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Abstract

The control of complex networks is a significant challenge, especially when the network
topology of the system to be controlled is dynamic. Addressing this challenge, here we in-
troduce a novel approach which allows exploring the controllability of temporal networks.
Studying six empirical data sets, we particularly show that order correlations in the sequence
of interactions can both increase or decrease the time needed to achieve full controllability.
Counter-intuitively, we find that this effect can be opposite than the effect of order correla-
tions on other dynamical processes. Specifically, we show that order correlations that speed
up a diffusion process in a given system can slow down the control of the same system, and
vice-versa. Building on the higher-order graphical modeling framework introduced in recent
works, we further demonstrate that spectral properties of higher-order network topologies
can be used to analytically explain this phenomenon.

Introduction

The fundamental question if and how complex networks can be controlled has important appli-
cations. It can guide the development of interventions that may help us to control distributed
technical infrastructures, cure diseases by means of new forms of medication, or mitigate detri-
mental collective phenomena in socio-economic systems [17]. Controlling such networked systems
translates to our ability to guide them towards a desired state, by means of suitable input signals
fed to a subset of so-called driver nodes. Determining (i) if a system is controllable, (ii) which
nodes we need to control it, and (iii) what kind of input signals are needed to reach a desired
state is a non-trivial task, especially when interactions between the elements of a system are
mediated via a complex network topology.

To address this problem, an analytical framework that combines network theory and control
theory was introduced [18]. Under the assumption that the dynamics of nodes is linear, it was
shown that the problem of finding a minimal set of driver nodes, which allows to control the whole
system, can be cast into an analytically solvable graph-theoretic problem [18, 19, 21, 31, 35, 37].
Moreover, it has been shown that the resulting analysis can be used to identify nodes that are
central with respect to system control[20, 34].
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While this network-analytic perspective on control theory advances our understanding of complex
systems, the majority of works in the area rely on the assumption that the network topology
is static, i.e. that links between the elements of a system are present (and active) continuously.
A body of recent studies not only highlighted the fact that real complex systems exhibit time-
varying topologies, they have also shown that this additional temporal dimension considerably
influences dynamical processes [6, 9, 25, 30, 32]. This raises important questions for controllability,
which have so far only been addressed partly: The authors of [26] and [23] have studied which part
of a system with dynamic topology can be controlled by means of a single driver node. Studying
systems where nodes exhibit heterogeneous activities, their findings suggest that both the degrees
and the temporal distribution of node activities influence the controllability of temporal networks.
Moreover, a comparison of temporal networks with their static counterparts performed in [13]
has revealed that the dynamic nature of links can reduce the time needed to control a system.

These works on temporal networks have already shed some light on the complex role of time-
varying topologies in the control of complex systems. However, little is known about (i) what
specific temporal characteristics drive the observed effects on controllability, and (ii) if and how we
can analytically understand and predict them. Works in these directions have mostly focused on
non-Poissonian distributions of temporal node activities in real systems, which can partly explain
deviations from null models in which nodes are activated at random points in time. Beyond
such effects that are due to the timing of interactions, it was recently shown that dynamical
processes in temporal networks are considerably influenced by the temporal ordering in which
they occur [12, 25, 27, 30, 36]. In a nutshell, independent of the temporal distribution of link
activations (i.e. how far they are apart in time), whether a link (a, b) is activated before or after
link (b, c) crucially affects causality, i.e. whether node a can possibly influence node c or not. In
recent works it has been shown that the resulting effect of link ordering on dynamical processes
(i) is due to non-Markovian characteristics in the link activation sequence in real systems, and (ii)
that it can be understood analytically by studying higher-order network representations [28–30].
Despite the known influence of link ordering on dynamical processes, the question if and how it
affects the controllability of complex systems has not been investigated systematically. Moreover,
a framework that would allow to analytically understand the underlying mechanisms is absent.

Closing this gap, in this work we explore how the ordering of links in temporal networks influ-
ences the controllability of complex systems with time-varying topologies. Studying six empirical
temporal networks, we first show that order correlations, captured in terms of non-Markovian
characteristics in the link activation sequence, can both increase or decrease the time needed to
fully control a system, compared to a null model in which order correlations are removed. To
explain this phenomenon, we extend the graphical modeling framework of higher-order networks
introduced in [28–30]. We specifically generalize the structural controllability framework intro-
duced by [18] to higher-order networks, thus making it applicable to investigate the controllability
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of temporal networks whose link sequences are subject to order correlations. We show that this
approach allows to analytically explain the influence of order correlations on the emergence of
control. Our finding further suggests that both the magnitude and the direction of the effect
depend on the complex interplay between temporal and topological characteristics of systems.
Interestingly and counter-intuitively our study reveals that, considering earlier works highlight-
ing that order correlations can either slow down or speed up diffusion processes, their effect on
the time needed to control a given system can actually be the opposite.

In order to develop a comprehensive analytical framework for controllability of networked sys-
tems, the complex interplay between temporal and topological characteristics of dynamic net-
works must be taken into account. Our work shows that correlations in the ordering of links are
an important component of these temporal characteristics. They change the temporal-topological
structure of temporal networks, and can thus not be neglected when we want to control networked
systems with dynamic interaction topologies.

Results

Prior to presenting our results, we first clarify (i) our notion of a temporal network, (ii) the
dynamics of nodes that should be controlled, and (iii) the concept of controllability that form
the foundation of our work.

Problem description

We define a temporal network G = (V,ET ) as a tuple consisting of a set V of N nodes and a set
ET ⊆ V × V ×N of time-stamped links where (i, j; t) ∈ ET denotes a directed link from node
i to j active at a discrete time t ∈ N. Importantly, we assume that time-stamped links occur
instantaneously. However, links persisting within a time range [t, t+ ∆t] can be represented by
an inclusion of multiple time-stamped links (i, j; τ) for all t ≤ τ ≤ t + ∆t. Such a temporal
network can be represented as a series of network snapshots, each snapshot at time t containing
only those time-stamped links (i, j; t) which occur at time t. Each of these snapshots can further
be encoded in an adjacency matrix A(t) ∈ RN×N, where elements aij(t) (i, j = 1, ..., N) capture
the presence of an interaction from node i to node j at time t.

We assume that the nodes in a temporal network follow a discrete linear dynamics, where the
state xi(t) of node i at time t linearly depends on its own state, as well as that of its neighbors.
We further assume that we are free to control additional input signals of a given set of Nd driver
nodes. For a time-dependent vector X(t) ∈ RN capturing the states xi(t) of all nodes i at time
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t, the dynamics of the system can thus be described as

X(t+ 1) = G(t+ 1)X(t) + BU(t), (1)

where matrix G(t+ 1) = [A(t+ 1)]T + I captures both the time-varying topology of interactions
(A(t+ 1)) as well as “self-interactions” (I) capturing the dependence of a node’s state on its own
previous state. Here, we additionally use a matrix B ∈ RN×Nd to map a time-dependent vector
U(t) ∈ RN of Nd input signals uj(t) (j = 1, 2, .., Nd) to the Nd driver nodes. That is, non-zero
entries bij 6= 0 in this matrix capture the fact that the sequence of input signals uj(t) is assigned
to driver node i.

Considering this definition of the problem, we note that the study of dynamical processes in
dynamic networks generally involves two (possibly different) timescales: First, there is a time scale
associated with the dynamics of links, which captures the speed at which the network topology
changes. A second time scale is associated with the dynamical process, capturing the speed at
which the states of nodes evolve in the network. Keeping this in mind, the definitions above make
the important (implicit) assumption that these two time scales are inherently coupled, i.e. we
assume that the temporal network and the dynamical process evolve at about the same timescale.
At first glance, this assumption of a single time scale seems to simplify the problem. However,
we argue that the opposite is the case: If the process evolves at a much faster time scale than
the network topology, then it can be (asymptotically) viewed as a process evolving in a static
topology. Similarly, if the network topology changes at a time scale that is much faster than
that of the process, the details of the network dynamics are likely to not influence the process.
It is when both time scales are comparable when the influence of the network dynamics on the
dynamical process is maximal, thus justifying our definition.

Structural Controllability in Temporal Networks

Let us now address the controllability of the linear dynamical system introduced above. Following
the algebraic approach introduced by Kalman [10], the size of the controllable subspace (i.e. the
number of nodes that are controllable) of a linear dynamical system with a given set of driver
nodes can be assessed by calculating the rank of a so-called controllability matrix. The application
of this common approach to our scenario of a linear dynamical system in a temporal network
naturally leads to the following temporal controllability matrix [16, 23, 26]

Ct = [GtGt−1...G1B,GtGt−1...G2B, . . . ,GtB,B] ∈ RN×tNd , (2)

where [A,B] denotes the concatenation of two matrices A and B to a new matrix and the prod-
ucts Gt · . . . ·G1 take the role of the matrix power At in the usual definition of the controllability
matrix. In general, Nb := rank(Ct) ≤ N denotes the size of the controllable (sub)system for a
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given assignment of control signals to driver nodes captured in B. According to the Kalman rank
condition [10], a system is controllable if the temporal controllability matrix has full rank, i.e. if
all nodes can be controlled based on the given set of driver nodes.

In general, the study of controllability based on the rank of the controllability matrix introduced
in Eq. 2 allows to incorporate weighted links, where weights capture the strengths of interactions
between nodes. However, in many real world situations – including the data sets studied in
this manuscript – the weights of links, or strengths of interactions, are unknown. Such situations
have been addressed using the framework of structural controllability [14]. The key idea is to treat
both the adjacency matrix A and the “mapping” matrix B as structural matrices whose non-zero
elements are treated as free parameters. We then call a system “structurally controllable” iff we
the free parameters in these structural matrices A and B can be tuned such that the rank of C
Nb equals N .

In a recent work, it was shown that for static networks, structural controllability can be cast
into a graph-theoretical problem, which builds on a generalization of graph matchings to directed
networks [18]. Building on this idea, in the following we explain how the concept of structural
controllability can be generalized to temporal networks. This generalization involves the following
two steps: In a first step, we project the temporal network to a so-called time-unfolded network,
a static representation where time is “unfolded” into an additional topological dimension [25].
In the second step, we can then study the structural controllability of a temporal network by
solving a graph-theoretical problem on the static, time-unfolded network.

For a given temporal network G = (V,ET ), we define a time-unfolded representation as follows:
For all nodes v ∈ V and time stamps t ∈ [1, . . . , T ] we create “temporal copies” vt of nodes
as illustrated in Fig. 1. Each of these “temporal copies” can be thought of as a representation
of the state of node v at time t in the evolution of the temporal network. Moreover, for each
time-stamped link (v, w; t) we generate a directed interaction link (vt, wt+1), which connects the
temporal copy of v at time t with the temporal copy of w at time t+ 1. This special construction
encodes that – due to the time-stamped link (v, w; t) – the state of node v at time t influences
the state of node w at time t+ 1. Since time is unidirectional, we obtain a directed acyclic graph
as shown in Fig. 1. Moreover, this simple projection allows us to study time-respecting paths [22]
as static paths in a directed acyclic graph.

It is tempting to use this construction to study the controllability of temporal networks. However,
the fact that the evolution of a node’s dynamics not only depends on its neighbors, but also on
its own previous state (cf. Eq. 1) requires us to include an additional ingredient. We must
introduce so-called state persistence links which, for each node v connect consecutive temporal
copies vt and vt+1 by a directed link (vt, vt+1). These special state persistence links (see dashed
links in Fig.1) ensure that the state of a node at time t influences its future state at t + 1. We
argue that the inclusion of state persistence links is crucial, especially when studying “sparsely
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Figure 1: Toy example illustrating the controllability of temporal networks with four nodes
a, b, c, d and a single driver node d. (a) shows a static network topology where all links are
assumed to be active at any time. (b-c) show two different examples for temporal networks,
represented in terms of time-unfolded representations. Both examples exhibit the same (time-
aggregated) topology of links, but differ in terms of the order in which links are activated. Red
nodes u(t) correspond to the time-varying control signal applied to driver node d. In both tem-
poral networks, we highlight the maximal set of independent time-respecting paths (purple) as
well as the corresponding controlled subsystem (green nodes). For the temporal network shown
in (b), the system is fully controllable at time t = 3 while in (c) only three of the four nodes
can be controlled. The difference in the size of the controllable (sub)system shows that the
order of link activations affects (i) the structure of independent time-respecting paths, and (ii)
the controllability of temporal networks.

connected” temporal networks where only one or few links are active at each time step. Without
these links, Eq. 1 implies that the state xv(t) of a node i is set to zero whenever there the
temporal copy vt has no incoming (time-stamped) links from another node. We highlight that
this assumption is different from previous works that have studied the structural controllability
of time-unfolded representations of “densely connected” temporal networks, while omitting state
persistence links [26]. To study controllability from the perspective of time-unfolded networks,
we finally must account for the control inputs that are fed into driver nodes. We represent these
control inputs by additional “columns” of nodes ut, which (i) represent the states of control inputs
at time step t, and (ii) are connected to driver nodes according to matrix B (cf. Eq. 1). As we
discuss below, a variant of this time-unfolded projection allows us to study the controllability of
temporal networks using structural controllability theory.

Following the general approach of structural controllability as proposed in [14], let us first assume
that the strengths (or weights) of all links (i.e. including interaction and state persistence links)
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are parameters that can be tuned freely. This assumption allows us to apply the independent
path theorem [26], which states that a set C of nodes in the system is structurally controllable
at time T , if there exist |C| independent paths starting from any input signal to every node in
C at time T . Two paths are considered to be independent if they do not pass through the same
node at the same time. Under these conditions, the independent path theorem states that the
size Nb of the controllable subsystem (i.e. the number of nodes that can be controlled) is given
by the maximum number of independent paths.

Importantly, the assumption that all link weights are free parameters would allow us to freely
assign weights to state persistence links, even though we merely introduced them to “transfer”
the state of a node to the next time step. Setting the weights of these links to any non-zero value
different from one, introduces an amplification or dampening of the state even in the absence
of an interaction with other nodes. Setting them to zero (or omitting state persistence links
altogether) as in [26] implies that the state of nodes is “lost” in absence of external interactions.
Considering that the weights of all state persistence links in the time-unfolded network should
be fixed to one implies that these weights can not be treated as free parameters. This means that
we can not directly apply the independent path theorem to calculate the size of the controllable
subsystem.

To overcome this problem, we must adapt the structural controllability framework in such a way
that it accounts for the special semantics of (i) state persistence links and (ii) temporal copies
in time-unfolded representations of temporal networks. To check whether a set of nodes in a
temporal network is controllable at time T , let us first consider the notion of stem-cycle disjoint
subgraphs as used in [18]. A stem is any path in a network that originates from an input signal,
while a cycle is any path that originates in the same node where it ends. The stem-cycle disjoint
subgraph of a graph contains those stems and cycles where each node belongs either to exactly
one stem or to exactly one cycle, i.e. none of the stems or cycles have a common node. In [18] it
was shown that, for a static graph where link weights can be treated as free parameters, every
node in a stem-cycle disjoint subgraph is structurally controllable.

We now consider how this approach can be applied to time-unfolded networks. We first note that
time-unfolded networks are acyclic, i.e. their stem-cycle disjoint subgraphs are sets of disjoint
stems with no cycles. Since weights of state persistence links cannot be treated as free parameters,
we cannot directly conclude that every node in the stem-cycle disjoint subgraph of a time-
unfolded network is structurally controllable. However we argue that, to fully control all nodes
of a temporal network at a given time T , it is not necessary to control all nodes all the time.
Considering the time-unfolded projection this translates to the fact that – in order to control the
temporal copy vT of a node v, it is not necessary to control all temporal copies vt for t < T . This
means that we do not require all nodes in the stem-cycle disjoint subgraph to be structurally
controllable. At the same time, we observe that if we are able to control a temporal copy vt on a
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stem, we can also control all downstream nodes on this stem for time t′ > t. Thus, answering the
question whether the nodes vT in a set C are controllable, translates to the problem of finding a
set of disjoint stems such that each node vT in C is the endpoint of a stem. Such a set of disjoint
stems corresponds to a set of independent time-respecting paths between driver nodes and the
nodes in C, where two time-respecting paths are considered independent if they do not overlap
in any node.

In Fig. 1 we illustrate the notion of controllability in a temporal network, as well as its de-
pendence on the structure of independent time-respecting paths. Fig. 1 (b) and (c) show time-
unfolded representations of two different temporal networks. Both are consistent with the same
(time-aggregated) static topology shown in Fig. 1 (a). In this example, we are interested in the
controllability of nodes at time T = 3, given a single driver node d. Links that belong to an
independent time-respecting path from any of the temporal copies of this driver node, to one of
the temporal copies at T = 3 are highlighted in purple. In Fig. 1 (b), all four temporal copies
at time T = 3 are the endpoint of an independent time-respecting path. Thus, by feeding a
suitable pattern of control signals to the single driver node d, we are able to control the state of
the whole system at time T = 3. Even though the temporal network in Fig. 1 (c) has the same
topology and frequency of links, we observe that node a is not the endpoint of an independent
time-respecting path. Hence, even though all four nodes are reachable from the driver node d at
time T = 3, only three of the four nodes are controllable at that time. This simple toy example
highlights two important aspects: First, the ordering of links in a temporal network influences
which nodes can be controlled at a given time by a set of driver nodes. Secondly, due to the
dependence on independent time-respecting paths, the controllability of nodes is different from
the question which nodes are reachable from the driver nodes.

Controllability in Real Temporal Networks

The discussion above provides the basis for an algorithmic approach to calculate the size of
the controllable subsystem for a temporal network G = (V,ET ). For this, we must calculate
the maximum set of independent time-respecting paths between the driver nodes and temporal
copies of nodes in a time-unfolded representation. While we refer to the Methods section for
details about the algorithms, we highlight that the problem of identifying a maximum set of
independent time-respecting paths can be reduced to the problem of calculating maximum flows
in an auxiliary graph. In the following, we apply this technique to study how the size of the
controllable subsystem changes over time. Comparing real temporal networks to shuffled versions
in which order correlations have been destroyed, we specifically address the question whether the
ordering of links makes it easier or harder to control the full system.
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We apply this approach to the following six empirical data sets, which represent different types
of complex systems: (AN) contains 1,911 time-stamped antenna-antenna interactions between
89 ants in a colony [3]. (RM) contains 26,260 interactions among 64 students and academic
staff members at a university campus [4]. (EM) contains 11,000 e-mails exchanged between 167
employees in a manufacturing company over one month [5]. (HO) contains more than 15,000
time-stamped contacts recorded by proximity sensing badges among 46 healthcare workers and
29 patients in a hospital for 48 hours [33]. (FL) contains 230,000 multi-segment flights among 116
airports in the United States [1]. (LT) contains itineraries of more than four million passengers
using the London Tube transportation network [2]. Details on how the data have been collected
and processed are given in the Methods section. We highlight that the same data sets have been
used in an earlier study, investigating the effects of link ordering on diffusion processes [30]. Thus,
using the same data sets for the present study allows us to contrast our findings with these earlier
results.

To explore how the ordering of links influences controllability, we compare each of the empirical
data sets with a null model generating randomized versions of the data where the time-stamps of
links are randomly shuffled. The details of this model are given in the Methods section. Here we
emphasize that the generated shuffled versions of temporal networks preserve (i) the topology,
(ii) the frequencies, and (iii) the temporal distribution of time-stamped links, while selectively
destroying order correlations. We can thus use this model to selectively study the effect of link
ordering, ruling out other temporal effects that are, e.g. due to the (heterogeneous) temporal
distribution of link activities. For this, we first choose a random set of driver nodes. Using the
same driver nodes in the empirical and the shuffled temporal networks, we then calculate the
relative size of the controllable subsystem nb(t) = Nb(t)/N at any time t in the evolution of the
system. We repeat the procedure 100 times for different random realizations and random sets of
driver nodes. For the results in this manuscript, we use a fixed fraction of driver nodes of 10%.
This fraction of driver nodes is small enough such that we are not (trivially) able to control most
nodes from the beginning. At the same time it is large enough to allow for a full control of the
studied systems after a reasonable amount of time. However, we have confirmed that our results
do not qualitatively depend on our choice of the fraction of driver nodes.

Figure 2 shows the relative size nb(t) of the controllable subsystem at time t, for each of the
six data sets across 100 simulation runs. Results for the empirical temporal network (for 100

different random choices of driver nodes) are shown as the blue dashed line, while the orange
line shows the results for 100 shuffled versions of the empirical temporal network. The (dashed)
lines give the average size of the controllable subsystem, while the hull curve shows the 95%
confidence interval. If nb(t) for the empirical data set is smaller than for the randomized version
at a given t, the ordering of time-stamped links negatively affects the size of the controllable
subsystem at time t. This can be observed for five of the six data sets, corresponding to the ant
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Figure 2: Relative size of the controllable system nb(t) at time t, where a random sample
of 10% of nodes are used as driver nodes. Blue lines correspond to the original interaction
sequences, and orange lines correspond to shuffled interaction sequences. The shaded areas
indicate the 95% confidence intervals of nb(t) for 100 realizations.

colony (AN), E-Mail interactions (EM), the RealityMining data (RM), hospital contact patterns
(HO) and flight itineraries (FL). For these five systems, the ordering of links decreases the size
of the controllable subsystem at any time t, while it increases the time needed to control a given
fraction of nodes. Interestingly, we find the opposite result for the data on passenger itineraries
in the London Tube (LT). Here, we observe that the ordering of links increasing the size of the
controllable subsystem at any point in time, while it decreases the time needed to control a given
set of nodes. We thus conclude that the ordering of links alone can both improve or worsen the
controllability of temporal networks.

Besides the size of the controllable subsystem at a given time t, we can study the minimum time
TMin required to fully control the system, i.e. TMin := arg mint nb(t) = 1. The calculation of TMin

for each of the 100 simulations (each simulation using a different set of random driver nodes)
yields a distribution of minimum times both for the empirical and the shuffled temporal networks.
In Fig. 3, we compare these two distribution of TMin for each of the six data sets. As expected,
for five out of the six cases the peak of the TMin distribution in the shuffled sequence is shifted
to the right compared to the empirical data, thus indicating that the ordering of interactions
slows down full controllability. On the other hand, for (LT) the peak of the distribution for the
shuffled sequence is shifted to the left compared to the empirical data, thus indicating a speed-up
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Figure 3: Distribution of the minimum time TMin required to achieve controllability of the
whole system (i.e. nb(TMin) = 1). The blue bars refer to the original interaction sequences, and
the orange bars to the shuffled interaction sequences.

of controllability. These results show that the ordering of time-stamped links can both speed up
and slow down controllability in temporal networks.

A comparison of these findings with the results presented in [30] highlights an interesting phe-
nomenon: For four of the six data sets (AN,RM,HO,EM) the observation of a slow-down of
controllability corresponds to the observation that the order correlations in these systems slow
down diffusion dynamics. Similarly, for (LT) the observed speed-up of controllability is in line
with the speed-up of diffusion dynamics observed in [30]. Interestingly, we find the opposite effect
in (FL), where Ref. [30] reports that order correlations speed up diffusion, while we observe a
slow-down of controllability. This leads to the conclusion that the ordering of links in a given
temporal network can have opposite effects on different dynamical processes. This renders general
statements about how the temporal dynamics of networks affect dynamical processes (as they
have sometimes been made) futile. It further supports studies which have demonstrated that or-
der correlations alone give rise to a host of complex phenomena that can neither be understood
based on the frequency or the temporal distribution of links.
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Analysis using higher-order networks

The observation that order correlations have non-trivial (and non-intuitive) effects on the con-
trollability of temporal networks calls for an analytical explanation. To this end, in the following
we deploy the higher-order network modeling framework introduced in [30]. The key idea is to
construct static, time-aggregated representations of temporal networks that encode information
on both the topology and the temporal ordering of time-stamped links. The resulting higher-order
abstractions can be viewed as straight-forward generalizations of common time-aggregated ab-
stractions of temporal networks. For this, we construct a (first-order) time-aggregated network
by aggregating all links that occur in a temporal network, where the weights of links count their
frequencies. Since each link can be viewed as (trivial) time-respecting path of length one, we
can generalize this approach to account for the statistics of longer paths. With this, a second-
order time-aggregated network can be constructed following a simple line graph construction:
Each link (a, b) in the first-order network defines a node a− b in the second-order network. Two
second-order nodes a − b and b − c are connected by a second-order link (a − b, b − c), if the
corresponding time-respecting path a→ b→ c of length two exists, while the weight of this link
counts the frequency of this time-respecting path. For the definition of time-respecting paths,
we follow the common approach to assume a maximum time difference δ, i.e. we assume that a
time-respecting path (a− b, b− c) exists iff there are two time-stamped link (a, b; t1) and (b, c; t2)

such that 0 < t2− t1 < δ. Thus, this parameter δ captures the timescale of time-respecting paths
in the underlying temporal network.

While we refer to [29, 30] for a detailed description of the framework, and its generalization to
arbitrary orders, an example for a second-order time-aggregated representation of a temporal
network is shown in Fig. 4 (b). As shown in [29, 30], a key benefit of such higher-order represen-
tations of temporal networks is that they capture the causal topology of time-respecting paths
in temporal networks. While this simple idea can be generalized towards higher-order models
with arbitrary order [24, 29], variable order [11] and multiple orders[28], here we limit our study
to second-order representations. This has several benefits: First, second-order models are the
simplest higher-order models which capture information on both the topology and the tempo-
ral ordering of time-stamped links [30]. Secondly, building on the statistics of all time-respecting
paths of length two, a second-order model of temporal networks can be constructed even if longer
time-respecting paths are absent. Moreover, since each time-respecting path of length k > 2 nec-
essarily contains multiple time-respecting paths of length two, a second-order model captures
a maximum of data on order correlations of length two (at the expense of neglecting longer
correlation lengths). Finally, the restriction to second-order models helps us to study the effect
of link ordering on the causal topology of temporal networks by means of easily interpretable
generalizations of algebraic quantities along the lines proposed in [30].

Following a similar approach to interpreting controllability as the propagation of independent
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Figure 4: (a) First-order and (b) second-order time-aggregated representations of a temporal
network (c) consisting of four nodes and four time steps.

control signals from driver nodes, in the following we quantitatively study how “connected” the
causal topology of a temporal network is. Intuitively, the “more connected” a temporal network
is, the faster the propagation of control signals and the faster we can control the system. This
level of connectivity is captured by the algebraic connectivity of the network topology, which is
defined as the second-smallest eigenvalue, λ2, of its Laplacian matrix. We thus hypothesize that
the slow-down or speed-up of controllability observed in the empirical data sets can be explained
by changes in the algebraic connectivity of second-order networks that are due to the ordering
of links.

Figure 5(a) compares the algebraic connectivity λ2 of the second-order time-aggregated network
for each of the empirical data sets with the algebraic connectivity of a shuffled counterpart,
with the constraint that δ = δMin. δMin denotes the smallest δ so that most of nodes in a
system can reach each other through time respecting paths. We notice that for the five cases
where we observed a slow-down in controllability, λ2 for the empirical network is smaller than
for its shuffled counterpart. For the (LT) data set, which is the only case in which we observed
a speed-up, λ2 for the empirical network is much larger than for the shuffled version.

To demonstrate the robustness of our approach, we further compute the ratio of λ2 of the second-
order time-aggregated network for the empirical data over that of the shuffled counterpart, while
varying the time scale parameter δ. As shown in Fig. 5 (b), despite fluctuations in the ratio
of λ2 for small δ, all the curves always stay below or above the threshold of one, indicating a
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Figure 5: (a)Algebraic connectivity λ2 of the second-order network of the empirical temporal
networks (blue) and a shuffled temporal sequence without order correlations (orange). (b)Ratio
of λ2 of the empirical sequence over that of shuffled sequence for different δ.

persistent slow-down or speed-up that is independent of δ. Moreover, we observe that the values
converge to one as the value of δ is increased. We attribute this to the fact that large values of δ
effectively lead to time-respecting path structures that more closely resemble the path structure
of a time-aggregated network. This effectively reduces the effect of order correlations, making a
temporal network more similar to a static network (where all transitive paths exist).

These results indicate that the choice of the time scale parameter δ in constructing the second-
order network does not influence the qualitative prediction of λ2. Moreover, for each of the six
systems, we can identify a value δ for which the ratio of λ2 matches the ratio of average TMin for
the empirical data sets over the randomized versions. As shown in Table.1, the optimal value of
δ, which gives us the best quantitative prediction, ranges from 20 to 260 for different data sets.
In consequence, the comparison of the algebraic connectivity of a second-order representation of
a temporal network with its shuffled counterpart provides us with a simple but robust way to
qualitatively predict how the ordering of links affects controllability.

As a final remark, we contrast our findings to the results presented in [30], which used a similar
algebraic approach to study the effect of link ordering on the speed of a diffusion process. Inter-
estingly, our results highlight that the effect of link ordering on diffusion dynamics and control
can be different in the same data set. As argued above, our study reveals that the ordering of
links in the (FL) data set slows down controllability, while in [30] it has been shown that it
speeds up diffusion. These opposite effects can be intuitively understood by considering that
the speed of diffusion is related to the relaxation time of a random walker, while the ability to
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Data type Interaction Pathway
Data name AN HO EM RM FL LT

Ratio of TMin 0.61 0.24 0.80 0.40 0.68 1.91
Ratio of λ2 0.61 0.24 0.81 0.41 0.69 1.89
δ/δMin 20 100 137 17 260 220
δ 140 seconds 100 minutes 68 hours 85 minutes 260 220

Table 1: Value of δ that gives the best quantitative prediction.

control a system is related to the time at which nodes are first reached by a control signal. From
an algebraic point of view, this translates to the fact that the speed up of diffusion in (LT) can
be analytically explained based on the spectral gap of a transition matrix [30], which captures
the relaxation time of a diffusion process. In contrast, our work shows that the slow down of
controllability can be predicted based on the algebraic connectivity. This is in accordance with
previous works that algebraic connectivity has been shown to capture the first hitting time of a
random walker [15]. It is also a lower bound on both the node and the link connectivity that can
be identified by solving a maximum flow problem[8].

Discussion

In summary, we have studied how the ordering of links affects our ability to control dynamical
processes in temporal networks. To this end, we first show how structural controllability theory
can be applied to time-unfolded representations of temporal networks to calculate the size of
the controllable subsystem at any given point in time. We highlight that the special role of state
persistence links and temporal copies of nodes in time-unfolded networks requires an adaptation of
the structural controllability framework. We then show that the size of the controllable subsystem
can be calculated by solving a maximum flow problem on an adjusted time-unfolded graphical
representation of temporal networks.

We applied this method to six empirical data sets capturing temporal networks from different
contexts. A comparison with shuffled versions in which all order correlations are destroyed reveals
that the ordering of links in a temporal network can both speed up or slow down controllability
considerably. Counter-intuitively, a comparison of our results to an earlier study reveals that the
effect of link ordering on controllability and diffusion can be different, even in the same system.
Adopting the analytical framework of higher-order time-aggregated networks, we show that this
counter-intuitive effect can be explained by the non-trivial effects of the ordering of links on
the causal topology of temporal networks. We specifically show that the qualitatively different
effects of order correlations on diffusion and controllability can be understood by comparing
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their effect on the spectral gap and the algebraic connectivity of higher-order network topologies
respectively.

With our work, we contribute a better understanding of which (temporal) characteristics of
complex networks influence our ability to control them. Furthermore, our results demonstrate
that order correlations in temporal networks constitute an independent dimension of complexity
that should not be neglected. Finally, our findings show that higher-order network models are
a powerful tool to better understand temporal-topological characteristics of temporal networks,
by means of a generalization of network-analytic and algebraic methods.

Methods

Calculating the controllable system size Nb

We calculate the controllable system size Nb by identifying the maximum number of independent
paths in a time-unfolded network. The procedure works by constructing an auxiliary network H
as shown in Fig. 6 (b). First, we replace each node v except for driver nodes with vout and vin.
(see Fig. 6(a)) where vin collects all links pointing to v while vout collects all links originating
from v. We further include an additional link from each vin to the corresponding vout. This node-
splitting procedure reflects the constraint that two paths can not pass through the same node
v if we set the weight of this additional link to 1. Moreover, we add one source node which is
connected via directed links to all input signals at all time steps. Finally, we add one sink node
along with directed links connecting all temporal copies at time T to this sink node. The result is
the auxiliary network H presented in Fig. 6 (b). Based on this construction, the task of finding a
maximum set of independent time-respecting paths corresponds to identifying a maximum flow
from source to sink in the auxiliary network where all link capacities are set to one[18]. These
link capacities of one capture the constraint that only one path is allowed to pass through one
node at a given time. With this, the size of the controllable subsystem Nb at time T corresponds
to the maximum flow from source to sink, which can be easily solved in polynomial time [7].

Description of empirical data sets

We study the controllability of temporal networks using six empirical data sets. To check whether
the value of δ used to construct the second-order network influences the qualitative prediction,
we process (FL) and (LT) data sets following the same procedures as detailed in [30]. For the
rest four data sets, we have chosen the smallest δ so that most of the nodes in the second-order
network can mutually reach each other through time-respecting paths, and we only use temporal
links among nodes in the strongly connected component of the second-order network. This way,
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Figure 6: Illustration of the auxiliary time-unfolded network to identify the maximum number
of independent time-respecting paths. This illustration shows the case where an input signal is
attached to only one driver node, however the same construction applies to cases with multiple
driver nodes.

we remove nodes that only appear few times in the data set that can hardly reach others or be
reached by temporal paths. For the (AN) data set, we set δMin = 7 second, so that we have
a strongly connected component with 68 nodes. For the (RM) data set, we have δMin = 300

seconds, and the resulting dataset contains 83 individuals. For the (HO) dataset, we choose
δMin = 60 seconds, and we have interactions among 63 individuals. For the (EM) data set, we
set δMin = 30 minutes, this results a subset of 94 employees. Note that we also run our analysis
with the granulated temporal links as those exactly used in [30], which does not change our main
results.

Description of null model to remove order correlations

We use the weighted first-order aggregate network as the null model. This null model preserves
statistics of time-respecting paths of length one but destroys order correlations presented in a
data set. Based on the expected paths generated by a random walker in the first-order network, we
can further construct a second-order presentation of the same null model. A detailed description
of the process can be found in [30].
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