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Abstract

We introduce a broad class of random graph models: the generalised hypergeo-

metric ensemble (GHypEG). This class enables to solve some long standing prob-

lems in random graph theory. First, GHypEG provides an elegant and compact

formulation of the well-known configuration model in terms of an urn problem.

Second, GHypEG allows to incorporate arbitrary tendencies to connect different

vertex pairs. Third, we present the closed-form expressions of the associated prob-

ability distribution ensures the analytical tractability of our formulation. This is in

stark contrast with the previous state-of-the-art, which is to implement the config-

uration model by means of computationally expensive procedures.

Keywords: random graph, network ensemble, configuration model, Wallenius’

non-central hypergeometric distribution

1 Introduction

Important features of real-world graphs are often analysed by studying the deviations
of empirical observations from suitable random models. Such models, or graph en-
sembles, are built so that some of the properties of the analysed empirical graph are
preserved. Then, one can identify which other features of the empirical graph can be
expected at random and which cannot, given the encoded constraints.

The simplest random graph model, named after Erdös and Rényi, generates edges
between a given number of vertices with a fixed probability p ∈ (0,1] [10]. In this
model, the properties of vertices, such as their degrees, have all the same expected
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value. However, most empirical graphs have heterogeneous, heavy tailed degree distri-
butions [1, 13, 8, 2]. Hence, random graph models able to incorporate arbitrary degree
sequences are of special importance.

The most common model fixing only degree sequences is known as the configuration
model of random graphs [8, 9, 3, 14]. The comparison of an empirical graph with the
corresponding configuration model then allows to quantify which properties of the
original graph can be ascribed to the degree sequence. The properties not explained
by the degree sequence highlight the unique structure of the studied empirical graph.

The standard configuration model has a crucial drawback: the lack of analytical tract-
ability. In fact, the model is realised by means of a repeated rewiring procedure. Each
vertex is assigned a number of half-edges, or stubs, corresponding to their degree and
one random realisation of the model is obtained by wiring pairs of stubs together uni-
formly at random. This is a computationally expensive procedure, which does not al-
low to explore the whole probability space of the model. This problem is exacerbated
in the case of larger graphs and graphs with highly heterogeneous degree distributions.

Moreover, the standard configuration model is limited to the coarse analysis of the
combinatorial randomness arising from vertex degrees, as it has no free paramet-
ers. While it has been invaluable for the macroscopic and the mesoscopic analysis of
graphs, such as for graph partitioning through modularity maximisation [16] and for
quantifying degree correlations [17], other graph models are needed to address com-
plex dyadic patterns beyond degrees.

In this article, we propose a novel analytically tractable model for random graphs with
given expected degree sequences. The formulation of the model relies on mapping
the process of drawing edges to a multivariate urn problem. In its simplest case, our
model corresponds to the configuration model for directed or undirected multi-edge
graphs, fixing in expectation the values of vertex degrees instead of their exact values.
In the general case, the model incorporates a parameter for each pair of vertices, which
we call edge propensity. This parameter controls the relative likelihood of drawing an
individual edge between the respective pair of vertices, as opposed to any other pair.
This is achieved by biasing the combinatorial edge drawing process. The proposed
formulation allows to model and test for arbitrary graph patterns that can be reduced
to dyadic relations.
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2 Results

Let us consider a multi-graph G = (V ,E), where V is a set of n vertices, and E ⊆ V ×V
is a multi-set of m (directed or undirected) multi-edges. For clarity, we first provide
working definitions of multi-edges and multi-graphs.

Definition 1 (Multi-edges). Let V ⊂ N be a set of vertices and i, j ∈ V two vertices.
Elements (i, j)l ∈ E and (i, j)k ∈ E, l , k, incident to the same two vertices are called
multi-edges. The number Aij ∈ N0 of multi-edges incident to the same two vertices i
and j defines the multiplicity of the edge (i, j).

Definition 2 (Multi-graph). Let V ⊂ N be a set of vertices. A graph G(V ,E) is called a
multi-graph if E ⊆ V × V is a multi-set of m := |E| multi-edges. Self-loops (i, i) ∈ E for
i ∈ V are generally allowed. A multi-graph G can be directed or undirected.

We indicate with A the adjacency matrix of the graph where entries Aij ∈ N0 capture
the multiplicity of an edge (i, j) ∈ V × V in the multi-set E. In the case of undirected
graphs, the adjacency matrix is symmetric, i.e. A = AT , and the elements on its diag-
onal equal twice the multiplicity of the corresponding self-loops.

Definition 3 (Degrees). For each vertex i ∈ V the in-degree kin
i :=

∑
j∈V Aji and the

out-degree kout
i :=

∑
j∈V Aij . The total number of multi-edges is expressed as m =∑

i,j∈V Aij =
∑
i∈V k

out
i =

∑
j∈V k

in
j . We denote the in-degree and out-degree sequence

of a directed graph G as kin(G) = {kin
i }i∈V and kout(G) = {kout

i }i∈V . We denote with
kin/out
i (G) the i-th entry of the degree sequence kin/out(G), corresponding to the in- or

out-degree of vertex i. For undirected graphs, the adjacency matrix is symmetric and
thus kin

i = kout
i =: ki . Hence, there is one degree sequence of an undirected graph, which

we denote k(G).

As we only deal with multi-graphs, we will refer to multi-graphs simply as graphs in
the rest of the article.

2.1 Soft Configuration Model

The concept underlying our random graph model is the same as for the standard con-
figuration model of Molloy and Reed [14, 15], which is to randomly shuffle the multi-
edges of a graph G while preserving vertex degrees. The standard configuration model
generates multi-edges one after another by sampling uniformly at random a vertex
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with an available out-stub (outwards half-edge) and a vertex with an available in-stub
(inwards half-edge), until all stubs are consumed. Figure 1 illustrates one step of this
process. The resulting random graphs all have exactly the same degree sequence as
the original graph G. All pairs of available in- and out-stubs are equiprobable to be
picked, so are the corresponding individual multi-edges. Therefore, the probability to
observe a multi-edge between a given pair of vertices positively relates to the number
of possible stub pairings of the two vertices, which in turn is defined by the corres-
ponding degrees of these. In fact, this probability depends only on the degrees of the
two vertices and on the total number of multi-edges in the graph.

multi-edge probability

B C DA

PAB PAC PAD

urn representation

AB

AB
AB

AC

AC

AD

Figure 1: The configuration model represented (upper left) as a conventional edge
rewiring process and (right) as an urn problem. In the former case, once the out-stub
(A, ·) has been sampled for rewiring, then one in-stub is sampled uniformly at ran-
dom from those available, to draw a new multi-edge. If we represent each possible
combination of an out-stub and an in-stub as a ball, we arrive at the urn problem
without replacement. For the shown vertices, the odds of observing a multi-edge
(A,B) are three times higher than of observing a multi-edge between (A,D) and 1.5
times higher than of observing a multi-edge between (A,C) in both model representa-
tions.

The need to consequently sample two vertices at each step makes it cumbersome to
analytically formulate the procedure described above. To overcome this challenge, we
take an edge-centric approach of samplingmmulti-edges from a certain larger multi-set,
which we define below in Definition 4. As a consequence of this change of perspective
the model will preserve the expected degree sequences instead of the exact ones. To this
end, we introduce the definition of the soft configuration model.

For each pair of vertices i, j ∈ V , we define the number Ξij of stub combinations that
exist between vertices i and j, which can be conveniently represented in matrix form:
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Definition 4 (Combinatorial matrix). We define combinatorial matrix Ξ ∈ Nn ×Nn for
graph G as the matrix whose elements Ξij are defined as

Ξij = kout
i (G)kin

j (G) for i, j ∈ V , (1)

where kout(G) and kin(G) are the out-degree and in-degree sequences of the graph G.

2.1.1 Soft configuration model for directed graphs

Definition 5 (Directed soft configuration model). Let k̂in, k̂out ∈ Nn be in- and out-
degree sequences and V̂ a set of n vertices. The soft configuration model X gener-
ated by (V̂ , k̂in, k̂out) is the n2-dimensional random vector X defined on the probability
space (S,P ) with sample space

S =
{
G(V ,E)

∣∣∣ |E| =m}
, m =

∑
i∈V

k̂in
i =

∑
i∈V

k̂out
i , (2)

with some probability measure P , such that the expected degree sequences of a real-
isation of X are fixed:

EP
[
kin(X)

]
= k̂in, EP

[
kout(X)

]
= k̂out. (3)

This set-up allows to map the model to an urn problem and thus to arrive to a closed-
form probability distribution function for it.

Lemma 1 (Number of stub combinations). The combinatorial matrix Ξ ∈ Nn ×Nn given
in Definition 4 encodes the numbers of out-stub and in-stub combinations for each pair of
vertices, given degree sequences kout and kin.

Proof. Let kout
i be the out-degree of vertex i and kin

j the in-degree of vertex j. The
number of out-stubs of a vertex corresponds to its out-degree. Similarly, the number of
in-stubs of a vertex corresponds to its in-degree. Each one of the kout

i out-stubs can be
connected to all kin

j in-stubs. Hence, the total number of stub combinations between
vertices i and j Ξij is equal to kout

i kin
j .

We further introduce the concept of induced random model.

Definition 6 (Graph-induced random model). We say that the graph G(V ,E) induces
the random model X, if the quantities (V̂ , k̂in, k̂out) generating X are computed from G.
I.e., V̂ = V , k̂in = kin(G), and k̂out = kout(G).
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Under this assumption, we can formulate the following theorem for the distribution of
the soft configuration model X. To keep the notation simple, we will not distinguish
between the n×n adjacency matrix A and the vector of length n2 obtained by stacking
it by row or column. Similarly, we do the same for all other related n×n matrices.

Theorem 2. Let G(V ,E) be a directed graph with n = |V | vertices and m = |E| multi-edges.
Let kin(G) ∈ Nn and kout(G) ∈ Nn be the vectors representing its in-degree and out-degree
sequences. Let X be the soft configuration model induced by G defined as in Definition 5. If
the probability measure P depends only on the degree sequences in G and the total number
of multi-edges m = |E| and all multi-edges are equiprobable, then X follows the multivariate
hypergeometric distribution as in Eq. (4).

Let A ∈ Nn0 × N
n
0 be an adjacency matrix and Ξ ∈ Nn × Nn be the combinatorial matrix

induced by G. Then the soft configuration model X is distributed as follows:

Pr(X = G) =

∏
i,j∈V

(
Ξij

Aij

)
(
M
m

) , (4)

where M =
∑
i,j∈V Ξij is the total number of stub combinations between all vertices.

Proof. We want to sample m multi-edges connecting any of the in- and out-stub pairs
such that all such such multi-edges are equiprobable. According to Lemma 1, the total
number of stubs combinations between any two vertices i, j is given by Ξij . We can
hence define the random graph model as follows. We sample m multi-edges without
replacement from the multi-set of size

∑
i,j∈V Ξij that combines all the possible stub

pairs combinations Ξij between all pairs i, j ∈ V . We sample without replacement be-
cause we need to mimic the process of wiring stubs. Once a stub pair has been used it
cannot be sampled again. We can view this model as an urn problem where the edges
to be sampled are represented by balls in an urn. By representing the multi-edges con-
necting each different pair of vertices (i, j) as balls of a unique colour, we obtain an
urn with a total of M =

∑
i,j∈V Ξij balls of n2 = |V ×V | different colours. With this, the

sampling of a graph according to our model corresponds to drawing exactly m balls
from this urn. Each adjacency matrix A with

∑
i,j∈V Aij =m corresponds to one partic-

ular realisation drawn from this model. The probability to draw exactly A = {Aij}i,j∈V
edges between each pair of vertices is given by the multivariate hypergeometric distri-
bution.

From Theorem 2 we derive the following results, whose proofs follow directly from
properties of the hypergeometric distribution.
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Corollary 2.1. For each pair of vertices i, j ∈ V , the probability that X has exactly Aij edges
between i and j is given by the marginal distributions of the multivariate hypergeometric
distribution, i.e.

Pr(Xij = Aij) =

(
Ξij

Aij

)(
M −Ξij
m−Aij

)
(
M
m

) . (5)

Corollary 2.2. The expected in- and out-degree sequences of realisations of the directed soft
configuration model X correspond to the respective degree sequences of the graph G inducing
X.

Proof. For each pair of vertices i, j we can calculate the expected number of multi-edges
E
[
Xij

]
as

E
[
Xij

]
=m

Ξij

M
(6)

Moreover, summing the rows and columns of matrix E
[
Xij

]
and assuming directed

graphs with self-loops we can calculate the expected in- or out-degrees of all vertices
as

E
[
kin
j (X)

]
=
∑
i∈V

E
[
Xij

]
=m

∑
i∈V k̂

out
i k̂in

j

M
= k̂in

j ,

E
[
kout
i (X)

]
=
∑
j∈V

E
[
Xij

]
=m

∑
j∈V k̂

out
i k̂in

j

M
= k̂out

i .

(7)

Equation (7) confirms that the expected in- and out-degree sequence of realisations
drawn from X corresponds to the degree sequence of the given graph G.

2.1.2 Soft configuration model for undirected graphs

So far we have discussed the configuration model for directed graphs. Specifying the
undirected case, on the other hand, requires some more efforts. The reason for this is
that, under the assumptions described in the previous section, the undirected version
of the soft configuration model is the degenerate case of its directed counterpart, where
the direction of the multi-edges is ignored. In particular, this implies that the random
vector corresponding to the undirected model has half the dimensions of the directed
one, because any undirected multi-edge between two vertices i and j can either be
generated as a directed multi-edge (i, j) or as a directed multi-edge (j, i).
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Definition 7 (Undirected soft configuration model). Let k̂ ∈ Nn be a degree sequence
and V̂ a set of n vertices. The soft configuration model X generated by (V̂ , k̂) is the
(n2 +n)/2-dimensional random vector X defined on the probability space (S,P ), for the
sample space

S =
{
G(V ,E)

∣∣∣ |E| =m}
, 2m =

∑
i∈V

k̂i , (8)

with some probability measure P , such that the expected degree sequence of a realisa-
tion of X is fixed:

EP [k(X)] = k̂. (9)

At first sight, it would appear that the undirected soft configuration model can simply
be obtained by restricting the directed model to n(n + 1)/2 components correspond-
ing to the upper-triangle and the diagonal of the adjacency matrix. That is, we would
sample m multi-edges among pairs i ≤ j ∈ V from the multi-set of stub combinations
Ξij as defined in Eq. (1). However, the resulting model does not satisfy Definition 7,
because its expected degree sequence does not equal the degree sequence that induced
it. To show this, we follow the same reasoning adopted in the proof of Corollary 2.2.
The expected degree E [ki(X)] of a vertex i is equivalent to

E [ki(X)] =
∑
j∈V

E
[
Xij

]
=m

∑
i∈V k̂i k̂j∑
i≤j∈V k̂i k̂j

, k̂i .

This approach is wrong because the total number of undirected stub combinations is
larger than in the directed case. The reason for this is the symmetry in the process of
wiring two stubs. Let k̂i be the degree of vertex i and k̂j the degree of vertex j. To form
a multi-edge (i, j), each one of the k̂i stubs of i can be connected to all k̂j stubs of j, and
vice versa, each of the k̂j stubs of j can be connected to all k̂i stubs of i. Hence, the total
number of combinations of stubs between vertices i and j equals to k̂ik̂j+k̂j k̂i = 2k̂ik̂j .
As an equivalent to Lemma 1, we formalise this in the following lemma.

Lemma 3 (Undirected stubs combination count). The total number of stub combinations
between two vertices i, j in an undirected graph is given by:2Ξij if i , j,

Ξii if i = j,
(10)

We can now formulate the equivalent of Theorem 2 for the undirected case. The dis-
tribution underlying the undirected soft configuration model can then be computed
analogously to Theorem 2 with the help of Lemma 3.
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Theorem 4. Let G(V ,E) be an undirected graph with n = |V | vertices and m = |E| multi-
edges. Let k ∈ Nn be the vector representing its degree sequence. Let X be the undirected soft
configuration model induced by G defined as in Definition 7. If the probability distribution
underlying X depends only on the degree sequence of G and the total number of multi-edges
m, and all multi-edges are equiprobable, then X follows the multivariate hypergeometric
distribution given in Eq. (11).

Let A ∈ Nn0 ×N
n
0 be the symmetric adjacency matrix corresponding to an undirected graph,

and Ξij = kikj be the combinatorial matrix induced by G. Then the undirected soft config-
uration model X is distributed as follows:

Pr(X = G) =

∏
i<j∈V

(
2Ξij
Aij

)∏
l∈V

(
Ξll

All/2

)
(
M
m

) , (11)

where M =
∑
i<j∈V 2Ξij +

∑
l∈V Ξll =

∑
i,j∈V Ξij is the total number of undirected stub com-

binations between all pair of vertices.

Proof. The proof follows the same reasoning of the proof of Theorem 2, accounting for
the fact that the total number of stubs combinations is now given by Eq. (10).

Corollary 4.1. For each pair of vertices i, j ∈ V , the probability that X has exactly Aij edges
between i and j is given by the marginal distributions of the multivariate hypergeometric
distribution in Eq. (11), i.e.,

Pr(Xij = Aij) =



(
2Ξij
Aij

)(
M − 2Ξij
m−Aij

)(
M
m

)−1

for i , j,

(
Ξij

Aij /2

)(
M −Ξij
m−Aij /2

)(
M
m

)−1

for i = j.

(12)

Corollary 4.2. The expected degree sequence of realisations of X correspond to the respect-
ive degree sequences of the graph G inducing X.

Proof. For each pair of vertices i, j ∈ V , the expected number of multi-edges E
[
Xij

]
according to the hypergeometric distribution in Eq. (11) is expressed as

E
[
Xij

]
= 2m

Ξij

M
(13)

With this, we can write the expected degrees as

E
[
kj(X)

]
=

∑
i∈V

E
[
Xij

]
= 2m

∑
i∈V Ξij

M
= 2m

∑
i∈V k̂i k̂j∑
i,j∈V k̂i k̂j

= k̂j . (14)
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2.1.3 Correspondence between directed and undirected models

In the previous two sections, we have formulated the soft configuration model for dir-
ected and undirected graphs independently of each other. As the reader recalls, we
have motivated these models by the need of an analytically tractable analogy for the
rewiring algorithm of the Molloy-Reed model [14]. This algorithm is the same in the
directed and undirected case: select the first stub (outgoing, in the directed case), then
select the second stub (incoming, in the directed case), create an edge by wiring these
two stubs, and repeat the process until all the stubs are wired. Hence, we also show
the correspondence between our directed and undirected formulations in this section.

We prove that the probability distribution of undirected graphs in the undirected soft
configuration model given by Eq. (11) is a degenerate case of the directed model given
by Eq. (4).

With the following definition we provide a projection from Nn2
to Nn(n+1)/2 that serves

the purpose mapping a directed graph to its undirected equivalent, i.e., stripping the
direction from its edges.

Definition 8 (Undirected projection). Let Gl(V ,El) be a directed graph with adjacency
matrix Al. We define as undirected projection the map π : Nn2 → Nn(n+1)/2 that maps Gl

to the undirected graph G(V ,E) with adjacency matrix A = Al + AlT . We indicate with
Gl ↪→G the fact that G = π(Gl).

According to Definition 8 there are different directed graphs that can be projected to
the same undirected graph. At the same time, every undirected graph has at least one
corresponding directed graph that can be projected to it, and for every directed graph
there is at least one undirected graph to which it can be projected. These make the
projection in Definition 8 surjective and not injective.

Similarly, we can define an undirected random graph model as the projection of a
directed random graph model.

Definition 9. Let Xl be a directed random graph model. With an abuse of notation,
we use XlT to refer to the transposition of the matrix representation of Xl. We say
that X := Xl +XlT is the undirected projection of Xl if ∀Gl in the sample space of Xl

exists a G in the sample space of X such that the undirected projection π(Gl) of Gl is
G. Furthermore, for every undirected graph G in the sample space of X, ∃Gl such that
π(Gl) = G. We indicate with Xl ↪→ X the fact that X is the undirected projection of Xl.

Note that according to Definition 8, the number of multi-edgesm of G equals the num-
ber of multi-edges of any directed Gl that projects to G.
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Finally we need to relate the distribution underlying a directed random graph model
to the the distribution of its undirected projection. The following lemma serves this
purpose.

Lemma 5. Let G be an undirected graph and X an undirected random graph model. Let Xl

be a directed random graph model such that Xl ↪→ X. The probability distribution of X,
Pr(X = G), is given as:

Pr(X = G) =
∑

Gl∈π−1(G)

Pr
(
Xl = Gl

)
, (15)

where the set π−1(G) =
{
Gl |Gl ↪→G

}
is the set of all directed graphs Gl that map to G.

Proof. LetXl be a n2−dimensional random vector formalising a directed random graph
model, such thatXl ↪→ X. For simplicity we index the elements of both random vectors
as in the equivalent adjacency matrix notation. Let Xij = Xji the ij-th element of X and
Xlij ,X

l
ji the corresponding elements of Xl.

According to Definition 9, X is the n(n + 1)/2–dimensional random vector defined as
Xl+XlT , where its each element ij is defined as Xij = Xlij +XlTji . The probability distri-
bution of X, Pr(X = G) = fX(G) can be specified in terms of the probability distribution
fXl(Gl) = Pr(Xl = Gl):

fX(z) = fX
(
{zij}ij

)
=

∑
· · ·

zij∑
aij=0

fXl
(
{zij − aij , aij}ij,ji

)
(16)

The summation in Eq. (16) corresponds to the sum over the probabilities of all pos-
sible combinations of tuples Xlij ,X

l
ji which sum to Aij for all indices ij. Hence, follow-

ing Definition 8, this is equivalent to sum over all possible Gl ↪→ G. This proves the
equivalence between Eq. (16) and Eq. (15) and thus, the lemma.

We can proceed showing that the undirected version of the soft-configuration model
given in Theorem 2 is indeed equivalent to the model defined in Theorem 4. The-
orem 6 stems from the fact that sampling an undirected edge between two vertices is
equivalent to sampling a directed edge between the same pair of vertices in any of the
two directions, and then stripping its direction information. The distribution under-
lying the undirected soft configuration model can then be computed with the help of
Lemma 5.

Theorem 6. Let G be an undirected graph and X the undirected soft-configuration model.
Let Xl be the directed soft configuration model with combinatorial matrix with elements
Ξij = kikj . The probability distribution of X is then given by Eq. (11).
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Proof. The distribution of Xl is given by the hypergeometric distribution in Eq. (4).
The model Xl satisfies the conditions in Lemma 5 for the undirected soft configuration
model X, because Xl maps to the undirected soft configuration model X in accordance
with Definition 9. Hence, we write the probability distribution underlying X as the
sum of the probabilities of all corresponding directed graphs Gl under the directed
soft configuration model Xl.

Pr(X = G) =
∑

Gl∈π−1(G)

Pr
(
Xl = Gl

)
(17)

=
∑

Gl∈π−1(G)

(
M
m

)−1 ∏
i,j∈V

(
Ξij

Alij

)
(18)

=
∑

Gl∈π−1(G)

(
M
m

)−1∏
l∈V

(
Ξll

Alll

) ∏
i<j∈V

(
Ξij

Alij

)(
Ξij

Aij −A
l
ij

)
(19)

=
∑

. . .

Aij∑
Alij=0

(
M
m

)−1∏
l∈V

(
Ξll

Alll

) ∏
i<j∈V

(
Ξij

Alij

)(
Ξij

Aij −A
l
ij

)
(20)

In Eq. (20) we have n(n−1)/2 summations for allAlij , i < j, which are the decomposition
of the summation in Eq. (19). Then, we can swap the summations and multiplications
in Eq. (20), which leads to

Pr(A) =
(
M
m

)−1∏
l∈V

(
Ξll

Alll

) ∏
i<j∈V

Aij∑
Alij=0

(
Ξij

Alij

)(
Ξij

Aij −A
l
ij

)
. (21)

From Vandermonde’s identity, which states
Aij∑
a=0

(
Ξij

a

)(
2Ξij −Ξij
Aij − a

)
=

(
2Ξij
Aij

)
, (22)

and from the fact that Alii = Aii/2, ∀i ∈ V , it follows that Eq. (21) is equivalent to
Eq. (11).

In the two sections above we have provided a parsimonious formulation of the soft-
configuration model in terms of an hypergeometric ensemble. The ensemble provides a
random graph model formulation for directed and undirected graphs alike, in which
(i) the expected in- and out-degree sequences are fixed, and (ii) multi-edges between
these vertices with fixed expected degrees are formed uniformly at random. More pre-
cisely, the probability for a particular pair of vertices to be connected by an edge is
only influenced by combinatorial effects, and thus only depends on the degrees of the
vertices and the total number of edges.
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multi-edge probability
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AB

AB
AC

AD

Figure 2: The effect of edge propensities on the configuration model. Differently from
the standard configuration model, here the stubs are not sampled uniformly at ran-
dom (cf. Fig. 1). Given an out-stub, each in-stub is characterised by a propensity Ωij

of being chosen. As a result, the probability of wiring the out-stub (A, ·) to the ver-
tex D is larger than that of B due to a very large edge propensity ΩAD , even though
vertex B has three times more in-stubs than vertex D.

2.2 Generalised Hypergeometric Ensemble of Graphs

As described above, the hypergeometric ensemble of random graphs samples edges
uniformly at random from the urn containing all possible edges. However, such uni-
form sampling of edges is generally not enough to describe real graphs. In fact, in
empirical graphs edge probabilities do not only depend on the activity of vertices (rep-
resented by their degrees) but also on other characteristics. Examples of such charac-
teristics are vertex labels that lead to observable group structures, distances between
vertices, etc. Below we introduce how such influences on the sampling probabilities of
edges can be encoded in a random graph model by means of a dyadic property we call
edge propensity.

First, we introduce the concept of edge propensity. Given two dyads (i, j) and (k, l) ∈
V × V where Ξij = Ξkl , according to the soft-configuration model of Section 2.1 the
probabilities of sampling one multi-edge between (i, j) and (k, l) are equal, leading to
odds-ratio of 1 between the two pairs of vertices. Instead, we generalise the model in a
way that fixing arbitrary odds-ratios is possible. That is, we define the aforementioned
edge propensities such that the ratio between them is the odds-ratio of sampling one
multi-edge between the two corresponding vertex pairs, all else being equal. We use
edge propensities to bias the sampling probability of each multi-edge, as illustrated in
Fig. 2. This way, the probability of the number of multi-edges between a pair of vertices
depends on both the degrees of the vertices and their edge propensity.

We encode edge propensities in a matrix Ω defined as follows.
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Definition 10 (Propensity matrix). Let Ω = (Ωij)i,j∈V ∈ R|V |×|V | be a n×n matrix where
n is the number of vertices. Let (i, j) and (k, l) ∈ V × V . Let ωij,kl the odds-ratio of
sampling one multi-edge between (i, j) instead of (k, l). The entries Ωij and Ωkl of the
propensity matrix Ω are then defined such that Ωij /Ωkl = ωij,kl . This implies that the
propensity matrix Ω is defined up to a constant, as multiplying Ω with any constant
preserves the specified odds-ratios.

Now, we define a random graph model that combines the degree-related combinatorial
effects, i.e., the configuration model, and the newly introduced edge propensities. We
do so by using the propensities to bias the sampling process described in Section 2.1. In
the urn model analogy, such biased sampling implies that the probability of drawing a
certain number of balls of a given colour (i.e., multi-edges between the corresponding
pair of vertices) depends both on their number and their size, as illustrated in Fig. 2.
The probability distribution resulting from such a biased sampling process is given by
the multivariate Wallenius’ non-central hypergeometric distribution [18, 11].

Theorem 7. Let G(V ,E) be a directed graph with n = |V | vertices and m = |E| edges. Under
the assumptions introduced above, the generalised hypergeometric ensemble of graphs (GHy-
pEG) X induced by G and a given propensity matrix Ω follows the multivariate Wallenius’
non-central hypergeometric distribution given in Eq. (23).

Let A ∈ Nn ×Nn be the adjacency matrix associated with G and Ξ ∈ Nn ×Nn be its combin-
atorial matrix defined in Eq. (1). Then the GHypEG defined by Ξ and Ω, G is distributed as
follows:

Pr(X = A) =

∏
i,j∈V

(
Ξij

Aij

)
∫ 1

0

∏
i,j∈V

(
1− z

Ωij
SΩ

)Aij
dz (23)

with
SΩ =

∑
i,j∈V

Ωij(Ξij −Aij). (24)

The distribution describing the biased sampling from an urn is a generalisation of
the multivariate hypergeometric distribution. The proof of Theorem 7 follows from
the fact that, when the sampling is performed without replacement with given relat-
ive odds, this sampling process corresponds to the multivariate Wallenius’ non-central
hypergeometric distribution. Details of this derivation can be found in [18] for the uni-
variate case, and in [7, 6] for the multivariate case. A thorough review of non-central
hypergeometric distributions has been done in [12].

The next two corollaries directly follow from properties of Wallenius’ non-central hy-
pergeometric distribution.
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Corollary 7.1. For each pair of vertices i, j ∈ V , the probability to draw exactly Aij edges
between i and j is given by the marginal distributions of the multivariate Wallenius’ non-
central hypergeometric distribution, i.e.,

Pr(Xij = Aij) =
(
Ξij

Aij

)(
M −Ξij
m−Aij

)
·
∫ 1

0

[ (
1− z

Ωij
SΩ

)Aij (
1− z

Ω̄ij
SΩ

)m−Aij ]
dz (25)

where

Ω̄ij =

∑
(l,m)∈(V×V )\(i,j)ΞlmΩlm

(M −Ξij)
. (26)

Corollary 7.2. The entries of the expected adjacency matrix E
[
Xij

]
can be obtained by

solving the following system of equations:(
1− E [X11]

Ξ11

) 1
Ω11

=
(
1− E [X12]

Ξ12

) 1
Ω12

= . . . (27)

with the constraint
∑
i,j∈V E

[
Xij

]
=m.

The undirected formulation of the GHypEG follows the same reasoning of Theorem 4,
with the addition of a symmetric propensity matrix. That is, the distribution of the
undirected generalised hypergeometric ensemble is hence given by a Wallenius’ dis-
tribution similar to Eq. (23), but corresponding to the upper triangular part of the
matrices (i.e., for i ≤ j) with Ξ defined according to Lemma 3.

2.3 Estimation of the propensity matrix

In this final section, we show how to define the propensity matrix Ω such that the
expected graph E [X] from the model X defined by Ω coincides with an arbitrary graph
G. By doing so, we create a random model centered around the inducing graph. The
result is described in the following corollary, which follows from the properties of
Wallenius’ non-central hypergeometric distribution.

Corollary 7.3. Let G(V ,E) be a graph with n = |V | vertices and A its adjacency matrix.
Let Ω be a n × n propensity matrix, characterised by elements Ωij with i, j ∈ V . Then, G
coincides with the expectation E [X] of the GHypEG X induced by G and Ω if and only if the
following relation holds.

∀c ∈ R− Ωij =
1
c

log
(
1−Aij /Ξij

)
∀i, j ∈ V , (28)

Where Ξ is the combinatorial matrix associated with X and Ξij its elements.
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Proof. Equation (28) follows directly from Corollary 7.1. In particular, when solving
Eq. (27) for Ω with the assumption E [X] = A we obtain the following system of |V |2

equations (in the case of a directed graph with self-loops) for |V |2 + 1 variables.
(
1− E[X11]

Ξ11

) 1
Ω11 = C(

1− E[X12]
Ξ12

) 1
Ω12 = C

...

(29)

The solution of this system is Eq. (28).

A wide range of statistical patterns that go beyond degree effects can be encoded in the
graph model by specifying the matrix Ω of edge propensities. The encoding and fitting
techniques of such arbitrary propensity matrices are beyond the scope of this article,
and will not be discussed here. We refer to [4] for a general method to fit external
dyadic data as propensities.

Finally, we show that the soft configuration model of Section 2.1 is a special case of
generalised hypergeometric graph models. The soft configuration model described in
Theorem 2 can be in fact recovered from the generalised model by setting all entries
in the propensity matrix to the same value. By doing so, the odds-ratio between the
propensities for any pair of vertices is 1, and the edge sampling process is not biased.
Thus, the probability distribution of the model reduces to a function of the degree
sequences and the number of multi-edges sampled.

Theorem 8. Let Ω ≡ const. The corresponding GHypEG coincides with the soft configura-
tion model in Eq. (2) induced by the same graph.

Proof. For the special case of a uniform edge propensity matrix Ω ≡ const, which cor-
responds to an unbiased sampling of edges, for the integral in Eq. (25) we have∫ 1

0

(
1− z

1
(M−m)

)m
dz =

(
M
m

)−1

. (30)

Plugging this result in Eq. (23) we thus recover Eq. (4) for the unbiased case, i.e. where
all edge propensities are identical.

3 Final remarks

We have proposed a novel approach for studying random graphs in terms of an urn
problem. By doing so, we have arrived at an analytically tractable formulation of the
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widely used configuration model of random graphs. Furthermore, we have expanded
the configuration model to the generalised hypergeometric ensemble, which is a whole
new class of models that can incorporate arbitrary dyadic biases in the probabilities
of sampling edges. Importantly, the analytical tractability of the generalised hypergeo-
metric ensembles allows for robust model selection and hypothesis testing of various
topological patterns in empirical data [5]. Moreover, one can perform a multiplex net-
work regression [4] based on our model, in order to find the weighted combination of
multiple relational layers that best describes the observed multi-graph. For instance,
one can study how different social phenomena and environmental factors influence the
topological patterns in repeated social interactions. The ability to analytically perform
such statistical analysis opens new possibilities for the study of complex interaction
data, which pervades many scientific disciplines.
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