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Abstract The structure of societies depends, to some extent, on the incentives of the indi-
viduals they are composed of. We study a stylized model of this interplay, that suggests that
the more individuals aim at climbing the social hierarchy, the more society’s hierarchy gets
strong. Such a dependence is sharp, in the sense that a persistent hierarchical order emerges
abruptly when the preference for social status gets larger than a threshold. This phase tran-
sition has its origin in the fact that the presence of a well defined hierarchy allows agents to
climb it, thus reinforcing it, whereas in a “disordered” society it is harder for agents to find
out whom they should connect to in order to become more central. Interestingly, a social
order emerges when agents strive harder to climb society and it results in a state of reduced
social mobility, as a consequence of ergodicity breaking, where climbing is more difficult.

Keywords Social networks · Phase transitions · Game theory

1 Introduction

The emergence of social elites has interested social scientists ever since Pareto’s observation
of persistent inequalities in our societies [17]. Inequality is acceptable if it results from
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differences of individuals in terms of their capabilities, but not if it results, in one way
or another, from discrimination.1 Not only discrimination conflicts with ethical principles
that all individuals are a priori equal and should have access to the same opportunities. It
also damages societies in terms of efficiency [21] as it hampers social mobility, preventing
society from promoting individuals to positions in the social hierarchy that are consistent
with their capabilities.

We introduce the social climbing game, a highly stylized model of a society, where indi-
viduals attempt to optimize their position in the network, by becoming as central as possible.
The assumptions of the model are rooted on empirical and theoretical evidence coming from
the social sciences. There, in the early years of network analysis, it was found that the im-
portance of an individual within a network is related to some quantification of how central
[3, 25] this agent is. There exist different metrics which measure the centrality of a node
(among others: degree, betweenness, closeness, eigenvector) [10], each one highlighting
different facets of this generic concept.

Among the empirical analyses, there is a body of literature showing that centrality ex-
plains the role, importance, or payoffs of the agents constituting the network: in informal
structures within organizations, the importance of people is related to their betweenness
centrality [7]; students with an higher centrality in the friendship network were found to
perform better in education tests [8].2 From the theoretical side, Ref. [2] shows that in a
broad class of games, player’s payoffs increase with their (Bonacich) centrality [6] in the
network. Because of this, if individuals can alter their neighborhood, the myopic best re-
sponse strategy is simply to connect to the neighbor who increases their centrality the most.

Interestingly, Köenig et al. [13] have shown that when individuals strive to be as central
as possible, the exact measure of centrality is irrelevant, and the dynamics yields a network
which has the property of nestedness: the neighborhood of any node contains the neigh-
borhood of the nodes which have a lower degree. In this kind of networks, the ranking of
nodes according to their centrality is the same, regardless of the centrality measure consid-
ered [12]. Remarkably, nested structures have been found in inter-organizational networks
of research and development (R&D) alliances [20, 24], in interbank payment networks [22]
and in firm competition under oligopolies [11]. This kind of structures will be precisely the
ones emerging in the social climbing game. In this respect, our results confer stability to
those of Ref. [12] and generalize them in non-trivial ways.

This study suggests that the assumption that individual freedom promotes social mobility
is a non-trivial one. This is because the structure of a society, while constraining the set of op-
portunities that are available to individuals, depends on the very incentives of individuals in
complex ways. In this paper we show that this interplay may produce very “rigid” societies,
with extremely low social mobility, characterized by persistent inequalities between a priori
equal individuals.3 The understanding of this phenomenon hinges on the concept of ergod-
icity breaking that occurs in strongly interacting systems, when a symmetry—here related to
the a priori equality among individuals—is spontaneously broken. This phenomenon, well
known in statistical physics, is an emergent collective property, and it manifests only when

1India’s cast system or racial segregation in the US and South Africa in the last century, are examples of
explicit discrimination of underprivileged groups, that in the course of time has come to be regarded more
and more as unacceptable, prompting for explicit measures of affirmative action (e.g. quotas for lower casts
in India).
2A more comprehensive list can be found in Ref. [13].
3The positive relationship between intergenerational social mobility and inequality has been consistently
reported in several empirical studies [1, 4, 26].
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the system is large enough. Remarkably, we find that persistent inequality with low mobility
occurs precisely when the quest for “power”—i.e. for occupying the most central or impor-
tant place in the social hierarchy—becomes a dominant component of what motivates the
behavior of individuals.

In words, our model epitomizes an apparent positive feedback between the intensity of
the efforts of individuals to “climb” the social hierarchy and the structure of a society: on
the one hand, the more a society is hierarchically structured, the easier it is for individuals
to understand how to climb it. On the other, the efforts of agents to climb the hierarchy
reinforce the social ranking as individuals rewire their links from less to more influential
individuals. We discuss this interplay in a highly stylized model of a society, that while being
very far from realistic, serves as a proof of concept and allows us to unveil the mechanism
responsible for the emergence of a persistent inequality in a transparent manner.

In addition, this approach shows the relevance of techniques used in statistical mechanics
[18, 19] in the context of social networks. Similar models to the one considered here have
been discussed in Refs. [16, 23]) that, however, focus mostly on topological properties of
the emerging networks.

The rest of the paper is organized as follows: In Sect. 2, we introduce the model and dis-
cuss the main properties of the dynamics and its associated global potential function; related
to these results, in Appendix, the ergodicity of the system is proved. Later, in Sect. 3 we
show the results of extensive numerical simulations that portray the characteristic behavior
of the system. Finally, in Sect. 4, the conclusions are drawn.

2 The Model

We consider a system composed of N individuals, who are connected through a network
which consists of exactly M links. The network is undirected and thus can be specified in
terms of a symmetric adjacency matrix â = {aij }N

i,j=1, with elements aij = aji = 1, if i and
j are connected, aij = aji = 0 otherwise. Agents receive opportunities to use their links in
order to get in contact with more “influential” members of the society, in brief to climb the
social network.

As a measure of importance of the individuals, we take the number of his/her partners,4

i.e. the degree ki = ∑
j aij . As a measure of the “social capital” of agent i we take the

following local utility function

ui =
N∑

j,�=1

aij aj� + μ

N∑

�=1

ai� =
N∑

j=1

aij kj + μki, (1)

that depends both on the centrality ki of agent i and on the centrality kj of his/her neighbors,
with μ tuning the relative weight between the two terms.5 The efforts of agents to climb the
social hierarchy can then be formalized in the maximization of the utility ui .

4Other measures of centrality can be taken but, as observed in Ref. [12], these rank individuals in the same
order in strongly hierarchical networks, that will be stable over time as we shall see later. Conversely, unstruc-
tured networks correspond to random rankings with no stable order, with respect to all centrality measures.
5As will be clear in the following, the second term in (1) is irrelevant for the dynamics, but not for the
interpretation of the local utility. For example, consider the limit case of a star: while the central node is
connected to N − 1 nodes, all other nodes have only one connection. In this case the first term in (1) is equal
to N − 1 for all nodes and only the term proportional to ki removes this degeneracy. Note that the second
term in (1) also describes a linear cost μ < 0 to maintain links.
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We then define the dynamics as follows,

1. At any time, an agent i is picked at random together with one of her neighbors, j . Then,
a neighbor � of j is selected at random, � �= i.

2. If � is already connected to i, nothing happens. Otherwise, with probability

p(i,j)→(i,�) = eβ�ui

1 + eβ�ui
, (2)

the link (i, j) is replaced with (or rewired to) link (i, �), where �ui is the corresponding
change in i’s utility.

The step 1 models random encounters between agents through their network of interactions.
In such an encounter, agent i gets to know a friend � of j , as well as his/her importance
(the number k� of �’s friends). The probabilistic choice rule in step 2 can be derived from a
random utility model where agents maximize a more complex utility function, that accounts
for the fact that the social network affects in complex ways the well being of individuals and
their unobserved choices in other dimensions.6 In this view, β plays the role of the relative
weight between the observed and the unobserved part of the utility in the choice of social
contacts and it reflects the prevalence of the quest for social status in their choice behavior.7

In particular, in the limit β → ∞, a move implying a decrease in the utility function is
never accepted. This means that the social status is valued so highly by the agents that
everything else is unimportant. On the contrary, for β = 0 the probability of accepting a
move implying a decrease of the utility function is 1/2, meaning that the social status has
negligible importance with respect to the unobserved part of the utility. The general question
addressed is then how strong should the parameter β be in order for a social hierarchy to
form and be maintained in the long run?

It is worth to remark that if the utility of agent i increases when rewiring the link (i, j) to
(i, �), then the utility of agent j decreases, while that of agent � increases. This embodies the
fact that the formation of a new link needs the consent of both parties, but their removal can
be unilateral. Therefore, we can interpret the rewiring mechanism as a process according to
which agent i looks for some social premium (e.g. knowledge of information, professional
expertise) that agent � can provide more than agent j . Once agent i secures his/her connec-
tion to agent �, agent j essentially represents a redundant, less central source of the same
capital, and this is why the rewiring operation happens at his/her expenses. Moreover, the
rewiring mechanism described above implies that, in their quest to become central, agents
increase the likelihood to be selected by others as new partners.

Notice finally that the number of links is conserved in the dynamics. Hence the density
of links is the second important dimension that we shall explore, in order to understand how
the structure of social organization depends on it.

6This idea can be precisely formalized assuming that ui(â) is the observed part of the utility, but that
agent i maximize a more complex function Ui(â,b) = ui(â) + vi(b|â) where vi (b|â) is a random unob-
served contribution to the utility, that depends on a vector b of unobserved choices. Assuming that vi (b|â)

are independent and identically distributed, it can be shown (see [9], p. 33 for an explicit derivation) that
maxb Ui(â,b) = ui(â) + ηi (â)/β , where ηi(â) are i.i.d. with a Gumbel distribution. It is well known [14]
that if â∗ is the choice that maximizes ui(â) + ηi (â)/β , then P {â∗ = â} is given by Eq. (2).
7For example, Adam may be reluctant to interrupt his relation with Bob, despite his low rank in society,
because he is his only friend who shares his interest in Japanese paintings.
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2.1 Properties of the Dynamics and Potential Function

There are some remarkable features of the dynamics of the model introduced in the previous
sections. We detail them now.

First, it is easy to see that the dynamics introduced preserves connected components.
Indeed, nodes are never disconnected by the dynamics because, even if they have just
one link, this will not be rewired because the neighbor upstream has no second neighbor
where to rewire. Therefore, without loss of generality, we restrict attention to the case where
M ≥ N − 1 and the network is composed of a single connected component. Networks com-
posed of disjoint components remain disjoint under the dynamics above, hence the dynamics
of different components can be considered independently. Alternative dynamics that do not
preserve connectedness—e.g. adding the link (i, �) to a neighbor � of a neighbor j , and re-
moving a link different from (i, j) chosen in any way—would converge to simple structures
characterized by cliques of ∼ √

M nodes in a sea of disconnected nodes. Indeed, it is easy
to check that such configurations correspond to absorbing states of the dynamics for all β .
On the other hand, as we shall discuss in a moment, it is precisely the rewiring procedure
we propose in Sect. 2 that produces non-trivial equilibrium states.

Notice that, since both the number N of nodes and M of edges is conserved during the
evolution of the system, the number of fundamental cycles in the graph is also conserved.
This follows from the fact that the number of fundamental cycles in a graph is equal to
M − N + K , where K is the number of connected components (see [5, Chap. 2]).

The dynamics of the model admits a potential which is just the global utility, i.e. the sum
of the utilities U = ∑

i ui . Indeed, let us consider the change �ux in the utility of the agent
x when the rewiring (i, j) into (i, �) occurs. Depending on the position of x in the network,
the following changes are obtained:

�ui = k� − kj + 1 (3a)

�uj = 1 − ki − μ (3b)

�u� = ki − 1 + μ (3c)

�uh = −1 ∀h ∈ ∂j \ {i, �} (3d)

�ug = +1 ∀g ∈ ∂� \ {j} (3e)

�ux = +0 ∀x �= i, j, �, x /∈ ∂j ∪ ∂�, (3f)

where ∂x is the set of the neighbors of x, before the move.
In the total variation of the utility �U = ∑

x �ux , the term �uh appears kj − 2 times,
while the term �ug appears k� − 1 times, because kx is the degree of the node x before the
rewiring. Gathering all the contributions one has:

�U = �ui + �uj + �u� + (kj − 2)�uh + (k� − 1)�ug

= 2(k� − kj + 1) = 2�ui . (4)

The last point implies that, provided the dynamics is ergodic, which is proven in Appendix,
the system converges to thermal equilibrium with Hamiltonian

H = −U = −
∑

i

k2
i − μ

∑

i

ki ,
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and fixed density of links at temperature 2/β .8 Notice that the second term does not play any
role, being

∑
i ki a fixed quantity in our case. Indeed the dynamics in Eq. (2) is equivalent

to Metropolis dynamics, and hence it samples the Gibbs distribution P {â} ∝ eβU(â)/2, which
is known in sociology as the 2-star model. Park and Newman [18, 19], have shown that
the 2-star model where the density of links is not fixed, exhibits a sharp phase transition.
This result suggests that there might be a phase transition also in the model we study in
this paper. As a byproduct, our discussion also provides a microeconomic derivation for the
2-star model.9

3 Numerical Simulations

In order to investigate the behavior of the model, we performed extensive numerical simula-
tions sampling the Gibbs distribution P {â} ∝ eβU(â)/2 using the Metropolis algorithm based
on the rewiring moves introduced in Sect. 2. All the results to be presented throughout the
rest of this section were obtained, for each value of β , by performing R rewiring proposals
per node, and we checked that the value R = 5 · 105 is large enough to always ensure the
attainment of an equilibrium state. Figure 1 shows two typical realizations of the social net-
work for small and large values of β (see caption for more details). Figure 1 suggests that,
as anticipated in the previous section, the social climbing model undergoes a transition from
hierarchical to random structures. In the following, we will show the presence of a phase
transition between these two states.

In Fig. 2 we show the largest degree of the network Φ = maxi ki as a function of the
inverse temperature β for systems with N = 100 nodes and M = 110, 200, 300, 500 links.
As can be seen, in all cases the system actually undergoes a transition, going from a phase
where the largest degree Φ is roughly of order 1 − 10 (depending on the relative size of N

and M) to a phase where the largest degree is of order N . These observations qualitatively
match the findings of [16], where a prediction for the critical temperature Tc = 1/βc charac-
terizing this phase transition was also derived, from combinatorial arguments, for networks
with average degree k̄ = 2M/N < 2, i.e. for disconnected graphs. The nature of the phase
transition depicted in Fig. 2 is further investigated in Fig. 3. In the upper panel we show the
full distribution of Φ/N with respect to k̄ obtained by binning the results relative to 100
networks, for β = 0.01 and N = 500. For low (high) values of k̄ the distribution is sharply
concentrated around zero (one) and a steep transition occurs at a critical value of k̄, meaning
that the average is representative of the distribution of Φ/N . Completely analogous results
are found for different values of β . Therefore, in order to characterize the transition more
precisely, in the lower panel of Fig. 3 we show the relation between the average of Φ/N

over 100 networks with respect to both k̄ and β .
In Fig. 4 we analyze the dependence of the critical value of β with respect to the size N

of the network, while keeping the average degree fixed, for k̄ = 2.5,5.0. Qualitatively it is

8The factor 2 comes from the fact that the variation of the global utility is the double of the variation of the
local utility.
9The case studied in Refs. [18, 19] where the number of links is also allowed to change, can be recovered in
a model where, in addition to rewiring steps discussed above, we also allow for link creation upon random
encounters and link obsolescence (i.e. decay). More precisely, consider a model where each agent receives
opportunities (i) to rewire his/her links (as above) at rate ν and (ii) to form new links (with randomly chosen
agents), with rate η/2. In addition, each link decays with rate 1. Then, in a time interval �t , the number of
links changes by �M = ηN�t − M�t , which means that in the stationary state 〈M〉 = ηN .
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Fig. 1 Snapshot of networks of the social climbing game for N = 100, M = 125 for β = 0.03 (left panel)
and β = 0.1 (right panel). Size of the nodes is proportional to the degree

Fig. 2 Dependence of the largest
degree Φ (divided by N ) in the
social climbing network as a
function of the inverse
temperature (or intensity of
choice parameter) β . The
different curves refer to N = 100
and M = 110, 200, 300, 500. For
each value of β the reported
values of Φ are obtained by
averaging over 100 networks. An
abrupt change in is observed in
all curves after a threshold value
of β , with Φ/N going from low
values to values close to one,
signaling the emergence of a star,
i.e. a link with O(N) links, in the
network

clear that, increasing N , both the transition becomes sharper and the critical value of β shifts
to the left. In order to understand if the critical value in thermodynamic limit βc is nonzero,
we analyze the finite-size scaling behavior, assuming β∗(N) = βc + aN−b, where β∗(N) is
the critical value at size N and βc , a and b are free parameters. Since b is expected to be
universal (i.e. not dependent on the other parameters, like k̄), it is reasonable to choose it by
plotting β∗(N) against N−b until straight lines are obtained. Both a and βc are then found
by a best fit. The value of β∗(N) is obtained by a linear interpolation of the curves in Fig. 4
and calculating the value of β such that Φ/N = 1/2. From Fig. 5 it can be clearly seen
that for b = 1.25 the assumed functional form is fully consistent with numerical simulations
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Fig. 3 Top: density plot
depicting the full distribution of
the maximum degree (divided
by N ) as a function of the
average degree obtained by
binning the results relative to 100
networks, at inverse temperature
β = 0.01 and number of nodes
N = 500. High (low) values are
darker (lighter). Bottom: average
maximum degree (divided by N )
as a function of the average
degree and β for N = 100;
results obtained by averaging
over 100 networks. Clearly, for
low values of k̄ the network is in
the disordered phase, while for
high values of β it is in the
ordered phase

up the investigated system size. The values we find for βc are soundly different from zero
within 95 % confidence intervals provided by best fit. In particular we find for k̄ = 2.5:
βc = (1.1 ± 0.2) · 10−2, while for k̄ = 5.0: βc = (2.6 ± 0.2) · 10−3.10

Following [16], let us define a star as a node whose degree is of order N . Then, it is
immediate to figure out that, depending on the ratio M/N , different number of stars might
emerge in the network for temperatures lower than Tc . Clearly, in the case N = 100, M =
110 (i.e. k̄ only slightly larger than 2), the appearance of a star (Φ � 100 in this case) below
the critical temperature leaves very few links to be distributed amongst the remaining nodes.
On the other hand, increasing the number of links provides enough room for the emergence
of a larger number of stars. In other words, it is intuitively reasonable to expect a system with

10Inspired by [16] we also performed finite-size scaling analysis according to the functional form: β∗(N) =
βc + a(M/ log(N))−b , which also gives values of βc soundly above zero and consistent with the ones dis-
cussed in the main text.
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Fig. 4 Top: Dependence
between the maximum degree
(divided by N ) and β , for k̄ = 2.5
and different values of N . Results
are averaged over 100 networks.
The transition become sharper
and the critical value of β shifts
to the left for increasing values
of N . Bottom: as in upper panel
for k̄ = 5.0

an average degree k̄ � 2n to produce, for sufficiently low temperatures, exactly n stars. In
order to support such an intuitive line of reasoning, we computed the inverse participation

ratios (IPRs) of the degree sequences v = (k1, k2, . . . , kN)/

√∑N

i=1 k2
i of several networks

with different numbers of nodes and links. Given a normalized vector v, its IPR is defined
as

I (v) =
(

N∑

i=1

v4
i

)−1

. (5)

The IPR of a completely localized vector, say v = (1,0, . . . ,0), is equal to one. On the other
hand, the IPR of a fully delocalized vector, whose components are all equal to vi � 1/

√
N ,

is of order N . In our case I (v) gives an estimate of the number of dominant nodes in the
network. In Fig. 6 we plot the IPRs I (v), as functions of β , for N = 100 nodes and M = 110,
200, 300. As can be seen, the IPR of the sparsest network, i.e. the one with M = 110,
essentially drops down to one right below its critical temperature. On the other hand, systems
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Fig. 5 Finite-size scaling for
determining the critical value in
the thermodynamic limit βc ,
assuming the functional form
β∗(N) = βc + aN−1.25, where
β∗(N) is the critical value at size
N . By best fitting we find: for
k̄ = 2.5: βc = (1.1 ± 0.2) · 10−2,
while for k̄ = 5.0:
βc = (2.6 ± 0.2) · 10−3

Fig. 6 Inverse participation ratio
of the normalized degree
sequence I (v) as a function of
the inverse temperature β .
Different curves refer to networks
with N = 100 and M = 110, 200,
300. Results obtained by
averaging over 100 networks. For
large enough β one recovers the
maximal number of stars

with a larger number of links undergo a less trivial evolution: after the initial drop below the
critical temperature, the IPR increases and eventually reaches a steady state. In the example
shown in Fig. 6, the system with M = 200 links reaches a steady value I (v) � 2.12 ± 0.03,
whereas the system with M = 300 reaches I (v) � 3.28 ± 0.06 (where the errors represent
the 68 % confidence intervals obtained by averaging over 100 networks), and such values
clearly show that the maximal number of stars allowed by the relative sizes of N and M

has been achieved. Moreover, these observations are consistent with the small temporary
decrease of the largest degree Φ which can be observed in Fig. 2 for systems with k̄ > 2
when the inverse temperature is slightly larger than its critical value.

3.1 Correlations and Social Mobility

As already explained in Sect. 1, one of the goals of the present paper is to model the positive
feedback mechanism between the individuals’ effort to climb the social hierarchy and the
subsequent reinforcement of the social hierarchy itself. Suppose that a given social network
reaches its equilibrium state, at a certain inverse temperature β , after t0 steps of the social
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Fig. 7 Kendall’s τ coefficient
(see (6)) measurements for
networks with N = 100 and
M = 300. All measurements are
performed between an initial
equilibrium configuration â(t0)

and later configurations
â(t0 + n�t), with
t0 = �t = 5 · 106 Monte Carlo
steps. The different curves refer
to inverse temperatures β = 0.02,
0.04, 0.06, respectively
corresponding to values below,
slightly above and well above the
critical value for the system
under study (see also Fig. 2).
Results obtained by averaging
over 100 networks

climbing dynamics described in Sect. 2. Let us denote the corresponding graph’s adjacency
matrix as â(t0). Then, one way of quantitatively describing how mobile or “frozen” a society
is would be to assess the level of correlation, according to some proper notion, between
â(t0) and a following configurations â(t), where t = t0 + �t for some positive �t . We
will now measure correlations by means of Kendall’s rank correlation coefficient. Given
the joint set of all matrix entries in â(t0) and â(t), let us focus, for example, on entries
(i, j) and (h, �) in both matrices. Then, if both aij (t0) > ah�(t0) and aij (t) > ah�(t), or if
both aij (t0) < ah�(t0) and aij (t) < ah�(t), the pairs (aij (t0), ah�(t0)) and (aij (t), ah�(t)) are
said to be concordant. On the contrary, if aij (t0) ≷ ah�(t0) and aij (t) ≶ ah�(t) the pairs
(aij (t0), ah�(t0)) and (aij (t), ah�(t)) are said to be discordant. Of course, since the adjacency
matrix entries equal zero or one at each time, ties will often happen either at time t0 or at
time t (or at both times). Kendall’s correlation coefficient τ reads

τ(�t) = C − D
√

C + D + Tt0

√
C + D + Tt

, (6)

where C (D) is the numbers of concordant (discordant) pairs, whereas Tt0 (Tt ) denotes the
number of time-t0 (time-t ) ties. Pairs where ties happen both at t0 and t are not taken into
account.

In Fig. 7 a few examples of Kendall’s τ coefficient’s time evolution are sketched. All
plots refer to networks with N = 100 nodes and M = 300 links. Here, �t = t0 = 5 · 106

elementary Monte Carlo moves, i.e. rewiring proposals. As can be seen, when the social
climbing game takes place for temperatures higher than the critical one, Kendall’s τ quickly
starts to fluctuate around zero, denoting no genuine correlation between configurations dis-
tant (in time). This we take as indication of a large social mobility. On the other hand, for
temperatures slightly lower than the critical one, Kendall’s τ remains significantly larger
than zero over several time lags. However, a downward trend is clearly visible in this case,
meaning that for temperatures T � Tc social mobility is recovered after a sufficiently long
time. On the contrary, for temperatures significantly lower than the critical one Kendall’s τ

essentially remains constant and very large (i.e. close to one) over large time lags, hinting at
an extremely reduced social mobility, possibly preventing the majority of individuals from
climbing the social ladder.
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Fig. 8 Relation between the q index defined in (7) and its variation �q over a given time lag �t = 104 Monte
Carlo steps for a network with N = 100 and M = 1000. The different curves refer to inverse temperatures
β = 0.02, 0.08, 0.16, respectively corresponding to values below, slightly above and well above the critical
value for the system under study. Points refer to the average variation �q over an equally spaced grid of q

values (going from 0 to 1 in steps of 0.05). Results obtained by averaging over 100 networks. Shaded area
(for β = 0.02) and error bars (for β = 0.08, 0.16) represent the central 68 % of the events. Points and error
bars relative to different values of β have been shifted to enhance readability

The above considerations on individuals’ mobility in the social climbing game can be
further clarified and understood more deeply. For these purposes, let us denote as qi the
fraction of agents who, at a given time, have a strictly lower degree than agent i, i.e.

qi = 1

N

∑

j �=i

θ(ki − kj ), (7)

where θ(x) = 0 for x ≤ 0 and θ(x) = 1 for x > 0. The variable defined in (7) clearly repre-
sents a suitable definition of the social ranking, hence the social status, of a given individual
in the network. Thus, a reasonable measure of the individuals’ mobility in the social climb-
ing game is given by the change in the quantity defined above over a certain time lag �t ,
i.e. �qi(�t) = qi(t + �t) − qi(t), for i = 1, . . . ,N .

In Fig. 8 some typical behaviors of the q index defined in (7) are shown. All examples
refer to networks with N = 100 nodes and M = 1000 links. In such plots, the average of the
change �q is shown as a function of q , in order to provide information about the typical
social mobility over a time lag �t for an agent whose social ranking at the beginning of
such a time lag is quantified by q . As can be seen, depending on the preference for social
status, i.e. on the inverse temperature parameter β , very different situations can happen. In a
rather disordered society (low values of β) the relation between q and �q is clearly linear,
and does not depend strongly on the time lag size �t . In particular, it can be seen that,
on average, individuals sitting at the bottom of the ranking typically end up higher in the
social ladder after some time, whereas individuals sitting atop the hierarchy are prevented
from keeping their social status intact for a long time. When the preference for social status
crosses its critical value, such a picture starts changing quite dramatically. For values of β

slightly larger than the critical value βc agents with low degrees still have a chance to climb
up the social ladder, especially over rather long time lags, whereas the dominant individuals
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(q � 0.9) typically get to keep their social ranking. It is worth to remark that for low β the
distribution of ki is not very skewed, so changes in social ranking �qi are more frequent.
In this sense, our notion of social mobility captures aspects related to social dynamics but
it also depends on the stationary distribution of qi ’s, i.e. on the degree of inequality. As
β increases, the degree distribution acquires skewness, with few individuals having many
links and reduced social mobility. For β > βc the population separates into two groups,
those with ki of order N and those with very few links, with suppressed mobility across the
whole social hierarchy. Also, as can be seen from the right plot in Fig. 8, when the critical
threshold is crossed the social network becomes “fragmented”, as the q index is no longer
defined over the whole interval [0,1]. In a strongly ordered society, i.e. β well above its
critical value, agents with low degrees are almost completely stuck, and all of the social
mobility happens in the top half of the social network, i.e. amongst agents with q > 0.5, and
this is precisely due to the freezing of the dominant individuals inducing social mobility to
disappear completely also amongst nodes with small degrees. These results complement, at
a “microscopic” level, those presented in Fig. 7.

4 Conclusions

In summary, we have discussed a very simple model for the dynamics of a social network
where the agents’ quest for high status in the social hierarchy reinforces the latter while
reducing social mobility. The model is very stylized and far from a realistic description of
social dynamics. Yet, it captures some key ingredients that are enough to reproduce stylized
facts known at least since the work of Vilfredo Pareto [17]. Namely, Pareto observed that
societies tend to organize in a hierarchical manner, with the emergence of “social elites”.11

Our model, as well as Refs. [12, 13], provides a formal framework showing that individual
incentives for high social status are enough to confer this property to the social network,
even in the absence of explicit discrimination of particular groups (e.g. cast system or racial
segregation) or preferential biases (e.g. hereditary rules). In addition, we find that the hier-
archical state is remarkably stable, with suppressed social mobility in the upper and lower
parts of the hierarchy. Notably, Pareto himself observed that social mobility is higher in the
middle classes [17]. Furthermore, our model exhibits a negative dependence between mo-
bility and inequality, in the sense that more hierarchically structured (i.e. unequal) societies
manifest a lower degree of mobility. It is tempting to relate this to the pervasive empirical
observation that more unequal societies tend to have lower inter-generational mobility [1,
4, 26]. Our model neglects important dimensions, such as wealth or political power that,
however, likely contribute to reinforce our results.

Secondly, we show that the social climbing game admits a potential function, thereby
allowing us to deploy techniques and concepts of statistical mechanics to understand the
behavior of the system. Statistical mechanics provides a natural language for discussing
collective properties of societies. For example, the emergence of a social hierarchy in a
system of a priori identical individuals is an example of spontaneous symmetry breaking,
whereby the associated loss of ergodicity accounts for the reduced social mobility.

The present paper was mostly focused on investigating the model via numerical simu-
lations. The mean field approach discussed in Refs. [18, 19] is not applicable in our case,
because the density of links that plays the role of an order parameter in Refs. [18, 19] is fixed

11A similar concept of “power elites” has been discussed in [15].
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in our case. Indeed, the phenomenology we find is different from that of Refs. [18, 19] as
we do not find evidence of hysteresis phenomena: there is no range of parameters where the
disordered and the ordered societies are both stable. We speculate that this might be related
to the fact that in the social climbing game there are mechanisms by which a social hierarchy
can “nucleate” gradually in an ordered society, by forming social elites that grow over time.

This and other issues can in principle be addressed within more sophisticated statisti-
cal mechanics approaches. In this respect, it is worth to mention that it is possible to map
the problem into that of an interacting lattice gas that possibly admits for a full and exact
statistical mechanics treatment. Work in this direction is currently in progress.
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Appendix: Ergodicity of the Dynamics

Let Γ C(N,M) be the space of connected graphs with N vertices and M edges. In order to
prove ergodicity, we have to show that, with a finite number of basic moves, we can reach
any connected graph in Γ C(N,M), starting from another arbitrary graph in the same set.
Before delving into the technical details, we give a simple intuitive sketch of this proof.

For a finite value of β , the dynamics consists of reversible moves as the one depicted in
Fig. 9; such moves can be thought of as a “sliding” of the edge eik on the path of length one
(k, j) from vertex k to vertex j . The key observation to prove the ergodicity by induction is
that, since the graph is finite and connected, there always exists a path of minimum length
that connects two arbitrarily chosen vertices in the graph. Then, we can proceed in three
steps.

1. Let there be two graphs in Γ C(N,M) which differ from each other only by an edge
incident on the same vertex, vk . We first prove that by means of basic moves, we can
transform one into the other. To do so, it suffices to slide the edge along the path that
connects the other end of the edge, which we know to exist because the graph is con-
nected (Proposition 1, Proposition 2).

2. Let there be two graphs in Γ C(N,M) that differ by an edge with arbitrary ends. By
applying the previous step twice, we show that there exists a finite set of moves that
allows us to reach one configuration starting from the other (Proposition 3).

3. Finally, let there be two arbitrary graphs in Γ C(N,M). Moving one edge at time, we
show by induction that it is possible to reach one graph starting from the other with a
finite number of moves. Thus, the ergodicity is proved (Proposition 4).

We now proceed with the detailed proof.

Definition 1 (c-swap) Let us choose a labeling for the space of vertices V = {v1, . . . , vN }
and an induced labeling for the edges E = {eij } where eij = eji = (vi, vj ) denotes the
undirected edge between vi and vj . Let us define a transformation σ ik

ij : Γ C(N,M) �→
Γ C(N,M), called corner swaps (c-swaps), as following

σ ik
ij (G) = G′ = (

V,E′) (8)
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Fig. 9 The rewiring move (c-swap) of the dynamics

such that

E′ =
{

(E \ {eik}) ∪ {eij } if (ekj , eik ∈ E) ∧ (eij /∈ E)

E otherwise.
(9)

Proposition 1 Let G = (V ,E) and G′ = (V ,E′) be two graphs in Γ C(N,M) that differ by
an edge incident on the same vertex, i.e. |E| = |E′| = M , |E′ ∩ E| = M − 1, E \ E′ = {eik}
and E′ \ E = {eij }, and such that the shortest path P from vk to vj does not contain neither
vi nor any of its neighbors.

There exists an integer l and a finite sequence of graphs in Γ C(N,M), Gn such that:

(i) G = G 0 and G′ = Gl .
(ii) For all 0 ≤ n < l there exist adjacent vertices vkn ,vkn+1 such that Gn+1 = σ

ikn

ikn+1
(Gn),

where k0 = k and kl = j .

Proof Let l be the length of P .
Let vk1 be the unique neighbor of vk that lies in P . If we set G 1 = σ ik

ik1
(G), the c-swap

reduces the distance between vi and vj , since the neighbor of vk that lies in P must have a
distance l −1 from vj . We reiterate the procedure on G 1 and obtain in such a way a sequence
of graphs that satisfies property (ii). Now, since at any step the length of P diminishes by
1, after the l-th step, in the graph Gl vi and vj will be neighbors. Thus, since no other edge
was changed by applying c-swaps, Gl = G′ proving property (i). �

Proposition 2 Let G = (V ,E) and G′ = (V ,E′) be two graphs in Γ C(N,M) which differ by
an edge incident on the same vertex, i.e. |E| = |E′| = M , |E′ ∩ E| = M − 1, E \ E′ = {eik}
and E′ \ E = {eij }.

There exist an integer l and a finite sequence of graphs in Γ C(N,M), Gn such that:

(i) G = G 0 and G′ = Gl .
(ii) For all 0 ≤ n ≤ l there exist adjacent vertices vkn ,vkn+1 such that Gn+1 = σ

ikn

ikn+1
(Gn).

Proof Let P be the shortest path in G from vk to vj that does not contain (vk, vi).
There are four possible cases:

(i) P does not contain neither vi nor any of its neighbors other than vk . The thesis is proven
applying Proposition 1 directly to P .

(ii) P contains vi . Let P1 be the shortest path from vk to vi that does not contain the edge
(vk, vi). Let P2 be the shortest path from vi to vj , clearly P = P1 ⊕ P2, where ⊕ is the
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path concatenation. Since by construction there are no neighbors of vk in P2 (otherwise
P would not contain vi ) we can apply Proposition 1 and reach G′′ = (V , (E \ {eki}) ∪
{ekj }); on the other hand there cannot be neighbors of vj in P1 (otherwise there would
be a shortest path not containing vi ) and thus applying again Proposition 1 along P1 we
reach G′ proving the thesis.

(iii) P does not contain vi but two of its neighbors, c and f such that c �= vk , f �= vk

and |c, vk| < |f, vk|, where |·, ·| represents the graph distance between two vertices.
We first note that c and f must be neighbors, otherwise P should include vi . Then,
as in case (ii), by minimality we can write P = P1 ⊕ (c, f ) ⊕ P2 where P1 is the
shortest path from vk to c and P2 is the shortest path from f to vj . It is easy to see that
Q2 = (vi, f ) ⊕ P2 is a shortest path from vi to vj : if it were not so, there would exist a
path Q′

2 from vi to vj strictly shorter than Q2, but in that case P1 ⊕ (c, vi)⊕Q′
2 would

be a shortest path from vk to vj containing vi , in contradiction with our hypotheses.
A similar argument holds for Q1. As before, since, by minimality, there cannot be
neighbors of vk in P2, it is possible to reach the graph G′′ = (V , (E \ {eki}) ∪ {ekj }) by
applying Proposition 1 to Q2; since by minimality there cannot be neighbors of vj in
P1, we can apply Proposition 1 to G′′ along Q2 and reach G′ proving the thesis.

(iv) The shortest path P contains only one neighbor of vi other than vk , let us call it m. As
before, P = P1 ⊕ P2 where P1 is the shortest path from vk to m and P2 is the shortest
path from m to vj . Since by construction there cannot be other neighbors of i in P2,
we can apply Proposition 1 to P2 and reach the graph G∗ = (V , (E \ {eim}) ∪ {eij }). On
the other hand, by construction there cannot be neighbors of vi in P1 other than vk and
thus we can apply Proposition 1 to P2 and reach G′ proving the thesis.

�

Proposition 3 Let G = (V ,E) and G′ = (V ,E′) be two graphs in Γ C(N,M) such that
|E| = |E′| = M and |E∩E′| = M −1. Let us assume that, in particular, E = {eij }∪(E∩E′)
and E′ = {ehk} ∪ (E ∩ E′).

Thus there exists an integer l and a finite sequence of graphs in Γ C(N,M), Gn such
that:

(i) G = G 0 and G′ = Gl .
(ii) For all 0 ≤ n < l there exist adjacent vertices vkn ,vkn+1 such that Gn+1 = σ

ikn

ikn+1
(Gn).

Proof Let us define the graph G′′ = (V ,E′′) such that E′′ = (E \ {eij }) ∪ {eih}. Applying
Proposition 2 first to graphs G and G′′ and then to graph G′′ and G′ proves the thesis. �

Definition 2 (g-swap) Let G = (V ,E) and G′ = (V ,E′) be two graphs in Γ C(N,M) which
differ at most by an edge, that is such that |E| = |E′| = M and |E ∩ E′| = M − 1. Let us
assume that, in particular, E = {eij } ∪ (E ∩ E′) and E′ = {ehk} ∪ (E ∩ E′).

We define a global swap or g-swap of the edge eij to the edge ehk a transformation such
that:

G′ = Σhk
ij (G). (10)

Proposition 3 simply states that any global swap can be obtained as the composition of a
minimal set of corner swaps between adjacent vertices.

Proposition 4 Let G = (V ,E) and G = (V ,E′) be two graphs in Γ C(N,M). There exists
an integer d and a sequence of graphs Gn(V ,En) in Γ C(N,M) such that:



456 M. Bardoscia et al.

(i) G = G 0 and G′ = Gd .
(ii) For all 0 ≤ n < d there exist four vertices vi , vj ,vh and vk such that Gn+1 = Σhk

ij (Gn).

Proof Let Z = (V ,Z = E ∩ E′), and let us define δ = |Z|. We proceed by induction on the
number δ.

Base case If δ = M − 1, the Thesis is trivially true because of Proposition 3.
Inductive step Let us assume that the Thesis holds for δ = M − d , we want to show that

this implies that it also holds for δ = M − d − 1, with d < M − 1. Let us assume that
G = (V ,E) and G′ = (V ,E′) are such that |E′ ∩ E| = M − d − 1. Let eij ∈ E \ (E ∩ E′)
and ehk ∈ E′ \ (E∩E′). Moreover, let E′′ = (E \{eij })∪{ehk}. By construction, |E∩E′′| =
M − 1 and |E′ ∩ E′′| = M − d . Finally, let G′′ = (V ,E′′). Since G′′ and G′ differ by M − d

edges, by inductive assumption there exists a sequence Gi , with i ∈ [0, d], such that G 0 = G′
and Gd = G′′, that satisfies the Thesis. Moreover, by Proposition 3, there exists a g-swap
such that G = Σ

ij

hk(G′′). Thus, the complete sequence G′ = G 0, G 1, . . . , G′′ = Gd , G = Gd+1

satisfies the Thesis.
�

Proposition 4 and Proposition 3 state simply that any two connected graphs with the same
number of edges can be obtained one from the other applying a finite sequence of c-swaps.
Moreover, since the number of edges is finite, then there must be a minimal sequence of
c-swaps that connects any two of such graphs. Since, for finite β , all c-swaps are allowed
with nonzero probability, this proves the ergodicity.
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