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Abstract

We analyze large-scale data sets about collaborations from two different domains:
economics, specifically 22.000 R&D alliances between 14.500 firms, and science,
specifically 300.000 co-authorship relations between 95.000 scientists.
Considering the different domains of the data sets, we address two questions: (a)
to what extent do the collaboration networks reconstructed from the data share
common structural features, and (b) can their structure be reproduced by the
same agent-based model. In our data-driven modeling approach we use
aggregated network data to calibrate the probabilities at which agents establish
collaborations with either newcomers or established agents. The model is then
validated by its ability to reproduce network features not used for calibration,
including distributions of degrees, path lengths, local clustering coefficients and
sizes of disconnected components. Emphasis is put on comparing domains, but
also sub-domains (economic sectors, scientific specializations). Interpreting the
link probabilities as strategies for link formation, we find that in R&D
collaborations newcomers prefer links with established agents, while in
co-authorship relations newcomers prefer links with other newcomers. Our results
shed new light on the long-standing question about the role of endogenous and
exogenous factors (i.e., different information available to the initiator of a
collaboration) in network formation.
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1 Introduction
The availability of large-scale and time resolved data sets about economic, scientific

or social activities opens new venues to address the long standing question of how

we collaborate. This question becomes more important as globalization leads to a

vast increase of collaborations in many areas of human activity, including science

and economics [1–4]. In these areas, progress is mainly generated in collaboration

and almost never in isolation. Hence, by understanding how we collaborate, we can

re-design funding schemes and policies to allocate resources efficiently, and better

foster innovation.

One could argue that collaboration patterns change with respect to the actors

and the domain of activity, but there may be also evidence for common features

across different domains. In the latter case, we could hypothesize that a unified

modeling approach should be able to reproduce, and to explain, the structural and

the dynamic features of collaborations in different domains. To demonstrate this

is the aim of our paper. By this, we provide a new flexible model that allows to

understand collaboration patterns.

mailto:gvaccario@ethz.ch
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The present study is focused on two domains with a large impact on human devel-

opment, (i) economy and (ii) science. Specifically, we refer to (i) firms collaborating

in Research and Development (R&D) alliances and (ii) scientists collaborating in

co-authored publications. For both cases large, comprehensive and structured data

sets about individual collaboration activities have become available. The data sets

analyzed in this study are (i) the Thomson Reuters SDC Platinum database, list-

ing around 15 000 inter-firm R&D alliances and (ii) a data set of over 300 000

co-authored papers in physics, which was obtained from the American Physical So-

ciety (APS) scholars database with additional disambiguation of authors names.

For the details we refer to Section 3.1.

The time-aggregated data about these collaboration events can be conveniently

represented by means of a complex network, where the nodes are the actors, or

agents as we denote them in the following, and the links are the recorded collab-

orations. The structural features of such collaboration networks have been already

investigated in different domains. Previous works have, for instance, discussed the

presence of clusters, or communities, both in R&D networks of firms [5, 6] and

in co-authorship networks of scientists [7]. The existence of such communities also

impacts performance criteria [8, 9] and affect knowledge transfer [10, 11] and the

ability to innovate [12–14]. Other topological analyses focus on importance measures

to characterize nodes [15–17].

However, even the most refined topological characterization of collaboration net-

works can only constitute a first step toward their comprehensive and systematic

understanding. This has to include the mechanisms that shape the structure and

dynamics of such networks at the level of nodes, or agents. In particular, we need

to identify the rules, or strategies, that agents follow in choosing their collaboration

partners – such that at the end the observed collaboration networks emerge.

To combine the empirical analysis with a formal approach of the network for-

mation we have proposed data-driven modeling as a suitable methodology. It is,

for the application at hand, comprised of the following four steps: (a) proposition

of an agent-based model (ABM) that shall explain the formation of collaboration

networks, (b) reconstruction of the collaboration networks using the empirical data

from two different domains, (c) calibration of the free parameters of the ABM for

each domain by means of the empirical networks, (d) validation of the ABM for

each domain by reproducing network features not used for the calibration.

This leaves us with the question about agent-based models that are suitable for

being used in a data-driven approach. Some ABM rooted in economics propose a

utility function for an agent which weight costs and benefits of collaborations [12,

18]. Agents create or maintain links only if this mutually increases their utility, and

delete existing links otherwise. Such ABM allow to prove general features of, e.g.,

R&D networks such as sparseness or stability, dependent on certain cost functions.

But because of theoretical assumptions about the utility function and the partner

selection they cannot easily be calibrated against network data. Therefore, we have

developed an ABM in the context of R&D collaborations [19] which assumes simple

rules of link formation that are followed by agents with certain probabilities (see

Section 2 for details). Such probabilities can be calibrated against available network

data.
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In this paper, we build on the existing ABM [19] which was already applied

to R&D alliances [20, 21], but has not been extended to, or validated in, other

domains yet. Hence, the goal of this work is twofold. On the one hand, we want

to understand whether the same agent-based model can reproduce the topology of

both R&D and co-authorship networks. On the other hand, we want to identify

similarities and differences - at the microscopic level - with respect to the agents’

choice of collaboration partners. To the best of our knowledge no study has tried

yet to unify findings in these two domains and find systematic, reproducible and

universal patterns in collaboration networks. This investigation can also provide

some evidence to our initial conjecture whether there may be a unified modeling

approach for collaboration networks in different domains.

(a) (b)

Figure 1 Visualization of collaboration networks: (left) R&D alliances of firms, (right)
co-authorship relations of scientists. For the data sets see Section 3.1. We show the complete
R&D network with about 14 000 nodes and 21 000 links, but only a sampled co-authorship
network with about 11 000 nodes and 32 000 links (i.e. 10% of randomly chosen co-authors). For
both networks we use the layout algorithm of [22].

2 Agent-based model of collaborations
How do economic actors or scientists choose their collaboration partners? At first,

one would argue that scientists as decision makers are quite different from firms. In

addition, inside their respective domain, how they choose partners may very much

depend on the specific economic sector or scientific discipline. Thus, there is no

ad-hoc evidence that such a problem can be addressed using the same modeling

framework.

On the other hand, in order to reproduce a macroscopic structure such as a collab-

oration network, we may not need to include all the microscopic details that distin-

guish economic from social agents. Instead, an agent-based model should abstract

from these details, to capture only the essential features of the decision making

process. In this sense, we aim at an agent-based model that includes a minimalistic

set of microscopic rules. We argue that this agent-based model is correct if it is

able to reproduce a specific set of macroscopic properties of the different collabora-

tion networks, namely degree distribution, path length distribution, distribution of

community sizes, that are not used for the calibration of the model. At the same

time, the agent-based model has to provide degrees of freedom to allow a proper
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calibration to reflect the differences of the domains in their respective empirical

data.

In order to achieve this goal, this study utilizes a previously proposed agent-based

model [19] that has the above mentioned features. The model is flexible in that it

builds on five probabilities to capture the choice of agents for collaborating with

either established nodes or newcomers, which need to be calibrated. Obviously,

different sets of probabilities may match the same macroscopic features. In order

to distinguish between them, we adopt a Maximum-Likelihood approach that uses

the mean degree, the mean path length, and the global clustering coefficient of the

resulting collaboration network as quantities to be exactly matched.

In the model, agents represent nodes in a collaboration network and links between

nodes represent collaboration events. Each agent is characterized by two individual

attributes, activity ai and label li. Activity reflects the propensity to participate in

a collaboration, while label represents the membership of the agent in a recognized

“circle of influence”. In other words, it models the belonging of the firm or of the

scientist to different groups implicitly defined by shared practices and behaviors.

Such a membership attribute is in agreement with the analysis of real-world net-

works reported by [5? ]. The agent’s dynamics can be divided in two steps: first, the

agent decides with whom to link, which impacts the network topology and the size

of the network if a newcomer is chosen. Second, she adjusts her label, i.e. she keeps

her previous label if she already has one, or she adopts the label of the counterparty

if she is a newcomer, or she receives a new label, as discussed below.

Activation. The model is initialized by assigning individual activities ai to agents

which are sampled without replacement from the empirical distribution of activi-

ties (see Section 3.1). Hence, these activities are different for each agent and kept

constant in time for the simulation. Next, at each time step, we select an agent to

initiate a collaboration with probability pi proportional to its activity, pi = ηai,

where η is a rescaling parameter that we fix by imposing that
∑

i pi is equal to the

number of collaboration event empirically observed per day.

Non-labeled versus labeled agents. Activated agents can belong to two different

groups: (a) newcomers, if they never engaged in a collaboration before, or (b) estab-

lished agents, if they were already part of a previous collaboration. We distinguish

between these groups by means of the agent label li. Newcomers are non-labeled,

li = 0, whereas established agents get a label depending on their first collaboration,

li > 0.

Collaboration size. When an agent is activated, she initiates a collaboration. The

number of partners for her collaboration, mi, is obtained by sampling at random

from the empirical size distribution of collaborating groups (see Section 3.1). The

selection of partners is independent of the activity or other characteristics of the

agent.

Collaboration partners. Given the size of the collaboration, the initiator chooses

partners either from the group of newcomers or from the group of established agents.
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This choice also depends on the label of the initiator herself and can be expressed

by five probabilities. A labeled initiator links to another agent with the same label

with probability pLs , to an agent with a different label with probability pLd , or to an

agent without any label with probability pLn . If the initiator is a newcomer, i.e. non-

labeled, she links to an labeled agent with probability pNL
l and to another newcomer

with probability pNL
n . Because the probabilities have to sum up to one, we have two

constrains pLs + pLd + pLn = 1 and pNL
n + pNL

l = 1.

Link formation. The probabilities to choose collaboration partners only consider

the two groups, newcomers and established agents. To specify which of the specific

agents from these groups are chosen, we adopt the preferential attachment rule.

Precisely, the initiator i selects, among all agents from the specific group, agent j

as collaborator with a probability proportional to the degree kj of j. If the initiator

chooses a non-labeled agent (kj = 0) as collaborator, she will select uniformly at

random from all non-labeled agents. After selecting the mi partners, we link all of

them to the initiator, this way creating a clique of size m+ 1.

Label dynamics. In our model, agents are initialized as non-labeled agents, i.e.

they are considered as newcomers. An agent receives a label only when entering the

network (which may consist of disconnected communities). This can happen in two

different ways: either the agent initiates a collaboration, or the agent is chosen as

partner by an activated agent. In the first case, the agent gets a new label assigned

that was not used before. In the second case, the agent adopts the label from the

initiator of the collaboration. The label is a unique attribute of an agent, i.e. once

an agent has obtained a label, this cannot be changed.

Let us emphasize that labels are dynamically generated during the computer

simulations. This implies that the total number of distinct labels varies during each

simulation and from one simulation to another.

Figure 2 summarizes the agent-based model described above. It illustrates the

possible choices for the two different groups, newcomers and established agents. We

note again that this choice progresses in three steps: First, activated agents choose

(m times) between newcomers and established agents as partners. Subsequently,

if activated agents already have a label assigned, they have the choice between

the group with the same label or groups with a different label. Finally, within the

groups, agents choose their partners with respect to their degree. Obviously, the

number of agents in each group and the degree of agents change dynamically as the

network evolves.

3 Model calibration
3.1 Data sources

Our agent-based model, as already mentioned, will be calibrated and validated

against data sets from two different domains, covering inter-firm R&D alliances

and co-authorship of scientific papers. In the following, we describe the two data

sets and afterwards how they are used as input for the model.
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(a)

time t

+ dttime t

(b)

time t

+ dttime t

Figure 2 Two representative examples of collaboration selection and of label propagation. (a) A
labeled agent (whose label is depicted in green) is activated at time t and has to form an alliance
with m = 2 partners. She links to an agent having a different label (depicted in yellow) and one
non-labeled, at time t+dt. (b) Likewise, a non-labeled agent gets activated at time t and forms an
alliance with m = 2 partners. She links with one non-labeled agent and one labeled (yellow) agent
at time t+dt.

R&D network. To reconstruct the R&D network of collaborating firms we use SDC

Platinum database.[1] It contains data about approximately 672,000 announced al-

liances from all countries between 1984 and 2009 with daily resolution. The economic

actors participating in these alliances are of several types, e.g. investors, manufac-

turing firms and universities, but for simplicity we address them as firms. Each

actor listed in the data set is associated with a SIC (Standard Industrial Classi-

fication) code that allows us to unambiguously assign its corresponding industrial

sector. Further, the purpose of each alliance is characterized by various flags, e.g.

manufacturing, licensing, research and development (R&D). We restrict ourselves to

all alliances with the flag “R&D”, which gives us 14,829 alliances connecting 14,561

firms. The number of partners involved in each alliance can vary (see Section 3.2

for details). In most cases the alliance size is two, however it can also be three or

higher.

In order to reconstruct the R&D network, we focus on the time-aggregated data

set. Each firm engaged in a R&D alliance becomes a node and un-directed links con-

nect nodes involved in the same alliance. By adopting this procedure, the 14,829

R&D alliances result in a total of 21,572 links connecting 14,561 nodes. To com-

pare collaborations in different industrial sectors, we reconstruct six distinct R&D

networks for the six largest industrial sectors. According to our data set, these are

related to computer software, pharmaceuticals, R&D laboratory and testing, com-

puter hardware, electronic components and communications equipment. An alliance

is considered as part of a given sector if one of the collaborating firms has a matching

SIC code. The details for the sectoral networks are given in Table 1. Additionally,

we compare these sectoral networks with an aggregated R&D network, previously

analyzed by [19], which was obtained by considering all the R&D alliances together,

i.e. more than just the six largest industrial sectors.

[1]http://thomsonreuters.com/sdc-platinum/

http://thomsonreuters.com/sdc-platinum/
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Co-authorship network. To reconstruct the collaboration network of scientists, we

use the data set from the American Physical Society about papers published in any

APS journal, namely Physical Review Letters, Reviews of Modern Physics, and all

Physical Review journals. (APS).[2] From this data set we use the PACS[3] codes of

the papers to assign the papers to different research areas. We restrict ourselves to

six specific PACS codes (more details follow) and to the period from 1984 to 2009,

for which we use the time-aggregated data. By this, we analyze the same time range

for both the R&D and the co-authorship data.

This data set has the limitation that the authors are identified by strings which

often contain inconsistencies, e.g. missing special characters or spelling mistakes.

Thus, in order to really make use of the APS data set, we have to disambiguate

authors names in a separate, but time consuming, data processing. The latter in-

volves matching the titles of the papers in the APS data set with Microsoft Academic

Search (MSAS) service, where both papers and authors have unique identifiers. The

MSAS is a search engine which mines data from a bibliographic database contain-

ing information about scholars and their publications from 15 different disciplines.

We have used the Application Programming Interface (API) of MSAS to obtain

information about scholars publishing on APS. This way, we obtain a list of unique

authors that we can use.

It is worth noticing that the matching procedure at article level was not perfect.

About 27% of the articles were not matched. These unmatched articles often had

titles containing special characters needed to write latex formulas and/or Greek

letters. This problem affected mainly papers belonging to PACS 42. Among the

matched articles we have sampled at random 100 articles and checked the authors’

list. We have found these lists were correct 89% of the times. The most common

error was that one or two authors’ names were missing from the authors’ lists.

More details about the coverage of MSAS and the accuracy of the disambiguation

procedure are given in Appendix A.

To reconstruct the co-authorship network, each unique author is represented by

a node and links connect nodes that have co-authored at least one paper in the

aggregated data set. Following this procedure, the 73,000 papers listed in the data

set result in 300,000 links connecting 95,000 nodes.

At difference with the R&D networks, where firms are characterized by SIC codes,

authors are not associated with any classification. Authors can change their research

subject during their career, thus making a categorization on the author level diffi-

cult. Instead, the classification, i.e. the PACS number, is assigned to the links of the

network representing the papers. For this reason, we build co-authorship networks

of different fields by using the PACS numbers assigned to papers. In order to have

co-authorship networks comparable in size and density with the R&D networks,

we select the following six representative PACS numbers: 03 (quantum mechan-

ics, field theories and special relativity), 04 (general relativity and gravitation) 42,

(optics), 72 (electronic transport in condensed matter), 74 (superconductivity) and

89 (other areas of applied and interdisciplinary physics, that for example includes

network theory). We report the sizes of these networks in Table 1.

[2]http://www.aps.org/

[3]Physics and Astronomy Classification Scheme (PACS).

http://www.aps.org/
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N L Events 〈k〉OBS

Aggregated R&D network 14,561 21,572 14,829 2.74

Sectoral R&D networks

Pharmaceuticals (SIC 283) 3,829 6,019 5,277 3.14

Computer hardware (SIC 357) 1,582 4,047 2,672 5.12

Communications equipment (SIC 366) 1,133 2,726 1,888 4.81

Electronic components (SIC 367) 1,615 3,756 2,574 4.65

Computer software (SIC 737) 3,381 5,862 4,134 3.47

R&D, laboratory and testing (SIC 873) 3,188 5,364 4,032 3.37

Co-authorship networks

Quant. mech., field theories, spec. relativity (PACS 03) 21,501 56,111 19,647 5.22

General relativity and gravitation (PACS 04) 8,294 32,513 8,158 7.84

Optics (PACS 42) 27,436 94,961 20,105 6.92

Electronic transport in condensed matter (PACS 72) 19,492 55,818 11,687 5.73

Superconductivity (PACS 74) 14,920 52,615 10,541 7.05

Other applied and interdisciplin. physics (PACS 89) 4,881 8,777 2,873 3.60

Table 1 Number of nodes N , links L, collaboration events E and average degree 〈k〉OBS = 2L/N
for the aggregated R&D network, the six largest sectoral R&D networks, and the six representative
co-authorship networks. For all domains, we consider the respective cumulative networks, i.e. the
networks obtained by keeping all the links at any time.

3.2 Input quantities

Based on the two data sets, we now calculate the two empirical inputs needed for

our agent-based model, namely the size distribution of the collaboration events and

the activity distribution of the agents.

Size of collaboration events. In the SDC alliance data set, the size of a collaboration

event is the number of firms per R&D alliance, while in the co-authorship data set it

is the number of co-authors per paper. To study these, we analyzed the distributions

of partners per collaboration event, P (m), in both considered data sets.

With respect to our six sectoral R&D networks, we find that the size distribution

is right-skewed with values ranging between 2 and 20. It should be noted that the

identification of the functional form of these distributions (e.g., power-law, expo-

nential, log-normal and so on) is outside of the scope of this study, therefore we

leave it as a possible extension. Most of the collaborations are stipulated between

two partners, but some alliances – the so-called consortia – involve three or more

partners. In Figure 3 we report such distributions for two represetative industrial

sectors. Results for four more industrial sectors are presented in Appendix A, con-

firming that the right-skewed distribution holds for all sectoral R&D networks, with

only small differences in the tails of the respective distributions. These results are

in line with the ones presented in [19] for the aggregated R&D network.

Regarding the size of scientific collaborations, we find results similar to the R&D

alliances. I.e., most papers in our APS-MSAS data set have two co-authors with

a broad right-skewed size distribution for all PACS numbers investigated. From

our analysis, we have excluded all papers written by only one author because we

are interested in collaboration networks, whereas such papers would only generate

isolated nodes[4]. Also, in every economic data set on inter-firm alliances, a collab-

oration of size 1 could not exist by definition. Hence, to the purpose of comparing

[4]With this approach, we have excluded 11, 347 articles and 2, 359 authors from our

analysis.
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Figure 3 Distribution of the number of partners per alliance for two representative industrial
sectors: computer software (top left)) and pharmaceutics (top right), as measured from the SDC
data set. Distribution of the number of authors per paper for two representative co-authorship
networks: superconductivity (bottom left) and interdisciplinary physics (bottom right), as
measured from the APS-MSAS data set.

R&D and co-authorship networks, we do not consider single-author papers and the

size of the collaboration events starts from 2 in all of our plots. Figure 3 gives rep-

resentative examples from two PACS numbers. Differently from the sectoral R&D

networks, the co-authorship networks exhibit a larger degree of variability among

PACS numbers. This is due to the fact that the typical number of authors per

paper strongly depends on the field. To give an example, the field of applied and

interdisciplinary physics is characterized by significantly fewer authors per paper

(at most 10) than the field of general relativity and gravitation (whose right tail

reaches 55 authors per paper). In Figure 11 and Figure 12 in Appendix A, we show

the distribution of collaboration sizes for respectively the six sectoral R&D networks

and the six co-authorship networks.

Agents’ activity. This is one of the two key attributes assigned to agents in our

model. We apply a measure developed in the setting of temporal networks [23],

which has been already used to analyze various data sets [24–26], also in the context

of R&D and co-authorship networks [19, 27].

Following these approaches, we argue that activity reflects the propensity of an

agent to participate in a collaboration event. Precisely, we define the empirical

activity of an agent i at time t as the number of collaboration events, e∆t
i,t , involving

agent i during a time window ∆t ending at time t divided by the total number of

collaboration events, E∆t
t , involving any agent during the same period of time:

a∆t
i,t =

e∆t
i,t

E∆t
t

. (1)

For both the SDC alliance and APS-MSAS data sets, we measure the empirical

distribution of activity, P (a), for four different time windows, ∆t = 1, 5, 10 and 26.
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When the time window is shorter than 26 years (the entire data set observation pe-

riod), we compute the activity by shifting the time window in 1-year increments and

then we average the results. For simplicity, from now on, we will write a∆t=26years
i,2009

as ai, which is the activity over the longest time window. Interestingly, we find

that these distributions are independent of the size of the time window, which is

a robust feature for both R&D and co-authorship collaborations. In Figure 4, we

report these results for two representative sectoral R&D networks and two repre-

sentative co-authorship networks. For a visualization of the complete results for the

six sectoral R&D networks see [19] (Supplementary information) and for the six

co-authorship networks see Figure 13 in Appendix A.

Figure 4 Complementary cumulative distribution function (CCDF) of the empirical firm activities,
measured for two representative industrial sectors (from the SDC data set, [19] Supplementary
information), and of the empirical author activities, measured for two representative co-authorship
networks (from the APS-MSAS data sets). We considered for 4 different time windows ∆t of 1, 5,
10 and 26 years.

3.3 Implementation and optimal model selection

To reproduce the collaboration networks from the two domains, we implement the

agent-based model described in Section 2. For the simulations, we take the number

of agents, N , and the total number of collaboration events, E, from the respective

empirical networks. The two input parameters, size of the collaboration event, mi,

and agent activity, ai, are obtained by sampling from the above distributions, P (m)

and P (a). With that, the only free parameters in our model are the five probabilities

pLs , pLd , pLn , pNL
n , pNL

n which we vary in order to find which combination gives the

best match between the simulated and the observed network. For more information

about the exploration of the parameter space see Appendix B. For the comparison

we use the following quantities: average degree, 〈k〉, average path length, 〈l〉, and
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global clustering coefficient, C, and define the respective relative errors ε〈k〉, ε〈l〉
and εC between the observed and the simulated quantities. We require that these

errors have to be smaller than a threshold ε0. For all probability combinations we

perform 25 simulations. We then select the combination that gives us the highest

fraction of networks that match the criterion ε < ε0. The optimal probabilities are

indicated using a star (e.g. p∗Ls ).

p∗L
s p∗L

d p∗L
n p∗NL

l p∗NL
nl

Aggregated R&D network 0.30 0.30 0.40 0.75 0.25

Sectoral R&D networks

Pharmaceuticals (SIC 283) 0.35 0.35 0.30 0.80 0.20

Computer hardware (SIC 357) 0.55 0.30 0.15 0.90 0.10

Communications equipment (SIC 366) 0.75 0.15 0.10 0.80 0.20

Electronic components (SIC 367) 0.65 0.20 0.15 0.90 0.10

Computer software (SIC 737) 0.55 0.20 0.25 0.95 0.05

R&D, laboratory and testing (SIC 873) 0.40 0.40 0.20 0.20 0.80

Co-authorship networks

Quant. mech., field theor., spec. relativity (PACS 03) 0.85 0.05 0.10 0.45 0.55

General relativity and gravitation (PACS 04)† 0.50 0.05 0.45 0.05 0.95

Optics (PACS 42) 0.60 0.05 0.35 0.35 0.65

Electronic transport in condensed matter (PACS 72) 0.50 0.05 0.45 0.30 0.70

Superconductivity (PACS 74) 0.55 0.05 0.40 0.35 0.65

Other applied and interdisciplin. physics (PACS 89) 0.65 0.05 0.30 0.25 0.75

Table 2 Optimal sets of probabilities to simulated the collaboration networks. The optimal
probabilities are indicated using ∗. Recall that the probability of a labeled agent to select an agent
with the same label is pLs , to select an agent with a different label is pLd and to select a non-labeled

agent is pLn . While, the probability of a non-labeled agent to select a labeled agent is pNL
l and to

select a non-labeled agent is pNL
nl . The probabilities pLs , pLd and pLn sum up to 1; likewise, pNL

l and

pNL
nl sum up to 1.
† Only for the co-authorship network in general relativity and gravitation (PACS 04) the model is unable to
generate a network matching all the three measures 〈k〉, 〈l〉 and C at the same time. Only 〈l〉 and C can be
retrieved with an accuracy of 30%, while the generated 〈k〉 is not compatible with the empirical measure. Even
though we report these values for completeness, they cannot be considered representative of the real network.

In Table 2 we report the optimal set of probabilities for the collaboration networks

from the two different domains. The network simulated using the optimal set of

probabilities will be named optimal simulated networks. In Table 3 in Appendix

B, we report the 〈k〉, 〈l〉 and C of the optimal simulated networks and they can

be compared with the respective values for the observed networks. With this, we

are set for the validation of our agent-based model which of course has to include

features of the network that were not used for the calibration of the model.

4 Model validation
4.1 Reproducing four distributions

To validate our agent-based model, we compare the empirical networks with the

statistical properties of the simulated ones using the optimal set of probabilities.

For the comparison, we use macroscopic features such as distributions of degrees,

path lengths, local clustering coefficients and sizes of the disconnected components.

Additionally, we also investigate microscopic, or agent centric, features such as

labels. The validation procedure is similar to the one described in [19]. To validate

the above mentioned distributions, we emphasize that for the calibration we did

not use information about the distributions, but only about the respective average

values, 〈k〉, 〈l〉 and C, to calculate the relative errors.



Tomasello et al. Page 12 of 27

Figure 5 and Figure 6 show these distributions for one representative sectoral R&D

network and one co-authorship network. We observe a remarkable match between

the simulated and the empirical distributions for all four quantities. In particu-

lar, the model reproduces the emergence of a giant component in both networks,

together with many smaller components down to size two.
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Figure 5 Distributions of node degrees (a), path lengths (b), local clustering coefficients (c) and
component sizes (d) for the real and the 25 optimal simulated networks in “Pharmaceuticals”(SIC
code 283). The blue circles in our plots correspond to the mean values and the error bars
correspond to the standard deviations of all the quantities we analyze on the 25 realizations of
each optimal simulated collaboration network. In many cases, the error bars are not visible,
because the values are very narrowly distributed across these 25 realizations.

4.2 Community structures and groups of influence

The second part of our validation regards the modular structure of the collabo-

ration networks in terms of communities. We start by evaluating and comparing

the community structure of the observed networks and of the simulated ones using

the optimal set of probabilities. Then, we verify that the groups of influence de-

fined by the agents’ labels well reproduce the community structure of the simulated

networks.

Community structure of empirical and simulated networks. To detect the com-

munity structure in the observed networks, we employ a widely used algorithm,

Infomap [28], which is based on the probability flow of random walks on networks.

In Table 4 in Appendix C, we report the number of communities found in each net-

work. In Figure 7 (a), we give a visual representation of the respective communities

in the co-authorship network in applied and interdisciplinary physics.

In order to quantify the goodness of the community partitions detected by

Infomap, we use a normalized modularity score Q. This coefficient is equal to 1

when all links connect only nodes belonging to the same community, equal to 0 for

a network where links are placed randomly, and equal to -1 when links are formed

only among nodes populating distinct communities. Interestingly, we find that all

the R&D and co-authorship networks are characterized by a high modularity as



Tomasello et al. Page 13 of 27

(a) k
P

(k
)

1 2 5 10 20 50 100 200

10
−4

10
−3

10
−2

10
−1

1

●
● ●

●
●

●●

● ●
●

●

●
●

●

●

●

● ●

●

● Optimal simulated network
Real network

(b) l

P
(l)

1 3 5 7 9 13 17 21 disconnected

10
−8

10
−6

10
−4

10
−2

1

●
●

●
●

●
● ● ● ● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

● Optimal simul. network
Real network

(c)
0.0 0.2 0.4 0.6 0.8 1.0

c

P
(c

)
10

−4
10

−3
10

−2
10

−1
1

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

● Optimal simulated network
Real network

(d) component size

P
 (

co
m

po
ne

nt
 s

iz
e)

2 5 10 50 200 1000

10
−4

10
−3

10
−2

10
−1

1

●

●
●

●

●●

● ●

●

●

●

●

●

● ●

●

● Optimal simulated network
Real network

Figure 6 Distributions of node degrees (a), path lengths (b), local clustering coefficients (c) and
component sizes (d) for the real and the 25 optimal simulated networks in applied and
interdisciplinary physics (PACS number 89).

reported in Table 4 in Appendix C. Precisely, all the Q scores for partitions origi-

nated by Infomap are significantly higher than the equivalent scores on randomly

generated networks with the same degree sequence, especially in the domain of co-

authorship networks. We can safely conclude that our high Q values are indicative

of a real modular structure, and not a simple artifact of the network’s size and

density[29].
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Figure 7 Co-authorship network in applied and interdisciplinary physics (PACS number 89).(a)
Visual representation of the empirical network, considering only the 30 largest clusters detected by
the Infomap algorithm. Distinct clusters are represented by grouping nodes in distinct regions of
the plot area. (b) Visual representation of one realization of the simulated network, considering
only the 30 largest clusters detected by the Infomap algorithm. Distinct clusters are represented
by node groups in distinct regions of the plot area. In addition, we depict our node labels by using
different colors: most of the nodes in a given cluster share the same label.

To detect communities structure on the simulated networks, we employ the same

procedure we have described above. We visualize the partitioning detected for the

co-authorship network in other applied and interdisciplinary physics in Figure 7

(b). The simulated distributions of clusters size match their empirical counterparts,

which is far from being trivial given that no information about the community
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structure was used for the calibration. We report this result for the “Pharmaceuti-

cals” R&D network in Figure 8 (a), and for the co-authorship network in applied

and interdisciplinary physics in Figure 8 (b).
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Figure 8 Size distribution of i. the circles of influence in the 25 realizations of the optimal
simulated network, ii. the Infomap clusters in the 25 realizations of the optimal simulated network
and iii. the Infomap clusters in the empirical network for “Pharmaceuticals” (SIC code 283) (a)
and “Applied and interdisciplinary physics” (PACS number 89) (b).

Another evidence of their similarity is the modularity score of the optimal sim-

ulated networks – Q∗ = 0.61 ± 0.01 for the Pharmaceuticals R&D network, and

Q∗ = 0.87± 0.01 for the co-authorship network in interdisciplinary physics. These

values are close to their empirical equivalents, 0.62 and 0.92 respectively. In all

cases, the modularity scores are significantly greater (with a p-value computation-

ally indistinguishable from zero) than the ones obtained for a set of 100 randomly

generated networks with the same degree sequence, proving that the obtained mod-

ularity cannot be expected or explained simply with the degree sequence.

Community structure using the agents’ labels. In order to estimate the overlap

between the communities detected using the Infomap algorithm and the group of

influence defined by our agents’ labels, we use the normalized mutual information

coefficient Inorm [30]. We find that labels are actually able to reproduce the commu-

nity structures of collaboration networks coming from both the economic and the

scientific domains. Inorm(Labels, Infomap clusters) = 0.887 ± 0.003 for the “Phar-

maceuticals” R&D network, and Inorm(Labels, Infomap clusters) = 0.952 ± 0.002

for the co-authorship network in interdisciplinary physics. This result is even more

remarkable if we consider that the Infomap algorithm detects structural clusters

based on the probability flow of random walks in the network, while our label prop-

agation mechanism consists of an assignment of a fixed membership attribute –

which is not only closer to a real phenomenon, but also computationally easier.

4.3 Distribution of path lengths at link formation

Finally, we compare the empirical and the simulated networks with respect to the

distribution of path lengths between every pair of agents at the moment preceding

the link formation. This is different from the distribution of path lengths analyzed

before, which was computed on the time-aggregated networks. Now we are inter-

ested to know whether agents preferably form links with agents already part of

the same connected component or with agents from another component or with

newcomers. The respective distribution of link types is shown in Figure 9 for the
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“Pharmaceuticals” R&D network, and in Figure 10 for the co-authorship network in

interdisciplinary physics. In all cases, there is a higher number of links with agents

inside the same connected component or with newcomers. We emphasize the very

good match between the empirical and the simulated frequencies of link types.
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Figure 9 Temporal path length analysis for “Pharmaceuticals” R&D network (SIC code 283) . (a)
Distribution of link types for empirical and simulated networks: “newcomer(s)” means that at
least one of the agents was isolated (i.e. not yet part of the network) before the link formation;
“disconnected” refers to agents already belonging to the network, but placed in two disconnected
components; “connected” refers to agents already belonging to the same network component
prior to the link formation. (b) Distribution of path lengths at the moment of link formation (only
for agents belonging to the same connected component).

For links connecting agents which are already in the same connected component

we can further discuss the network distance, or path length between two agents. It

is interesting whether agents at larger network distances are still able to know each

other and to form a link. Trivially, agents at distance 1 have already a collaboration

(and can start a new one), whereas agents at distance 2 have one collaborator in

common (triadic closure). We report our findings about the path length between

agents before they engage in a collaboration in Figure 9 for the “Pharmaceuticals”

R&D network, and in Figure 10 for the co-authorship network in interdisciplinary

physics. We see that in the case of R&D networks agents preferably choose close col-

laborators for a new collaboration (path length up to 5), whereas for co-authorship

networks agents prefer previous collaborators or collaborators at distance 2.

Let us emphasize that our model well reproduces two important characteristics

of collaboration networks: the high number of repeated interactions and the phe-

nomenon of triadic closure. These are known to have a positive impact on produc-

tivity [31] and to be a driving force in the formation of new collaborations [7]. This

result is far from being trivial as we have not included neither ad hoc microscopic

rules nor information to reproduce such characteristics.

In conclusion, the model correctly predicts the formation of links between agents

irrespectively of whether they are already in the same network component and gives

an exact calculation of the shortest path length at the moment of link formation. In

addition, it well captures repeated interactions and the triadic closure phenomenon

without using any ad hoc microscopic information.

5 Discussion and Conclusion
Commonalities in collaboration networks. In the present paper, we have explored

the structure and dynamics of collaboration networks in two different domains, R&D

alliances between firms and co-authorship relations between scientists. Despite their
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Figure 10 Temporal path length analysis for the co-authorship network in applied and
interdisciplinary physics (PACS number 89) . (a) Distribution of link types for empirical and
simulated networks: “newcomer(s)” means that at least one of the agents was isolated (i.e. not
yet part of the network) before the link formation; “disconnected” refers to agents already
belonging to the network, but placed in two disconnected components; “connected” refers to
agents already belonging to the same network component prior to the link formation. (b)
Distribution of path lengths at the moment of link formation (only for agents belonging to the
same connected component).

different origin, these collaboration networks share a number of common features

that can be even found on the sub-domain level (SIC and PACS numbers). These

empirical features include the right-skewed distribution of collaboration sizes (Fig-

ure 3), the distribution of activities to engage in a collaboration (Figure 4) which

are very stable across domains and over time, the pronounced community structure

of the networks and the existence of a giant-connected component (Figure 7).

These commonalities motivated us to use the same agent-based model to explain

the structure and dynamics of these collaboration networks. Precisely, we have com-

pared the outcome on the systemic level, i.e. the networks simulated by the agent-

based model and the observed networks, to conclude whether our assumptions for

the interactions on the agent level are justified. We remark that reproducing sys-

temic features along very different dimensions indeed lends evidence to the validity

of our agent-based model, because it cannot simply be obtained by a fitting pro-

cedure. Specifically, our model is able to reproduce the distributions of degree, of

path length, of local clustering coefficients, of component sizes and of path lengths

between every pair of agents at the moment of link formation, without imposing

any constraints on these features during the calibration procedure.

Strategies of agents choosing collaboration partners. The agent-based model builds

on five probabilities to form a link with another agent, which depend on the label of

the initiator (newcomer vs. established agent) and on the counterparty (newcomer

vs. established agent with the same or a different label). These agent-centric prob-

abilities are calibrated using only three macroscopic features of the empirical net-

works (mean values of degree, path length and clustering coefficient). Remarkably,

we find that these probabilities have very similar values, regardless of the domains

(R&D networks vs co-authorship networks) and the sub-domains (SIC and PACS

numbers).

Interpreting these probabilities as strategies of an agent to choose a collaboration

partner, we can obtain the following insights:

(i) For all R&D and co-authorship networks, established agents prefer to form

links with other established agents (p∗Ls + p∗Ld > 55%).
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(ii) When forming a link with an established agent, the initiator tends to select a

counterparty with the same label, i.e. belonging to the same community (p∗Ls ≥ p∗Ld ).

Comparing the two domains, we find that this general tendency is 10 times larger

in co-authorship networks. The probability to select a co-author from a different

community p∗Ld equals the lowest possible value, 5%, in all cases.

(iii) A difference between domains is observed in the strategy of the newcomers.

For R&D networks, newcomers tend to enter the network by forming links with

established agents (p∗NL
l > p∗NL

nl ). This finding is consistent with empirical evidence

[5, 32]. However, for all co-authorship networks newcomers tend to enter the network

by forming links with other newcomers (p∗NL
nl > p∗NL

l ). So, the fact that p∗NL
nl ≥ 0.55

in co-authorship networks clearly supports this hypothesis.

The difference in the strategies of newcomers in R&D and co-authorship networks

can be attributed to the higher entry barriers in economic systems compared to

academic environments. An exception from these general observations can be only

found for one sectoral network “R&D, laboratory and testing”, where the strategies

of newcomers are more like in co-authorship networks. We attribute this deviation

to the high technological dynamism in this sector.

Network-endogenous and -exogenous factors. Following the distinction in the liter-

ature [5] we argue that the strategies of agents in choosing their collaboration part-

ners are determined by both endogenous and exogenous factors. These are known

to be crucial in the formation and evolution of the R&D alliances [5]. However, they

have been usually considered separately by empirical and theoretical works [21, 32?

–34], and to our knowledge no study has analyzed their importance in co-authorship

networks.

Network-endogenous factors cover the information that the initiator has about the

network, for instance information about the network position (i.e. social capital) of

its potential partners. Thus, these factors take into account collaboration patterns

already present in the networks. These factors are captured by the probabilities to

link to a labeled agent, pLs , pLd and pNL
l . Network-exogenous factors do not consider

such information, but instead use external information such as the technological,

scientific or geographical proximity of the agents. These factors are captured by the

probabilities to link to a newcomer, pLn and pNL
nl .

Comparing the two types of factors, we find that network-endogenous factors are

predominant in the formation of new collaborations in each of the collaboration

networks analyzed in this study. In other words, the existing network structures

explain most of the newly formed links. In terms of linking probabilities, this means

that p∗Ls +p∗Ld +p∗NL
l is always bigger than p∗Lnl +p∗NL

nl (where ∗ refers to the optimal

probability) for all sectoral R&D networks and co-authorship networks. This result

is also in line with the empirical finding [35, 36] that firms in R&D networks prefer

to establish alliances with other firms which have an history of previous alliances.

Reconstruction of communities by means of labels. In our model, labels represent

the fact that agents belong to certain communities. This way, newcomers and es-

tablished agents can be distinguished. Moreover, different labels allow to further

differentiate between groups of agents with a certain interest. The label dynamics

explained in Section 2 provides a mechanism of label propagation.
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We point out that our assumption about the label attribute is in agreement with

the results reported by [? ], that have identified the presence of communities based

on ground truth in real networks. Such communities include nodes that do not nec-

essarily share features such as the same geographical provenience, or the belonging

to the same institution. They are rather defined dynamically, through consecutive

interactions and link formation. The same reasoning holds for both R&D and co-

authorship networks, where communities of collaborating agents do not depend on

their geographical or knowledge distance, but are defined by the subsequent prop-

agation of a (virtual) membership attribute, which is the “label”.

It is remarkable that this rather abstract setup for labels is indeed able to repro-

duce the distributions of communities present in the collaboration networks from

both domains (see Figure 8). The overlap in communities, measured through a nor-

malized mutual information criterion, is around 90% for all collaboration networks.

In Table 4 in Appendix C, we have shown that such community structure can-

not be expected at random from the degree sequence. Thus, we can conclude that

labels represent a simple and elegant way to capture various network-endogenous

factors which drive agents in both domains, R&D collaborations and co-authorship

networks, to form communities. While the existence of communities is an empir-

ical fact, the rules for their formation are not fully understood. With this work,

we provide evidence that such rules can be inferred from the empirical networks

and are not only able to reproduce the community structure, but also other, more

sophisticated features of the networks.
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Appendix A
Empirical distribution of event sizes

We report the distributions of partners per collaboration event for the two analyzed

data sets. In the R&D network, this quantity represents the number of firms per

R&D alliance, and in the co-authorship network the number of authors per paper.

Four representative distributions (two from each domain) were shown in Figure 3

in Section 3.1.

Most of the collaborations (93%) are stipulated between two partners, but some

alliances – the so-called consortia – involve three or more partners. These features

are found also when considering separately the six largest industrial sectors with

only small differences in the tails of the respective distributions. The plots of the

distributions for the six largest industrial sectors are in Figure 11.

In Figure 12 we report the size distribution of collaboration events for the different

PACS number. Let us point out that in the General relativity and gravitation the

observed strong increase of number of papers co-authored by about 50 people is

an artifact of the data set. As a matter of fact, we recognize that papers produced

by large international collaborations, such as LIGO, may have many more than 50

co-authors, but their author lists have been cut to a maximum of 55 co-authors.

For most fields, this does not play any role since few papers are produced by such

large collaborations. PACS 04 (General relativity and gravitation) is an exception

and we argue that this missing information makes the ABM unable to reproduce

with good precision the network structure (see Section 5 in Appendix C).

Empirical distribution of activities

We report the distribution of activities for all our representative co-authorship net-

works in Figure 13. As discussed in Section 3.1, this distribution are not dependent

of the chosen time window and always show a right-skewed distribution. Note that

http://dx.doi.org/10.1073/pnas.1501444112
http://www.pnas.org/content/112/34/E4671.full.pdf
http://dx.doi.org/10.1126/science.aaf5239
http://science.sciencemag.org/content/354/6312/aaf5239.full.pdf
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Figure 11 Distribution of the number of partners per alliance for the six largest industrial sectors,
as measured from the SDC data set.
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the distribution of activities for the six sectoral R&D networks are already reported

in [19] (Supplementary information).
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Figure 13 Complementary cumulative distribution function (CCDF) of the empirical , measured
for the six selected co-authorship networks in the APS-MSAS data set with 4 different time
windows ∆t of 1, 5, 10 and 26 years.

Coverage of MSAS and accuracy of the author disambiguation procedure

The number of papers listed in the APS data are 463, 347 between 1893-07-01 and

2009-12-31. When restricting to the time range between 1984-01-01 and 2009-12-31,

we have 336, 081 papers. To retrieve authors we searched and matched the article

titles listed in the APS data in MSAS. When an article listed in the APS data was

found in MSAS, we were taking the authors name reported in MSAS. We matched

about 336, 405 articles between 1893-07-01 and 2009-12-31 and 243, 343 between

1984-01-01 and 2009-12-31.

When considering only PACS 03, 04, 42, 72, 74 and 79 between 1984-01-01 and

2009-12-31, we have about 100, 000 distinct articles in the APS data set. By using

the titles of these 100, 000 articles and MSAS, we matched about 73, 000 articles,

i.e. about the 73% of them. Thanks to MSAS, we also obtained the authors’ names

and authors’ unique identification number of these articles, 95, 000 distinct authors.

Among these authors we have calculated about 300, 000 co-authorship links. We do

not have the co-authorship links for the APS data by itself as we have not used

its authors’ information. As mentioned in the Sect. 3, in the APS data the authors

name are given as strings and are not disambiguated. Hence, they cannot be used

to reconstruct the collaboration network.

The coverage of MSAS was not perfect as we did not match about 27% of the

papers. For 100 of these unmatched papers we have manually checked the ti-

tles. We have found that 80% of the titles contained special characters, such as

round/squared parenthesis, Greek letters and/or the symbols and ˆ. When man-

ually checking 100 matched titles, only 5% of the them contained such special

characters. Therefore articles containing the above mentioned special characters
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were often not matched. This problem affected principally paper of belonging to

the field of superconductivity (PACS 42). From this PACS only 47% of the articles

were matched. We also find a negative correlation of -0.46 between the fraction of

articles matched with the year in which they were printed. This means that older

paper in our time period were matched more easily compared to newer ones.

To check the accuracy of the disambiguation procedure at author level, we have

manually verified the authors’ list for 100 articles. We have found that it was correct

for 89 articles and for the remaining 11 articles the errors were the following: For

2 single-authored articles the authors’ names were split in two (resulting as two

distinct authors), for 1 article there was an extra author in the author list, for 2

articles there were two missing authors and for 6 articles there was one missing

author. In addition, similarly to [37] we have sampled 50 pairs of matched articles

(in total other 100 articles) assigned to the same author. We manually checked how

many times the pairs were correctly assigned to the same author by looking at

scholar profiles, institution websites, coauthors lists, etc. We find that 88% of the

pairs correctly correspond to the same author, 6% of the pairs were incorrect and

for the remaining 6% we were not able to determine if they were correctly assigned

or not to the same author. In other words, for this last 6% we could not determine

if both articles had a common co-author or not.

Appendix B
Exploration of the parameter space

In Section 3.3, we have discussed how we simulate the collaboration networks and

how select the optimal set of probabilities from the simulations. Here we would like

to give some details about the simulations. For each of the examined collaboration

network, we explore the parameter space by varying the values of pLs ,pLd and pNL
nl

between (0,1) by steps of 0.05. Since pLs and pLd are the probabilities of two mutually

exclusive events, we also have to consider the condition pLn = 1− pLs − pLd > 0. This

procedure gives 1/0.05−1 = 19 values for pNL
nl and (1/0.05−1)(1/0.05−2)/2 = 19∗

18/2 combinations of values for (pLs , p
L
d ) creating a parameter space made of 3,249

points. Thus, to explore the parameter space requires a remarkable computational

effort because each of the 12 collaboration networks originates a parameter space

composed of 3,249 points, for each of which we run 25 computer simulations – for

a total of around 1 million simulations.

Average degree, path length and clustering coefficient for observed and optimal

simulated networks

In Table 3, we report the average degree 〈k〉, average path length 〈l〉 and global

clustering coefficient C for the empirical networks and for the simulated ones using

the optimal set of probabilities. We also report the considered threshold. It should

be noted that – given the extreme variability of the networks we test, in terms of

size, density and modularity – we are forced to adjust the error threshold value

ε0 [19], in order to find a meaningful number of parameter configurations that are

able to reproduce the empirical network with a precision ε0. In particular for some

co-authorship networks, we are not able to retrieve 〈k〉, 〈l〉 and C with an accuracy

as low as 2% (which we could achieve for the time-aggregated R&D network, [19]).
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Figure 14 Pearson-correlation coefficients and scatter plots between the calibration errors, ε0, and
4 macroscopic properties of the analyzed networks: number of nodes, N (top left), number of
links, L (top right), average path length, < l >OBS (bottom left) and global clustering
coefficient, COBS (bottom right). The dots in red and blue are respectively the R&D and the
co-authorship networks.

However, all the values we obtain for our simulated networks are fairly accurate and

deviate from the empirical values by less than 12%. The only exception is repre-

sented by the co-authorship network in the field of general relativity and gravitation

(PACS number 04), for which the model fails to generate a network matching all

the three measures 〈k〉, 〈l〉 and C at the same time. We argue that this is due to

incomplete information in our data set and the consequent arising of a bimodal

distribution of the number of partners per collaboration – or, precisely, authors per

paper – in this scientific field. Thus the linking probabilities and all the other results

associated to this co-authorship network cannot be considered representative of the

real network.

We have verified that the time window used to aggregate the co-authorship data

does not affect the final results. To do this we have calibrated the agent-based model

for five different beginnings of the observation period (from 1983 to 1988), and the

results remained qualitatively unchanged.

As final remark, we find that our model has greater calibration errors for the

co-authorship networks than for the R&D networks. This happens because the co-

authorship networks are larger (i.e., more nodes and links), and have more compli-

cated topologies (i.e., larger path lengths and higher global clustering coefficients).

Hence, the model has to reconstruct more complicated topologies. As further check,

in Fig. 14 we report the Pearson-correlation coefficient and the scatter plot between

the calibration errors and 4 macroscopic properties of the analyzed networks (num-

ber of nodes, number of links, average path length and global clustering coefficient).

We find that the Pearson-correlation is always positive and greater than 0.70. This

indicates that the model performs worst when it has to reconstruct more compli-

cated topologies. From this analysis, we have excluded the co-authorship network

of PACS 04 as the ABM failed to reproduce such network.
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〈k〉OBS 〈l〉OBS COBS ε0 〈k〉∗ 〈l〉∗ C∗

Aggregated R&D network 2.74 5.41 0.101 2% 2.76 5.33 0.098

Sectoral R&D networks

Pharmaceuticals (SIC 283) 3.14 4.94 0.097 2% 3.13 4.95 0.097

Computer hardware (SIC 357) 5.12 3.70 0.161 6% 5.37 3.59 0.175

Communications equipment (SIC 366) 4.81 3.75 0.203 2% 4.83 3.76 0.210

Electronic components (SIC 367) 4.65 3.80 0.168 2% 4.76 3.83 0.174

Computer software (SIC 737) 3.47 4.33 0.138 3% 3.56 4.27 0.141

R&D, laboratory and testing (SIC 873) 3.37 5.15 0.205 3% 3.30 5.22 0.200

Co-authorship networks

Quantum mechanics, field theories, special relativity (PACS 03) 5.22 6.43 0.379 12% 5.83 5.58 0.392

General relativity and gravitation (PACS 04) 7.84 6.27 0.666 > 30% 16.64 4.39 0.535

Optics (PACS 42) 6.92 6.40 0.425 10% 7.60 5.79 0.451

Electronic transport in condensed matter (PACS 72) 5.73 7.06 0.448 8% 6.15 6.58 0.471

Superconductivity (PACS 74) 7.05 5.87 0.443 7% 7.51 5.51 0.465

Other areas of applied and interdisciplinary physics (PACS 89) 3.60 8.28 0.462 8% 3.82 7.82 0.501

Table 3 Summary of average statistics for the empirical and optimal simulated networks. For the

empirical collaboration networks, we report the average degree, 〈k〉OBS, average path length, 〈l〉OBS,
and global clustering coefficient, COBS. For optimal simulated network network, we report the mean
values over the 25 network realizations of average degree, 〈k〉∗, average path length, 〈l〉∗ and global
clustering coefficient, C∗. We also report the error threshold or accuracy ε0.

Appendix C
Modularity for the empirical collaboration networks

In Table 4, we report the number of communities detected by Infomap on the em-

pirical networks and the normalized modularity score Q for the empirical networks

given the Infomap partitions. These values should be compared to the normalized

modularity score Qrand obtained from a set of 100 randomly generated networks

using the degree sequence from the empirical networks. On each of the random

network we have detected cluster of nodes using Infomap and computed the nor-

malized modularity. Thus, Qrands reported in 4 are the mean normalized modularity

scores from the 100 randomly generated networks for each sub-domain with their

respective variance. As discussed in Section 4.2, the modularity scores of the empir-

ical networks are always higher than the ones coming from the randomly generated

networks indicating that the detected modular structure is not an artifact of the

degree sequence.
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Clusters Q Qrand

Aggregated R&D network 3,561 0.679 0.570 ± 0.001

Sectoral R&D networks

Pharmaceuticals (SIC 283) 860 0.607 0.438 ± 0.002

Computer hardware (SIC 357) 783 0.623 0.502 ± 0.002

Communications equipment (SIC 366) 749 0.653 0.461 ± 0.002

Electronic components (SIC 367) 302 0.502 0.311 ± 0.002

Computer software (SIC 737) 354 0.531 0.333 ± 0.002

R&D, laboratory and testing (SIC 873) 256 0.527 0.317 ± 0.003

Co-authorship networks

Quant. mech., field theories, spec. relativity (PACS 03) 3,029 0.779 0.2344 ± 0.0004

General relativity and gravitation (PACS 04) 1,207 0.795 0.128 ± 0.016

Optics (PACS 42) 2,853 0.794 0.195 ± 0.002

Electronic transport in condensed matter (PACS 72) 2,411 0.832 0.2609 ± 0.0004

Superconductivity (PACS 74) 1,663 0.769 0.208 ± 0.003

Other applied and interdisciplin. physics (PACS 89) 966 0.920 0.395 ± 0.001

Table 4 Modular properties for the aggregated R&D network, the six largest sectoral R&D networks,
and the six representative co-authorship networks. For all domains, we consider the respective
cumulative networks, i.e. the networks obtained by keeping all the links at any time. For each network,
we report the number of clusters detected by the Infomap algorithm, the modularity score Q of the
network, and (as robustness check) the modularity score Qrand obtained in a set of 100 randomly
generated networks with the same size and degree sequence as the network under examination.
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