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a b s t r a c t

The social percolation model Solomon et al. (2000) considers a 2-dimensional regular
lattice. Each site is occupied by an agent with a preference xi sampled from a uniform
distribution U[0, 1]. Agents transfer the information about the quality q of a movie to
their neighbors only if xi ≤ q. Information percolates through the lattice if q = qc =

0.593. – From a network perspective the percolating cluster can be seen as a random–
regular network with nc nodes and a mean degree that depends on qc . Preserving these
quantities of the random–regular network, a true random network can be generated
from the G(n, p) model after determining the link probability p. I then demonstrate how
this random network can be transformed into a threshold network, where agents create
links dependent on their xi values. Assuming a dynamics of the xi and a mechanism of
group formation, I further extend the model toward an adaptive social network model.
© 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Dietrich Stauffer (DS) had a persistent interest in models of social dynamics. Therefore, he became an early member and
strong supporter of the former working group (now division) ‘‘Physics of Socio-Economic Systems’’ (ΦSOE) of the German
hysical Society, which I founded together with Dirk Helbing in 2001.1 Two books by DS and co-authors, ‘‘Evolution, Money,
ar and Computers’’ (1999) [1] and ‘‘Biology, Sociology, Geology by Computational Physicists’’ (2006) [2] nicely demonstrate
is approach towards socio-economic topics. I think that this approach is still well characterized by what we wrote in a
eview at that time: ‘‘Common to both books, statistical physics and computer simulations are creatively used to explain the
ost diverse phenomena. (...) Albeit, in-depth analysis of the topics discussed is not the authors intention. They rather prefer a
eductionistic, sometimes a somewhat superficial way of presenting the problem under consideration. (...) In many cases, this
eems to be a good starting point for further investigations, and scientists obsessed with the idea of putting as much as possible
nto their computer simulations could be impressed by the results obtained already from basic models. (...) ’’2

For this short paper, I focus on one particular publication of DS with relevance for my own research field: Social
percolation models [3], henceforth referenced as the SP paper, or SP model. I remember that DS explained this model
to me during a summer school in Rovinj (Croatia), we jointly organized for the German Academic Scholarship Foundation
in 2002. The SP paper very much follows the spirit described for the books. Still, it received considerable attention: 272
Google citations and 138 citations according to the Web of Science (September 2020).
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Fig. 1. (a) Sketch of a 2d lattice and the network resulting from ρs
= 0.593. (b) Sketch of a random network with the same density. For gray nodes

xi > q, for white nodes xi ≤ q.

The main idea of the SP paper is to study the ‘‘hit and flop’’ dynamics observed for products such as movies (there
is also a follow-up: [4]). The authors’ explanation, in a nutshell: a movie becomes a ‘‘hit’’ if the information about it can
percolate through a lattice, and a ‘‘flop’’ otherwise. To reach the percolation threshold, the movie needs to have a quality
q = qc , where qc = 0.59 on a 2d lattice. In the following, I will summarize the main ideas and comment on possible
extensions, to make the social percolation model a ‘‘social’’ one.

2. From lattice structures to random networks

2.1. Social percolation on a lattice

Let us consider a multi-agent system, where each agent i = 1, . . . ,N can directly influence a number of other agents,
ki. Taking the complex network perspective, agents are represented by nodes and their interactions by links. So, we have
in total N nodes and m links. ki is known as the degree of an agent.

Instead of a network the SP paper discusses the regular topology of lattices. In a 2d regular lattice of size L2 each lattice
ite is connected to 4 neighboring sites by a bond. If each site is occupied by an agent, we have N = L2 agents in total.
o introduce the process that lend its name to the SP paper, the authors assume that each agent is characterized by a
calar variable xi ∈ [0, 1] which is sampled from a uniform distribution, U(x) = U[0, 1]. xi denotes an agent’s individual
‘taste’’, ‘‘quality expectation’’, or preference in general. In the first version of their model, xi is constant over time. Initially,
a few agents get exposed to a movie that has a quality q ∈ [0, 1]. If the movie quality exceeds their expectation, xi ≤ q,
these agents spread this information to their 4 lattice neighbors. If instead xi > q, they do not spread any information.
Agents that have received information about q from their neighbors will compare it with their own preference, xk. Only
if xk ≤ q, they spread the information further, and so forth. As the result of this process, the SP paper finds that agents
with xi ≤ q will form a spanning cluster only if the movie quality is above a critical threshold, q ≥ qc . This is just another
interpretation of the phenomenon of percolation, and DS made significant contributions to percolation theory [5].

That means, in the SP model we distinguish two types of agents, those that actively contribute to the spread of
information and those that do not. Only the former are of interest, as they form the percolating cluster. Let us introduce
the density ρ(q) = n(xi ≤ q)/L2, where n(xi ≤ q) is the total number of agents with a preference xi smaller or equal to
a given value q. Because U(x) is a uniform distribution, the density is given as ρ(q) =

∫ q
0 U(x̂)dx̂ = q. I.e. q defines the

fraction of agents that will successfully spread the information about the movie to their neighbors.
It is known for 2d regular lattices that percolation occurs if ρ ≡ ρc = 0.593, which is the threshold for site percolation.

For a given lattice size L2, the value ρc = qc defines the minimum number of agents nc with a preference xi ≤ qc that
form the percolating cluster. This cluster can be seen as a network on the underlying lattice, as illustrated in Fig. 1(a). The
network size is nc instead of N because agents with xi > q by construction cannot be part of the network. For the sample
network with L = 5 shown in Fig. 1, we obtain nc = 15 for the number of nodes. For the value L = 4000 used in the SP
paper, we get roughly nc = 9.5 × 106.

This network has of course no longer a regular topology, but it is not a random network either as constructed by the

procedures mentioned below. So, let us call this a random-regular network in the following.
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.2. Hits and flops

We now formalize the outcome of the model, i.e. the measures for hits and flops. Each agent i is characterized, in
addition to xi, by a variable si(t) that describes whether the agent has adopted the movie, si(t)=1, or not si(t)=0. Adoption
mplies that xi ≤ q and that agent i spreads this information to its neighbors in the random network. So, we introduce [6]:

si(t) = Θ [wi(t)] ; wi(t) = φi(t) − xi (1)

where the Heaviside function is Θ[y] = 1 if y ≥ 0 and zero otherwise. φi(t) = 0 if the agent has not received any
information about the quality of the movie, and φi(t) = q if it does. More precisely, φi(t) = qΘ[

∑
ij
sij (t − 1) − 1] where

j refers to the four lattice site neighbors j of agent i.
The emergence of a percolating cluster can then be measured by monitoring the fraction of agents forming clusters.

here are two ways to define this fraction. If we choose the lattice size N for reference as in the SP paper, then
(t) =

1
N

∑N
i=1 si(t). ‘‘Social percolation’’ means that for large t the fraction X approaches q ≥ qc . If q < qc , the spread

f information will only generate small clusters that do not encompass the whole network. In the first case, the movie is
‘‘hit’’, in the second case it is a ‘‘flop’’. We note that this distinction holds only for large N . Alternatively, we can also
hoose as a reference the number n of those agents that fulfill the condition xi ≤ q, i.e. X̂(t) =

1
n

∑n
i=1 si(t) [6]. Then,

ocial percolation means that over time X̂ → 1.
In both cases the outcome is entirely determined by the value of q which is either larger or smaller than qc = ρc .

rom the modeling perspective this should be seen as a drawback. Thus, ample ways have been proposed to enrich those
odels such that nontrivial results are obtained. Because of the limited space, I can only mention a few of the recent
evelopments. While the SP model only assumes that a fixed quantity q is transferred between agents, more refined
odels of load distribution give dynamic expressions for φi(t) [6–9]. While the SP model considers regular lattices,

ecent models also consider various network topologies [10]. While the SP paper only presents computer simulations,
eterogeneous mean-field approximations allow for analytical solutions [11,12], even for finite networks [13]. Further,
uch contagion-type models have been developed into models of systemic risk that allow to quantify the impact of external
hocks by calculating X̂(t) [6,14].

.3. From random-regular to random networks

In a next step, we want to turn the topology of the random-regular network into a topology of a true random network,
o get rid of the constraints from the underlying 2d lattice. To make both networks comparable, we have to decide what
arameters should be kept constant. If we keep the number of nodes in the percolating cluster, nc , we still need a second
arameter, because networks are defined by nodes and links. Because we consider site percolation, we do not know from
he outset the total number of links, m, in the percolating cluster. But we can derive an argument for the average degree
k⟩, which we then keep the same for both networks.

What is the average degree for the random-regular network? The probability that a randomly chosen lattice site is
ccupied by an agent with xi ≤ q is given by ρ, and only those agents can be part of the network. Because each agent
as four neighbors on the lattice, we have for the random-regular network ⟨k⟩ = 4ρ2. For a true random network, on the
ther hand, we know that ⟨k⟩ = np, where n is the size of the network and p is the probability to form a link between
ny two agents from n. This gives us p = ⟨k⟩ /n = 4ρ2/n for the random network.
These values allow to construct a true random network by means of the G(n, p) model. It creates a link between any

pair of agents with a certain probability p. With ρ = ρc = 0.593 and n = nc = ρcL2 we find pc = 4ρc/L2. For the sample
lattice with L = 5 this gives pc = 0.094, and for the lattice of the SP paper pc = 0.148 × 10−6. Fig. 1(b) shows a true
random network obtained from the G(n, p) model, the topology of which can be directly compared to the random-regular
network.

3. From random networks to threshold networks

3.1. Generating a social network

From a social science perspective, a major drawback of the SP model is the preassigned social structure. The underlying
2d regular lattice is often interpreted in a social manner by assuming that the lattice encodes a spatial neighborhood. Then
links appear only between local neighbors. This leads to a ‘‘social’’ network, in which two to four agents from the same
neighborhood are linked if their preferences are xi ≤ q.

How realistic are these assumptions for the social situation assumed, namely to talk about the quality of the movie just
watched? Would you talk to randomly chosen neighbors with a completely different taste, just because they happen to
live in your local neighborhood? You would probably share your experience with your friends on a social network, where
local neighborhood is replaced by social neighborhood. But broadcasting the information is precisely not considered in
the SP model, there are only bilateral interactions possible.
3
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To make the social percolation model a social one, we should start by asking why do agents create links to other agents.
In a social system, links are not ‘‘there’’, they are actively established and can also disappear again, this way leading even
to the collapse of large online social networks [15].

Given the fixed values n, p obtained from the random-regular network, as a first social ingredient we assume that
agents want to share their experience likely with those who also share their taste. Consider that pairs of agents are
successively sampled uniformly at random, without replacement. Agents form a link aij only if the differences in their
preferences are below a certain threshold ϵ. We define:

aij = Θ
[
zij

]
; zij = ϵ −

⏐⏐xi − xj
⏐⏐ (2)

The aij have values 0,1 and denote the entries of an adjacency matrix A that completely describes the topology of the
social network. To restrict the interaction by means of ϵ was originally proposed in the so-called ‘‘bounded confidence’’
model, where xi represented the opinion of an agent [16–18].

Obviously, the density of the social network created this way depends on ϵ. On the other hand, the density of the true
random network is determined by the probability p. To derive a relation between ϵ and p, we make use of the fact that
the xi are uniformly distributed in the interval [0, 1]. The percolating cluster only contains agents with xi ≤ qc . To map
this back to the unit interval, we normalize x̃i = xi/qc . For the formation of the social network ∆xij =

⏐⏐xj − xi
⏐⏐ matters, so

∆x̃ij = ∆xij/qc . The distribution function P(∆x̃) of the absolute difference between two uniform variables x̃i, x̃j is known
as the triangular distribution. The cumulative probability F (∆x̃ ≤ ϵ) to find a value ∆x̃ ≤ ϵ follows likewise:

P(∆x̃) = 2 − 2
(
∆x̃

)
; 0 ≤ ∆x̃ < 1

F (∆x̃ ≤ ϵ) = 2ϵ − ϵ2 (3)

To get back to the preference values xi, we use qc = 0.59 and transform

F (∆x ≤ ϵ) = F (∆x̃ × qc ≤ ϵ) = F (ϵ) = 2
(

ϵ

qc

)
−

(
ϵ

qc

)2

(4)

F (ϵ) has a clear interpretation as the fraction of possible pairs of agents in the network that have a link in common. The
maximum of F (ϵ) is obtained when ϵ = qc , which means that with ϵ ≥ qc all agents with xi ≤ qc are indeed connected.
n the G(n, p) model, we sample n(n− 1)/2 pairs of agents and the probability to successfully establish a link is p. Hence,
he fraction of pairs with a link is p. To connect the two, we get

p =
⟨k⟩
n

≡ F (ϵ) = 2
(

ϵ

qc

)
−

(
ϵ

qc

)2

(5)

his quadratic equation has two roots:

ϵ = qc
[
1 ±

√
1 − p

]
(6)

Only the lower value makes sense in our model, because ϵ = qc already means that all nc agents are connected. If p = 0,
i.e. if we have an empty network, ϵ = 0. If p = 1, i.e. if we have an fully connected network, ϵ = qc . For the sample
network with p = 0.094 we find ϵ = 0.028. For the lattice used in the SP paper, we find with p = 0.148 × 10−6 for
ϵ = 0.438 × 10−7. That is not a surprise, because with about 107 nodes the network is quite large, but still has to be
sparse.

The importance of Eq. (6) should not be underestimated, because it allows to relate two very different classes of
network models, the random network models described by a probability p and the threshold network models described
by a tolerance ϵ. Because p is related to the network density, Eq. (6) can be also used to link generating mechanisms other
than the G(n, p) model to threshold models.

Evidently, despite the same mean degree the topologies of the random network and the threshold network are very
different. For the latter also the values of xi matter, which are ignored in the random model. Fig. 2(a), which should be
compared to Fig. 1(b) illustrates this.

3.2. Dynamics on the threshold network

To enrich the hit and flop dynamics, which entirely depends on the percolation density ρc , the SP model introduces also
a dynamics of the agent’s preferences, i.e. xi becomes time dependent. If agent i liked the last movie, i.e. if xi(t − 1) ≤ q,
then this agent raises its preference for the next one by a fixed value δx. Conversely, if the agent did not like the last
movie, q < xi, it lowers the value of the preference by δx. This models an adaptation process with respect to the movie
quality q:

xi(t) =xi(t − 1) + δx if xi(t − 1) ≤ q

xi(t) =xi(t − 1) − δx if xi(t − 1) > q (7)
4
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Fig. 2. (a) Sketch of a threshold network, defined by Eq. (2) with ϵ = 0.028. The color code indicates the values of xi . At difference with Fig. 1, now
nly agents with similar xi are connected. (b) Sketch of a threshold network with adjusted preferences, defined by Eq. (9). Note that some links
ave disappeared, which fragments the network into disconnected components.

s a result, the distribution of the agents preferences, U(x), evolves such that it is narrowly centered around the value of
, i.e. ⟨x⟩ = q.
A similar dynamic argumentation was used also for the movie quality q. If the last movie was a flop, then the quality

f the next movie is increased, it the movie was a hit, the quality is decreased. We can know about hits and flops only
fter sufficiently large times t , i.e. at the end of a cascade. To distinguish this, let us introduce a larger time scale T , at
hich the movie quality is adapted:

q(T ) =q(T − 1) + δq if X(T − 1) ≈ 0

q(T ) =q(T − 1) − δq if X(T − 1) ≈ 1 (8)

hus, we have to rerun the dynamics on the percolation cluster consecutively for a larger number of time steps T . For the
ase δx = 0, δq > 0, i.e. only the movie quality adapts, the SP model results in an equilibrium movie quality q = qc , i.e. the
uality level converges to the percolation threshold. If both the agents’ preferences and the movie quality are allowed to
dapt, δx > 0, δq > 0, one finds that both variables x and q evolve toward their percolation threshold value. This case is
nown in the literature as self-organized criticality [19].
It is a main conceptual drawback with respect to the social science application that agents only respond to the movie

uality, but not at all to the social interaction. This way, again, the existence of a social network is ignored as long as the
ensity of the network is above the percolation density, ρc . So, in a next step, we assume that a successful interaction
etween agents results in an adaptation of their individual preferences.
More specifically, the information exchange is directed and time dependent. Agent i has seen the movie at time t . Only

f xi(t) ≤ q, it will pass on the information about the movie quality to those agents j that have a link to i. We now assume
hat agents j, because of the interaction with i, adjust their preferences xj as follows:

xj(t + 1) = xj(t) + µ
[
xi(t) − xj(t)

]
Θ

[
∆zji

]
(9)

This dynamics resembles the bounded confidence model [16,17], where agents converge with their opinion towards the
common mean, as the result of their interactions. The difference here is that only the agent that receives the information
bout q adjusts its preference xj either to lower or to higher values. The agent that sends this information does not also
djust its preference xi at the same time. It may have changed this value at the time t−1 which it received the information
rom its neighbors. This unilateral adjustment is in line with more recent opinion dynamics models [20].

The dynamics of Eq. (9) changes the preference values xj of all agents that receive the information. This again has
onsequences for the ∆xij(t), which also change, and for the existence of a link. Because j has adjusted its preference
owards i, it will no longer be able to interact with another neighbor k, because of Eq. (2). As we do not assume the
ormation of new links here, the network will become more sparse as a result of the adjustment dynamics, and can
ossibly break into smaller disconnected components. The outcome of such a process is shown in Fig. 2(b).

. From threshold networks to adaptive networks

.1. Two time scales

The previous steps have not considered any dynamics for the network topology. Once this was created with the given

etwork model, the structure was fixed. With the last step we have already introduced a mechanism to delete existing

5
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Fig. 3. (a) Sketch of an adaptive network with consecutive link formation at time T = 100. (b) Sketch of an adaptive network with consecutive link
formation and in-group influence, Eqs. (10), (11) at time T = 100. after threshold network with adjusted preferences, defined by Eq. (9). Note the
large connected component. The color code indicates the values of xi(T ) at time T .

links as the result of the agent dynamics. To prevent the network breakdown into disconnected components, however,
we then also need to assume a mechanism for link formation.

To do so, we make use of the two time scales already mentioned before, in a slightly different manner. The shorter
time scale t describes the dynamics of the agent preferences, xi(t), Eq. (9). It returns a (quasi)stationary value xstati quickly.
The longer time scale T now describes the change of the network topology as a result of the existing values xstati (T ). In
this modified model, links are not there initially. Instead, at each time step T we select one pair of agents (i, j) and test
hether these agents would form a link based on their similar preferences, i.e. based on zij(T ), Eq. (2). If zij(T ) ≥ 0 and
o link exists at time T , a new link is formed and the information about q is transferred from i to j. If a link already exists
nd zij(T ) ≥ 0, it is used for the information transfer. If the link exists from previous interactions, but zij(T ) < 0 at time T ,
he link will be removed. That means the network topology can constantly adapt to the current distribution of the xi(T ).
ig. 3(a) shows the outcome of such a process.
So, from the SP model we have kept the idea to increase or decrease the values of the preferences, xi(t). But different

rom the SP model, we do not consider this adjustment in fixed values, but in response to the preference from the senders
hat have transmitted the information about q. Still, agents have the chance to converge with their preferences to the value
needed for the percolation threshold. However, they do not do this in response to q, but because of social interactions.

.2. Group dynamics

The network dynamics described above does not necessarily result in a stationary state. Instead, with every new
election of pairs of agents, links will change. To introduce an element of stability in this dynamics, we follow a suggestion
rom [21] and consider that agents form in-groups that contain those agents they had previously interacted with. From
socio-economic perspective, interaction is costly also because the search for interaction partners is costly. So, once an
gent ‘‘found’’ someone with a similar preference, it should try to keep the relation alive, that means, the link alive.
As a consequence, agents do no longer decide about link formation and link deletion based on their actual values

ij(T ). Instead, they take the preferences of their existing in-group Ii(T ) into account, such that an effective preference is
considered:

xeffi (T ) = [1 − αi(T )] xi(T ) + αi(T ) ⟨x⟩Ii (T ) (10)

Here ⟨x⟩Ii (T ) is the mean preference of agents in the in-group of i, and αi(T ) weights this influence against the ‘‘native’’
preference xi(T ) of agent i, considering the size of the in-group, |Ii(T )|:

⟨x⟩Ii (T ) =
1

|Ii(T )|

∑
j∈Ii(T )

xj(T ) ; αi(T ) =
|Ii(T )|

|Ii(T )| + 1
(11)

hile agents adjust their preferences xi(t) still according to Eq. (9), their effective preferences xeffi (T ) decide about their
nteractions, i.e. zeffij (T ) = ϵ −

⏐⏐xeffj (T ) − xeffi (T )
⏐⏐. Only if an interaction takes place, i.e. zeffij (T ) ≥ 0, j is added to the in-group

f i and a link between agents i and j is formed.
This dynamics is really interesting because a change of ⟨x⟩Ii (T ) can occur even if i does not interact. This impacts xeffi (t)

continuously. So, two agents i and j randomly chosen at different times may form a link later, or may remove an existing
link because of their in-groups’ influence, as illustrated in Fig. 3(b). This feedback between agents’ preferences and their
in-group structure sometimes allows to obtain a spanning cluster even in cases where the original dynamics would fail.
6
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. Discussion

The aim of the SP paper [3] was to transfer a physical percolation model into a social context. This approach to
einterpret known results from physics as social insights was typical for many sociophysics models of that time [22].
t does not change the main results of the physical model. In our case we again find that qc = ρc = 0.593, which is the
only relevant parameter to quantify the model outcome.

But as I have shown in this short paper, such simplifying physical models still have the potential to bridge the gap
toward social phenomena if they are enriched by additional assumptions about social interactions. These assumptions
can often be rooted in social theories, for instance about homophily [23] or cognitive dissonance [24]. While this requires
some effort, it allows to connect to other disciplines, for example management sciences, where similar problems of product
adoption [25,26] and information contagion [27–29] are addressed.

This discussion could not be accomplished here. Instead, I addressed another interesting issue, namely the connection
between lattices and networks. The information transfer between agents is essentially a dynamic process that runs on, and
is constraint by, a network with fixed topology. Thus, if we start from a 2d regular lattice and only consider the percolating
cluster, how can this be mapped to a random network? If the critical density ρc is known from percolation theory, we
can use the G(n, p) model of random networks to determine a link probability p that preserves certain characteristics of
the regular–random network formed by the percolating cluster. The details of the implementation are left out here, on
purpose.

One step further, we can also link such networks to threshold networks, in which links are determined by agent
quantities, xi. The threshold ϵ to form a link can, under certain assumptions about the distribution of x, be expressed in
terms of the link probability p. This nice insight can be utilized to generate networks in different contexts (percolation,
random link formation, social affinity) that still share certain network characteristics.
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