|0; zi) = p(1) =fi(t) F1(fi(t))
p(0|1; zi) = p(0) =(1 − fi(t)) F2(fi(t)) (57)

F1 and F2 are frequency dependent functions which de-
scribe the non-linear response of a node on the fraction of
failed nodes in the neighborhood. If we again replace fi

with the global frequency of failures X , we arrive at the
macroscopic dynamics in mean-field limit:

X(t + 1) − X(t) = (1 − X(t))X(t) [F1(X) − F2(X)] .
(58)

In the linear case F1 = F2 = 1, the prediction for the
expected value of X does not give sufficient information
about individual realizations of the Voter dynamics. In
fact, it is well known that the global outcome of the LVM
leads to global failure with a probability equal to the ini-
tial fraction of infected nodes, X(0). In other words, if we
run a simulation with e.g. X(0) = 0.3 for 100 times, then
in 30 cases we will reach a state of global failure, whereas
in 70 cases, no failure at all will prevail. This differs from
the case of the cascading models described in Section 3,
in which the mean field dynamics gives us some more in-
formation about individual realizations.

In the non-linear case (F1 �= 1, F2 �= 1), different sce-
narios arise depending on the nonlinearity. In [24] it was
shown that even a small non-linearity may lead to either
states where global failure is always reached, or to states
with a coexistence of failed and healthy nodes. It is worth
noticing that both of these scenarios are obtained with
positive frequency dependence, i.e. a transition probabil-
ity to fail that increases monotonically with the local fre-
quency f . Thus, small deviations in the nonlinear response
can either enhance systemic risk, or completely prevent it.

5.6 SIS-SI model

The SIS model [20] is the most known model of epidemic
spreading. On the microlevel, healthy nodes get infected
with probability ν if they are connected to one or more
infected nodes. In other words, the parameter ν measures
the infectiousness of the disease in case of contact with
an infected node. This means that the effective transition
probability of node i from healthy to infected state is pro-
portional to the probability q that a neighbour is infected
times the degree ki of the node. Indeed, the larger the
number of contacts, the more likely it is to be in contact
with an infected node. On the other hand, failed nodes
recover spontaneously with probability δ. The transition
probabilities are then as follows:

p(1|0, zi) = ν ki q; p(0|1) = δ (59)

with 0 ≤ ν ≤ 1. We do not redefine, as usually done, the
infection rate as λ = ν/δ with δ = 1, because we want to
cover the case δ = 0, as we will see below.

We interpret of course infection state as failure state.
Matching the transition probabilities of SIS with the ones
in our framework, we obtain:

γ [1 + β(φ − θi)] = 2ν ki q

γ′ [1 − β′(φ − θ′i)] = 2δ. (60)

This implies that our framework recovers the transition
probabilities of the SIS model, provided that:

γ = 1 ; β = 2 ; θ =
1
2

⇒ φi = ν ki q

γ′ = 2δ ; β′ = 0 (61)

In order to understand the relation of SIS with the
other models, we can approximate the probability q that
a node fails with the fraction of failed neighbours fi. The
resulting expression for the fragility, φi = νkifi, is propor-
tional to the fraction of failed nodes as in model class (i)
of Section 3.1. However, the term ki implies that the in-
fection probability grows with the number of connections
in the network. This feature makes the biggest difference
between the SIS model and the cascade models studied in
the previous sections, apart of course from the fact that
the contagion process is stochastic and the threshold ho-
mogeneous. Another important feature that emerges is the
asymmetry in the transition probabilities between healthy
and failed state and backwards.

In order to derive a macroscopic dynamics, we apply
the mean-field approximation fi ∼ q ∼ X and we assume
a homogeneous network with ki = k for all nodes. Starting
from equation (52), we obtain

X(t + 1) − X(t) = ν k X(t)(1 − X(t)) − δX(t). (62)

The last negative term in the R.H.S. of equation (62)
implies that there is no global spreading of infection if
ν < νc = δ

k and the only stable fix point is X∗ = 0. For
ν ≥ νc there is a unique stable fix point with X∗ > 0.

As it is well known, the existence of a critical infection
rate νc does not hold, however, if, instead of the mean-field
limit with homogeneous degree, a heterogeneous degree
distribution of the nodes is assumed [20]. The implications
of degree heterogeneity and degree-degree correlation in
epidemic spreading have been investigated in a number of
works [21].

The SI model, in which no transition into the healthy
state is possible, is recovered setting additionally δ = 0.
We then obtain the logistic growth equation:

X(t + 1) − X(t) = ν k X(t)(1 − X(t)) (63)

where X(t) = 1 is the only stable fix point of the dynam-
ics. Any initial disturbance of a healthy state eventually
leads to complete infection.

We conclude by noting that, despite its simplicity, the
SI model has been used to describe a number of real con-
tagious processes, such as the spread of innovations [34]
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or herding behavior in donating money [35]. In the lat-
ter case, the mean-field interaction was provided by the
mass media. In other words, because of the constant and
homogeneous information about other people’s donations,
the individual transition depends on the global (averaged)
frequency of donations instead of the local one. Interest-
ingly, it could be shown that in the particular example
of ‘epidemic’ donations, the time scale depends itself on
time, indicating a slowing down of the dynamics due to a
decrease in public interest.

6 Conclusion

In this paper, we wish to clarify the meaning and the emer-
gence of systemic risk in networks with respect to several
existing models. To unify their description, we propose a
framework in which nodes are characterized (1) by a dis-
crete failure state si(t) (healthy or failed) and (2) by a
continuous variable, the net fragility, zi(t), capturing the
difference between fragility φi of the node and its fail-
ing threshold θi. By choosing an appropriate definition of
fragility in terms of the failure state and/or the fragility
of neighbouring nodes, we are able to recover, as special
cases, several cascade models as well as contagion models
previously studied in the literature.

Our paper contributes to the investigation of these
models in several ways. First of all, we have provided
a novel framework to cover both cascade and contagion
models in a deterministic approach, which is further suit-
able to be generalized also to the stochastic case. Secondly,
our framework allows us to unify a number of existing, but
seemingly unrelated models, pointing out to their com-
monalities and differences. Thirdly, we are able to identify
three different model classes, which are each characterized
by a specific mechanism of transferring fragility between
different nodes. These are (i) ‘constant load’, (ii) ‘load re-
distribution’, and (iii) ‘overload redistribution’.

Systemic risk, within our framework, is defined as the
stable fraction of failed nodes X∗ in the system. As X∗ =
1 denotes the complete breakdown of a system, we are
interested in trajectories of the system where X∗ is much
below one. In order to determine these trajectories, in this
paper we derive a macroscopic dynamics for X(t) based
on the microscopic dynamics. As a major contribution of
this paper, we are able to find, for each of the three classes,
macroscopic equations for the final fraction of failed nodes
in the mean-field limit.

In order to compare the systemic risk between the
three classes, we have studied the macroscopic dynamics
of each of them with the same initial conditions. Most im-
portantly, we found that the differences on the microscopic
level translate into important differences on the macro-
scopic level, which are visualized in a phase diagram of
systemic risk. This indicates, for each of the model classes,
which given initial conditions result into what total frac-
tion of failure. This way we could verify that, for instance,
in class (ii) there is a first-order transition between re-
gions of high systemic risk and regions with low systemic
risk. In contrast, class (i) displays such a sharp transition

only in some smaller part of the phase space, while class
(iii) does not display any abrupt transition at all. Such
an insight helps us to understand whether and for which
parameters small variations of initial conditions may lead
to an abrupt collapse of the whole system, in contrast to
a gradual increase of systemic risk.

In addition to the macro dynamics, we have also in-
vestigated the different model classes on the microscopic
level. A number of network examples made clear how the
different transfer mechanisms affect the micro-dynamics of
cascades. As an interesting insight, we could demonstrate
that the role of nodes with high degree change depending
on type of load transfer. In the inwards variant of first
class model, high degree nodes are more protected from
contagion, whereas in the outwards variant of the same
class, they become more exposed to contagion if they are
connected to many low degree nodes (which holds for dis-
assortative networks). Furthermore, we could point out
that the results strongly depend on the position of the
initially failing node. A systematic analysis identifying the
crucial nodes from a systemic risk point of view is left for
future work.

Finally we have extended our general framework so to
encompass models of stochastic contagion, as known from
VM and SIS. Both of these models belong to the first class,
but differently from the models studied in Section 3.1,
the threshold is homogeneous and the failure is stochas-
tic. Hence, it becomes more clear how these established
models of herding behavior and epidemic spreading are
linked to the ’cascade’ models discussed in the literature.

Our work could be extended in several ways. First, one
could apply techniques to deal with heterogeneous degree
distributions to the three classes of cascading model, in-
troduced in Section 3. This could be carried out also in
the presence of degree-degree correlation, as recently dis-
cussed for contagion models [21]. Furthermore, one could
investigate more in detail the case of both heterogeneous
threshold and stochastic failures. Compared to the simple
SIS, it seems more realistic to assume that the proba-
bility of contagion depends on an intrinsic heterogeneous
property of the nodes (the threshold). Such heterogeneity
could also play a crucial role, as it has been found for the
heterogeneity in the degree [20].

A last remark is devoted to the discussion of systemic
risk. In our paper, we have provided mean-field equations
to calculate the total fraction of failed node in a system,
which we regard as a measure of systemic risk. This im-
plies that systemic risk is associated with a system state
of global failure, i.e. there is no ‘risk’ anymore, as almost
all nodes already failed. In contrast, it could be also ap-
propriate to define ‘systemic risk’ as a situation, where the
system has not failed yet, but small changes in the initial
conditions or fluctuations during the evolution may lead to
its complete collapse. Our general framework has already
contributed insight into this problem, by identifying those
areas in the (mean-field) phase diagram where we can ob-
serve a sharp transition between a globally healthy and
a globally failed system. This is related to precursors of
a crisis as it identifies parameter constellations to make a
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system vulnerable that looks apparently healthy. On the
other hand, using our approach we were able to assess that
for certain transfer mechanisms such an abrupt change in
the global state is not observed at all – which means that
systems operating under some conditions are less vulner-
able to small changes.

This work is part of a project within the COST Action P10
“Physics of Risk”. J.L. and F.S. acknowledge financial support
from the Swiss State Secretariat for Education and Research
SER under the contract number C05.0148. S.B. and F.S. ac-
knowledge financial support from the ETH Competence Cen-
ter ‘Coping with Crises in Complex Socio-Economic Systems’
(CCSS) through ETH Research Grant CH1-01-08-2.

Appendix A: Eisenberg-Noe model

An interesting model of contagion which has not been in-
vestigated in the econophysics literature is the one devel-
oped by Eisenberg and Noe [33]. It introduces a so called
fictitious default algorithm as a clearing mechanism in a
financial system of liabilities. When some agents in the
system cannot meet fully their obligations, the task of
computing how much each one owes to the other becomes
nontrivial in presence of cycles in the network of liabilities.

The basic assumptions of the clearing mechanism are
(i) limited liability (a firm need not spend more than it
has), (ii) absolute priority of debt over cash (a firm has to
spend all available cash to satisfy debt claims first), (iii)
no seniority (all claims have the same priority).

A financial system of n firms is described by a vector
of total obligations x0, a matrix of relative liabilities A,
and a vector of operating cash flows θ. x0

i is the total
amount of liabilities firm i has towards other firms, aij

specifies what fraction of its own total obligations firm i
owes to firm j, and θi determines the liquid amount of
money of firm i. Thus, aijx

0
i is the nominal liability i

has to j. The matrix A is row-stochastic, which means
all entries are non-negative and rows sum up to one. This
condition ensures that individual obligations sum up to
the total obligations x0

j . The expected payments to firm i
from its debtors is thus:

(AT x0)i =
n∑

j=1

ajix
0
j . (A.1)

If it happens that the total cash flow, i.e., the expected
repayments of others plus operating cash-flow, is less than
the total obligations, i.e.

θi +
n∑

j=1

ajix
0
j < x0

i (A.2)

firm i cannot meet its obligation in full and defaults. This
implies a reduction of the expected payments to its credi-
tors, which might in turn default as a second-order effect,
and so on. This makes this model close to the class of

overload redistribution because the expected payments of
a node do not vanish entirely when it fails.

The fictitious default algorithm defined in [33] consists
of finding a clearing vector x∗ of total payments which
fulfills the equation

xi = min{θi +
n∑

j=1

ajixj , x0
i } (A.3)

for all i. As shown in [33], using mild assumptions, such
a clearing vector exists and is unique and the fictitious
default algorithm, with x(0) = x0, is well defined. The
sequence x(t) represents a decreasing sequence of clearing
vector candidates which terminates in at most n steps
at the clearing vector. The new clearing vector candidate
x(t + 1) is computed from a given candidate x(t) taking
into account the first order defaults given clearing vector
candidate x(t), but not the second order defaults. These
are checked in the successive time steps.

Following our general framework presented in Sec-
tion 2, we can define fragility as

φi(x(t), x0, A) = x0
i −

n∑

j=1

ajixj(t) (A.4)

which is the amount of debt which has to be covered by
the operating cash flow θi, given the current candidate for
the clearing vector x(t). From x(t), x0, A, and θ we can
determine the failing state si(t + 1) as in equation (2) as

si(t + 1) = Θ(φi(x(t), x0, A) − θi). (A.5)

Given a clearing vector candidate x(t), the value of the
equity of firm i is given by

θ +
n∑

j=1

ajixj(t) − xi(t) (A.6)

which is the operating cash flow plus the expected amount
of payments received by others minus the payment to oth-
ers which are possible, given the currently expected pay-
ments from the other. A new clearing vector candidate
x(t + 1) is computed from x(t) by determining the failing
state s(t + 1). This leads to a simple fix point equation
(see [33], p. 243), which usually has a unique fix point.
That means, the fictitious default algorithm is constituted
in such a way that it solves a system of linear equations.
If successful, the algorithm runs until a clearing vector is
found which gives that the value of the equity is zero (and
not negative) for a firm in default, and positive for a non-
defaulting firm. At least one non-defaulting firm should
be found by the fictitious default algorithm, which means
that there is at least one firm i for which it holds xi(t) = x0

i
holds. If not, then the clearing vector candidates diverge
toward −∞, and the algorithm fails. This represents a full
break down of the financial system.

The relation between this model and our third model
class is not straightforward because the new clearing vec-
tor candidate x(t) is not necessarily always uniquely de-
fined by the current fragility φ(t) as given in (A.4). There-
fore, we chose to study the simpler models in Section 3.3.
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Investigating the macro-perspective as in Section 4,
one finds that the Eisenberg-Noe model can be approxi-
mated by the macroscopic equation for the overload redis-
tribution. The approximations would be fairly good when
the system is close to a fully connected network (every-
body borrows equally from everybody else) and uncorre-
lated operating cash flows.

Appendix B: Further examples

Section 3 has pointed out that the propagation of cas-
cades, in addition to the mechanism of transfer, strongly
depends on the initial condition, in particular on the po-
sition of the first failing node. In order to further illus-
trate this important point, we present additional examples
with a different initially failing node. All these examples
start from the setup shown in Figure 1. Their outcome
should be compared to the respective examples discussed
in Figures 2, 3, 4
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