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a b s t r a c t

‘‘Wisdom of crowds’’ refers to the phenomenon that the average opinion of a group
of individuals on a given question can be very close to the true answer. It requires a
large group diversity of opinions, but the collective error, the difference between the
average opinion and the true value, has to be small. We consider a stochastic opinion
dynamics where individuals can change their opinion based on the opinions of others
(social influence α), but to some degree also stick to their initial opinion (individual
conviction β). We then derive analytic expressions for the dynamics of the collective
error and the group diversity. We analyze their long-term behavior to determine the
impact of the two parameters (α, β) and the initial opinion distribution on the wisdom
of crowds. This allows us to quantify the ambiguous role of social influence: only if the
initial collective error is large, it helps to improve the wisdom of crowds, but in most
cases it deteriorates the outcome. In these cases, individual conviction still improves the
wisdom of crowds because it mitigates the impact of social influence.
©2021 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The idea to establish social science in the spirit of mathematics and physics dates back to the first half of the 19th
entury, when Auguste Comte (1798–1854) launched sociology based on the belief that the society follows general laws
ery much like the physical world. At about the same time Adolphe Quetelet (1796–1874) published his ‘‘Essays on Social
hysics’’ (1835), where he applied probability theory to data from humans. Later developments in sociophysics [1] tried
o adhere to these two approaches: derive a general dynamics applicable to societies, and analyze social data to find
niversal laws. Our paper aligns to these developments.
We do not enter the controversial discussion to what extent sociophysics has really contributed to the understanding of

ocial systems. But a few conceptual frameworks from physics have indeed inspired the discussion about how to formalize
ocial dynamics. At the heart of statistical physics, as proposed in the late 19th century based on the fundamental works
y Ludwig Boltzmann (1844–1906) and J. Williard Gibbs (1839–1903), is the problem of how the microscopic dynamics
f system elements is linked to the dynamics of macroscopic system variables. This question is of paramount importance
lso for the description of social and of economic systems. For instance, how do the opinions of individuals contribute to
he public opinion? How do decisions by individual consumers influence the market dynamics?

To answer such questions requires to solve a number of problems. Ideally one wishes to have a theory that derives,
rom the proposed or observed dynamics of system elements (often termed as agents), the macroscopic dynamics. This
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orks impressively well for some physical systems, but depends on a number of restrictive assumptions for socio-
conomic systems. Nevertheless, the formalization of agent-based models, done in the right manner, is able to provide
he micro-macro link also for such systems, as for example the framework of Brownian agents witnesses [2].

The second problem regards the identification of appropriate macroscopic variables that capture the relevant system
ynamics. Different aggregated measures can be proposed for socio-economic systems. But do they really give insight
nto the conditions that determine the system dynamics? Do they well reflect dependencies between individuals on the
icro level? Can they be linked to experiments or to empirical data?
In our paper, we discuss these problems for a specific application scenario, commonly denoted as the wisdom of crowds

(WoC) [3–5]. In its simplest form, it describes a purely statistical effect. If we take a large number of independent individual
estimates on a continuous scale regarding a certain question, the average over these estimates is surprisingly close to the
true answer to that question. In particular, this average is closer to the truth than most individual and even expert opinions.
This finding was already reported by Francis Galton (1822–1911), who asked visitors at a life-stock fair about the weight
of a particular ox [6]. Ever since, ample evidence for the WoC effect was provided for very different scenarios, such as
guessing tasks [7], problem-solving experiments [8,9], online communities [10,11], or prediction markets [12].

At the same time there is evidence that the collective opinion of a group of individuals can be remarkably wrong with
respect to an objective truth. One reason for this comes from the fact that individual opinions are hardly independent.
Instead, there are, often subtle, social influences that bias individual opinions. In fact, it was shown that complex
mechanisms of social contagion change not only the speed of opinion change, but also its outcome [13–15]. On the
systemic level, this can lead to improvements for the wisdom of crowds, e.g. in case of social networks [16]. But more
often, social influence in decision processes results into situations where, over time, the collective opinion moves farther
and farther away from an objective truth, while all individuals are more and more convinced that they collectively move
towards the right solution. The wrong outcomes of such collective opinion dynamics can lead to disastrous situations as
reported for financial bubbles and stock market crashes [17,18], panic stampedes [19], the evaluation of the probability of
an accident in NASA’s shuttles [20], or conformity to others’ faulty behaviors [21,22]. It seems that the wisdom of crowds
and the madness of crowds [23–25] are two faces of the same coin. This fuels the long-standing discussion under which
conditions the wisdom of experts would outperform the wisdom of crowds [26–28].

In this paper, we aim at deriving formal expressions for the systemic measures that are able to capture the effect of
social influence on the WoC effect. These measures, as proposed in the literature [3,29], are the collective error, measuring
how close the average opinion is to the true value, and the group diversity, measuring the variance of individual opinions.
For the wisdom of crowds, it is required that the group diversity is large, while the collective error is small. But it is to
expect that, in the presence of social influence, the group diversity reduces drastically. This bears the risk that individual
opinions converge to a common opinion that is far way from the true value. But there may be conditions under which
social influence may help to converge to an opinion closer to the truth.

With our investigations, we want to better understand the ambiguous role of social influence. Our approach is
motivated by (i) published experimental findings [29,30] and (ii) their analysis by means of an agent-based model [31,32].
The novel contribution of this paper is in the derivation of analytical expressions for the macroscopic quantities that shall
escribe the WoC effect.
So far, agent-based simulations have been used to obtain insights into the evolution of these quantities. But the

hallenge to analytically solve the problem has not been tackled yet, also because it requires a lot of effort and some
atience, as we demonstrate in this paper. Simulation results are usually quicker and more handy, but provide less insights
nto how the macroscopic indicators for the WoC effect are composed, and what they depend on. Eventually, one wishes
o quantify the range of parameters of the opinion dynamics that may lead to an enhancement or a deterioration of the
oC effect.

. Quantifying the wisdom of crowds

.1. Measures for the wisdom of crowds

pinion distribution. Let us consider an experimental situation, where subjects had, for instance, to estimate the length
f the border of Switzerland, which is a non-zero, positive and possibly large value [29]. Estimation problems like this
resent a problem of logarithmic nature in that people have difficulties choosing the right order of magnitude for their
esponse [33]. The solution space is wide and estimates will exhibit high variance and a wide range of positive values.
herefore the geometric mean (exponential of the mean of the logarithmized data) is a more accurate measure of the
isdom of the crowd as it captures the central tendency of the population better than the arithmetic mean.
Each of our experimental subjects returns an individual estimate, xi, which we call an opinion in the following. The

values of xi are strictly positive and very broadly distributed. As the mentioned experiments have shown, the expected
distribution of opinions, P(x), is right-skewed and can be proxied by a log-normal distribution. This means that the
logarithms of xi follow a normal distribution ln xi ∼ N

(
µln x, σ

2
ln x

)
with mean µln x and variance Var[ln x] = σ 2

ln x.
As noted above the underlying distribution is very broad and the average opinion is not well represented by the

arithmetic mean

µx = ⟨x⟩ =

N∑
xi (1)
i=1

2
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ecause it is much larger than most opinion values. Instead, we use the geometric mean as the appropriate aggregation
easure for the average opinion:

µgeo =

{
N∏
i=1

xi

}1/N

⇒ µln x = lnµgeo =

N∑
i=1

ln xi = ⟨ln x⟩ (2)

In the following, we consider that subjects can change their opinion over time either because of random influences or in
response to information received from other subjects. The details of these influences are specified in the following section.
But from now on, all quantities become time-dependent, i.e. opinions become xi(t). While their initial values xi(0) follow
a log-normal distribution, the same does not hold for times t > 0, because of the assumed influences on the change of
opinions.

The wisdom of crowds is expected to work if the diversity of individual opinions is large, while the deviation of the
average opinion from the true value T is small. Therefore, in line with previous studies [29], we will use the group diversity,
D(t), and the collective error, E(t), as macroscopic measures to evaluate these conditions. We are particularly interested
in the time-dependent change and the stationary values of these measures, as they can indicate under which conditions
the wisdom of crowds will break down. To analyze these conditions is the aim of our paper.

Collective error. E(t) shall be defined as the squared deviation of the average opinion from the true value, T :

E(t) = [ln T − ⟨ln x(t)⟩]2 , (3)

For the dynamics follows:
d
dt

E(t) = −2 [ln T − ⟨ln x(t)⟩]
d
dt

⟨ln x(t)⟩ (4)

Group diversity. We express D(t) by the variance of the opinion distribution:

D(t) = Var [ln x(t)] =
1
N

N∑
i=1

[ln xi(t) − ⟨ln x(t)⟩]2 =
⟨
[ln x(t)]2

⟩
− ⟨ln x(t)⟩2 (5)

In order to derive a dynamic equation for the group diversity we use the delta method to approximate the variance. This
method is in essence a first-order Taylor expansion of the form:

Var [f (X)] ≈
[
f ′ (⟨X⟩)

]2 Var[X] (6)

The method will be a poor approximation in cases where f (X) is highly non-linear. This is not the case when f (X) = ln X .
For the calculation we write

xi(t) = ⟨x(t)⟩ + δi(t) (7)

where δi(t) is an individual’s deviation from the average opinion, with ⟨δ(t)⟩ = 0. With this notation and Eq. (6), the
group diversity becomes:

D(t) =
1

⟨x(t)⟩2
⟨
δ2(t)

⟩
(8)

This compact expression allows us to derive the dynamics in the form:
d
dt

D(t) =
1

⟨x(t)⟩2
d
dt

⟨
δ2(t)

⟩
−

2
⟨x(t)⟩4

⟨
δ2(t)

⟩
⟨x(t)⟩

d
dt

⟨x(t)⟩ (9)

2.2. Opinion dynamics

To formalize how the opinion xi(t) of each subject changes over time, we build on the framework of Brownian
agents [2,34], which considers a superposition of deterministic and stochastic influences on the dynamics:

dxi(t)
dt

= −β [xi(t) − xi(0)] +
1
N

∑
j

Fij(t) + Aξi(t) (10)

xi(0) denotes the initial value. The parameter β describes the individual conviction about the own opinion. The larger
, the more an agent tries to stick to the initial opinion. ξi(t) is Gaussian white noise, i.e. it is not correlated in time,

ξi(t)ξi(t ′)
⟩

= δ(t − t ′), and zero on average, ⟨ξi(t) = 0⟩. A denotes the strength of the stochastic force. The term Fij(t)
eventually describes how the change of opinion of agent i is influenced by the opinion of other agents j. Here, we assume
that agents have information only about the average opinion of all other agents, which is equivalent to a mean-field
scenario. This is reflected in the following assumption for Fij(t):

F (t) = α
[
x (t) − x (t)

]
(11)
ij j i

3
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he parameter α describes the strength of the social influence of other opinions xj(t) on the opinion xi(t). In our ansatz the
social influence from other opinions increases with the difference between opinions. While this sounds like a simplified
assumption, it has been empirically justified in [32], therefore we use it here. Because the coupling variable α is effectively
a constant, equal for all i, we have:

1
N

N∑
j=1

Fij(t) = α [⟨x(t)⟩ − xi(t)] ; ⟨x(t)⟩ =
1
N

N∑
j=1

xj(t) (12)

here ⟨x(t)⟩ is denoted as the mean opinion in the following. Eq. (10) therefore results in the stochastic dynamics:

dxi(t)
dt

= α [⟨x(t)⟩ − xi(t)] + β [xi(0) − xi(t)] + Aξi(t) (13)

Because of the coupling to the mean opinion this type of opinion dynamics relates to earlier studies that address the
averaging of opinions [35,36] and the problems related to this [37]. At the same time, our dynamics differs from the
opinion dynamics that is assumed in the so-called bounded confidence model [38] precisely because it does not restrict
the interaction of agents to a confidence interval ϵ which denotes the tolerable difference in opinions. Also, the bounded
confidence model does not include an individual conviction β , nor a dependence on the initial opinion, nor any stochastic
influences. For a further discussion about the class of models that include our proposed opinion dynamics as well as the
bounded confidence model, we refer to [34].

Averaging the dynamics of Eq. (13) over the whole agent population yields a simple linear form:

d ⟨x(t)⟩
dt

= β [⟨x(0)⟩ − ⟨x(t)⟩] +
A

√
N

⟨ξ (t)⟩ (14)

hich is a standard Ornstein–Uhlenbeck process with the solution:

⟨x(t)⟩ = ⟨x(0)⟩ e−βt
+ ⟨x(0)⟩

(
1 − e−βt)

+
A

√
N

∫ t

0
eβ(s−t)

⟨ξ (s)⟩ ds (15)

herefore the time average of the ensemble average of the opinions, ⟨x(t)⟩, equals ⟨x(0)⟩ for large t .

Initial configuration. In order to solve our dynamic equations for the macroscopic measures D(t) and E(t), we still need
o specify the initial distribution of opinions. We take the log-normal distribution P(x, 0) with the parameters µln x(0)
nd σ 2

ln x(0) as an input, from which N values xi(0) are sampled. Each of these initial values can be represented as
i(0) = ⟨x(0)⟩ + δi(0), Eq. (7), where δi(0) is the deviation of the initial opinion from the initial mean ⟨x(0)⟩. By definition
δ(0)⟩ = 0. We note that only the δi(0) result from the log-normal distribution, while in Eq. (7) the xi(t) and δi(t) are
determined by Eq. (13).

The initial collective error E(0) and the initial average opinion are related by Eq. (3):

µln x(0) = ⟨ln x(0)⟩ = ln T ±

√
E(0) (16)

ence, we only need an additional value σ 2
ln x(0), to calculate the initial group diversity D(0). Then, the initial configuration

n the macroscopic level is given by the pair {E(0), D(0)}. It will be of interest to us to study the dynamics of these values,
n particular their long-term values for t → ∞, {ELT,DLT}.

With these specifications of the systemic measures and the agent variables, we now proceed solving the dynamics
nalytically.

. Analytical results

.1. Collective error

ynamic solution. To calculate E(t), Eq. (3) and dE(t)/dt , Eq. (4), we need to have the explicit expressions for the following
uantities: ⟨ln x(t)⟩, d ⟨ln x(t)⟩ /dt . These are derived in Appendices E and F. Here we only present the results:

d ⟨ln x(t)⟩
dt

=(α + β)
[
1 −

β

β + αe−(α+β)t

] ∞∑
n=1

(−1)n

⟨x(0)⟩n
⟨δn(0)⟩
(α + β)n

[
β + αe−(α+β)t]n

+
A

√
N

⟨ξ (t)⟩
⟨x(0)⟩

(17)

ntegration leads to the solution:

⟨ln x(t)⟩ = ⟨ln x(0)⟩ +

∞∑ (−1)n

⟨x(0)⟩n
αn ⟨δn(0)⟩
n(α + β)n

[
1 − e−(α+β)nt] (18)
n=1

4
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∞∑
n=1

(−1)n

⟨x(0)⟩n
⟨δn(0)⟩
(α + β)n

n−1∑
k=1

1
k

(
n − 1
k − 1

)
βn−kαk [1 − e−(α+β)kt]

With these expressions we have completely described the dynamics of the collective error.

Asymptotic solution. The long term behavior of the collective error results from t → ∞, and we find

ELT =

[
ln T − ⟨ln x(0)⟩ −

∞∑
n=1

(−1)n

⟨x(0)⟩n
αn ⟨δn(0)⟩
n(α + β)n

(19)

−

∞∑
n=1

(−1)n

⟨x(0)⟩n
⟨δn(0)⟩
(α + β)n

n−1∑
k=1

1
k

(
n − 1
k − 1

)
βn−kαk

]2

As we see, the final outcome of the collective error is mainly determined by the properties of the initial opinion distribution,
n particular ⟨x(0)⟩ and ⟨δ(0)⟩, and further by the two model parameters social influence α and individual conviction β .
e will discuss the consequences of this in the next Section.

.2. Group diversity

ynamic solution. To calculate D(t), Eq. (8), and dD(t)/dt , Eq. (9), we need to have the explicit expressions for ⟨x(t)⟩ and⟨
δ2(t)

⟩
as well as their time derivatives. Again, here we only present the result, the derivation is provided in Appendix D.

Plugging in
⟨
δ2(t)

⟩
from Eq. (47) into D(t), Eq. (8), yields:

D(t) =

⟨
δ2(0)

⟩
[⟨x(t)⟩ (α + β)]2

[β + αe−(α+β)t
]
2 (20)

hich is always positive.

symptotic solution. The long term behavior of the group diversity results from t → ∞, and we find

DLT =

⟨
δ2(0)

⟩
β2

[⟨x(0)⟩ (α + β)]2
(21)

here we made use of the fact that ⟨x(t)⟩ ≈ ⟨x(0)⟩, see Eq. (15).
We can further derive how the long-term group diversity depends on the two model parameters, social influence α

and individual conviction β:

d
dα

DLT = −
2
⟨
δ2(0)

⟩
β2

⟨x(0)⟩2 (α + β)3
< 0 ;

d
dβ

DLT =
2αβ

⟨
δ2(0)

⟩
⟨x(0)⟩2 (α + β)3

> 0 (22)

This will be tested in the next section. Further, we see that the final group diversity increases with the initial deviation
from the mean,

⟨
δ2(0)

⟩
:

d
d
⟨
δ2(0)

⟩DLT =
β2

⟨x(0)⟩2 (α + β)2
> 0 (23)

. Discussion

.1. Collective error

We now use our analytical solutions from the previous section to study the dependence of the collective error and the
roup diversity on the two model parameters, social influence α and individual conviction β , and on the variance of the

initial opinion distribution.
The collective error E(t) is defined as the squared difference between the true value, ln T , and the mean opinion,

⟨ln x(t)⟩. Hence, the plot gives a parabola with the minimum at ln T = ⟨ln x(t)⟩. The asymptotic value ⟨ln xLT⟩ is calculated
from Eq. (18). Fig. 1 illustrates how ⟨ln xLT⟩ and consequently ELT, Eq. (19), depend on the two parameters (α, β) (a) and
on the initial variance

⟨
δ2(0)

⟩
(b).

Comparing the sets of parameters (0.01, 0.1) and (0.1, 0.1) we see that for smaller social influence α the motion of
⟨ln x(t)⟩ is slower and the quasi-stationary state of ⟨ln x⟩ is respectively closer to the initial value (Fig. 1(a), dotted vs.
dotted–dashed line). On the other hand, comparing the sets of parameters (0.1, 0.1) and (0.1, 0.6) we see that for smaller
individual conviction β the motion of ⟨ln x(t)⟩ is larger and the quasi-stationary state of ⟨ln x⟩ is respectively further away
from the initial value (Fig. 1(a), dotted–dashed vs. long-dashed line).

Obviously, a larger individual conviction β counteracts the effect of a larger social influence α, which ultimately results
in the smallest collective error. That means, we observe a struggle between social influence α and individual conviction
5
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Fig. 1. Collective error E dependent on ⟨ln x⟩. True value: lnT = −2.83 (solid black line). Initial condition: ⟨ln x(0)⟩ = −3 (dashed black line),
(0) = 0.02, ⟨x(0)⟩ = 0.075. (a)

⟨
δ2(0)

⟩
= 0.006. Stationary states for different parameters (α, β): (0.01, 0.1) (dotted line), (0.1, 0.1) (dotted–dashed line),

0.1, 0.6) (long-dashed line). (b) (α, β) = (0.1, 0.1). Stationary states for different initial variances
⟨
δ2(0)

⟩
= 0.004 (dashed line), 0.01 (dotted–dashed

line).

Fig. 2. Evolution of the group diversity D(t) over time. (a)
⟨
δ2(0)

⟩
= 0.006, D(0) = 0.8, ⟨x(0)⟩ = 0.075. Different parameters (α, β): (0.5, 2.0) (solid

ine), (0.8, 2.0) (dotted line), (0.8, 2.5) (dashed line). (b) (α, β) = (0.8, 0.2), ⟨x(0)⟩ = 0.075. Different initial variances
⟨
δ2(0)

⟩
: 0.006 (dotted line), 0.004

solid line).

. A larger α expands the range of motion of ⟨ln x(t)⟩, consequently increases the convergence limit, whereas a larger β
restricts it. These opposing effects may lead to a reduction of long-term E , as in Fig. 1(a). But, as we will demonstrate in
Fig. 3 in the next Section, conditional on the initial conditions E(0) and D(0), these two opposing effects may also lead to
deterioration.
The effect of the initial variance,

⟨
δ2(0)

⟩
, on the long-term collective error is similar to the influence of α. A larger

eterogeneity in the initial opinions which directly translates to larger initial group diversity, leads to longer motion
f ⟨ln x(t)⟩ (Fig. 1(b), dotted vs. dotted–dashed lines) and consequently to a higher ⟨ln xLT⟩. In line with the above

argumentation, whether this has a positive or a negative net effect on the collective error depends entirely on the initial
distribution of opinions and is further discussed in Section 4.3.

In conclusion, for given parameters (α, β) the initial condition ⟨ln x(0)⟩ uniquely determines the end value of the
collective error. It should be noted that the log of the geometric mean exhibits only rightward motion, since d⟨ln x(t)⟩/dt >
0, Eq. (17). Hence, if we start from ⟨ln x(0)⟩ > ln(T ) the collective error will always increase.

4.2. Group diversity

The dependency of the group diversity D(t) on the parameters (α, β) and the initial variance
⟨
δ2(0)

⟩
resembles that

of the collective error (within the parameter space in which it is well defined). Fig. 2(a) shows the effect of the social
influence α and the individual conviction β . As expected from the analytical solution in Eq. (22), the increase of social
influence leads to a gradual decrease of the group diversity towards the steady state given by Eq. (21), whereas the
increase of individual conviction leads to an increase in group diversity.

Fig. 2(b) illustrates that an increase of the initial variance slightly increases also the group diversity. However, because
of the social influences, the impact of the initial variance becomes smaller over time.

4.3. Exploring the parameter space

To complement the discussion of the specific cases above and to reveal a more profound insight on the impact of
social influence and individual conviction, we run a parameter sweep on (α, β). In Fig. 3 we have calculated the long-
term collective error E , Eq. (19), for three different initial values of the collective error which are chosen such that they
LT

6



P. Mavrodiev and F. Schweitzer Physica A 567 (2021) 125624
Fig. 3. Color-coded long-term collective error ELT dependent on the values of social influence α (x-axis) and individual conviction β (y-axis). Different
initial conditions: (a) E(0) = 0.80, lnT = −2.00, ⟨ln x(0)⟩ = −2.9, (b) E(0) = 0.02, lnT = −3.12, ⟨ln x(0)⟩ = −3.0, (c) E(0) = 0.01, lnT = −2.90,
⟨ln x(0)⟩ = −3.0. Black contour lines indicate regions in the parameter space where ELT = E(0). Note that these are vertical lines at α = 0 in all
plots, in (c) there is an additional line.

Fig. 4. Color-coded long-term group diversity DLT dependent on the values of social influence α (x-axis) and individual conviction β (y-axis). Initial
condition: D(0) = 0.72.

represent three characteristic scenarios. The color code indicates the value of ELT. Blue color represents low numerical
values, which are desirable, and red — high values, which are detrimental. We also note that the color code is not consistent
across plots, e.g. blue does not always mean ELT = 0. Each plot indicates with a black line those parameter combinations
(α, β) for which ELT = E(0). Except for Fig. 3(c), these lines are barely noticeable because they coincide with α = 0.

We remind that the average opinion can only increase, since d⟨ln x(t)⟩/dt > 0, Eq. (17). This was described as a
rightward motion of ⟨ln x(t)⟩ in Fig. 1. So, can we reach a situation where ELT = 0? This depends solely on the initial
condition, ⟨ln x(0)⟩. Fig. 3(a, c) depict initial configurations where ⟨ln x(0)⟩ < ln(T ). Thus, according to the plot in Fig. 1,
there is a chance that ELT = 0, i.e. a convergence of the collective opinions to the true value. This is not the case for
Fig. 3(b), where the initial configuration is ⟨ln x(0)⟩ > ln(T ).

Nevertheless, in all situations there are parameter sets (α, β) that minimize the collective error, ELT. Thus, we are
interested to know whether this minimum value increases or decreases if we vary α or β . Fig. 3(a) illustrates a situation
where we have initially a large collective error, E(0) = 0.8. Because of this, an increase in social influence, α, always
improves the collective error. But an increase in individual conviction β makes this worse, because it reinforces the initial
situation, which was bad. For α = 0.4, for instance, we see with increasing β a color change from (green) to (red).

The situation is different in Fig. 3(c), which as a similar initial configuration, but a very small initial collective error,
E(0) = 0.01. Because of this, a large increase in social influence, α > 0.5, will lead to a deterioration. This can be
counterbalanced by an increase of individual conviction β . Taken e.g. at α = 0.8, an increase of β leads to a considerable
improvement with respect to the collective error.

At difference with the two other configurations (a) and (b), in Fig. 3(c) we see a non-monotonous dependency of the
collective error on the parameters (α, β). Even that the initial collective error was very small, there are large parameter
ranges where ELT < E(0) (deep blue). The collective error can also reach the minimum ELT = 0. Obviously, those parameter
ranges optimize the wisdom of crowds. We note that this is the case for a non-zero, but not too large social influence,
α < 0.5.

Fig. 3(b), despite the different initial condition ⟨ln x(0)⟩ > ln T , resembles more the dependency of Fig. 3(c) than
of Fig. 3(a), because the initial collective error is also small, E(0) = 0.02. But here we do not find a non-monotonous
dependency of the collective error; instead it always increases. In this situation, any social influence α will only deteriorate
the outcome, in particular if it becomes large. This can be counterbalanced by an increasing individual conviction β .

From this discussion we have to conclude that there is no simple monotonous impact of α or β on the collective error.
It is very important how far the initial average opinion is away from the truth, and it is as important if it is below or
above the true value. Given that, there are parameter ranges, where an increasing social influence can also improve the
collective error. But this impact cannot be decoupled from the influence of the individual conviction, which reinforces a
good or a bad initial opinion distribution.
7
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s

In Fig. 4 we have plotted how the long-term group diversity depends on the parameters (α, β) for the three cases

hown in Fig. 3. We note that DLT behaves the same for all three cases, as it depends only on α, β and
⟨
δ2(0)

⟩
, which are

invariant across the three starting states. We recall that the wisdom of crowds depend on a large group diversity, thus
(red) indicates the better and (blue) the worse outcomes. As it can be expected from the discussion above, a larger social
influence α always negatively impacts the group diversity, regardless of the starting configuration. Individual conviction
β acts in the opposite way — it maintains diversity in the group by increasing the reluctance against a change of opinions.

5. Conclusion

The wisdom of crowds is an intriguing phenomenon. The observation that the average of diverse opinions about a
given questions is often more accurate than any single estimate is counter intuitive at first sight. But numerous anecdotal,
empirical and theoretical investigations across a variety of settings support this finding [5,12,39,40].

However, the wisdom of crowds depends on a crucial assumption that is hard to maintain under real circumstances,
namely the indepencence of opinions. Quite often, external events, random occurrences or social influences from others
lead to a change of individual opinions that also impact the wisdom of crowds.

The aim of our paper was to study this impact of social influence in more detail. We utilize a opinion dynamics model
proposed before [31] that considers three different ingredients: (i) the individual conviction β to keep the initial opinion
xi(0) despite other influences, (ii) the social influence α to change the own opinion xi(t) if information about the average
opinion ⟨x(t)⟩ becomes available, and (iii) small random influences Aξi(t).

Instead of running agent-based simulations, we aimed at deriving analytic expressions for the two most important
systemic quantities that describe the wisdom of crowds effect: the collective error E(t) and the group diversity D(t). Our
only input, in addition to the opinion dynamics model, Eq. (13), are assumptions about the initial opinion distribution,
which allows us to derive expressions for the average initial opinion ⟨ln x(0)⟩ and the average initial variance

⟨
δ2(0)

⟩
. A

quite cumbersome derivation allowed us to find closed-form expressions for the long-term collective error ELT, Eq. (19),
and the long-term group diversity DLT, Eq. (21). These expressions could then be calculated numerically to analyze the
impact of the two parameters (α, β) and the initial conditions, E(0), D(0), which have been derived from ⟨ln x(0)⟩ and⟨
δ2(0)

⟩
.

Our systematic evaluation of the impact of the parameters and the initial conditions reveals the ambiguous role of
social influence α on the wisdom of crowds. We could identify scenarios where increasing the social influence indeed
improves the wisdom of crowds: if the initial collective error is high, but the initial average opinion is below the true
value. But we could also demonstrate that an increasing social influence deteriorates the wisdom of crowds, if the initial
collective error is already low.

This behavior is mitigated by the influence of the individual conviction β , which always reinforces the impact of the
initial opinion. In those cases, where the initial collective error is large, i.e. the starting configuration of opinions is rather
bad, a large individual conviction does not improve the outcome. But in those cases, where the initial collective error is
already small, a large individual conviction helps to counterbalance the impact of social influence, and thus leads to better
outcomes.

In particular, we could identify scenarios where the collective error vanishes, i.e. the average opinion converges to the
true value. This is the case if the initial collective error is low, the initial average opinion is below the true value and the
social influence is at low to moderate values.

The generality of our results of course depend on the assumptions about the opinion dynamics. It may seem
that a coupling of the individual opinion to the average opinion is not the most realistic scenario. But this beguiles.
Analyzing experimental data, it was shown that this dynamics indeed captures the opinion dynamics of subjects in these
experiments [32]. So, there is evidence for our proposed dynamics.

One could wish to generalize the derivations provided in this paper to more complex opinion dynamics that do
not assume couplings to the mean. However, we were unable to find analytic expressions for the relevant measures,
collective error and group diversity, for more complex cases. Nevertheless, the analysis provided in this paper allows us
to understand and to quantify the impact of social influence on the wisdom of crowds, without the need for agent-based
computer simulations. As we have demonstrated, social influence is not inherently ‘‘good’’ or ‘‘bad’’, per se. It depends
particularly on the initial opinion distribution, i.e. the prior knowledge of the individuals, whether social influence can
improve the wisdom of crowds.
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ppendix A. Derivation of ⟨δ(0)δ(t)⟩

Before we can calculate our quantities of interest, we have to derive expressions for some terms involving δ(0) and δ(t)
o be used later. We remind that these δ, according to Eq. (7), describe deviations from the mean at different times. δ(0)
s the initial deviation and follows the log-normal distribution. δ(t), however, depends on the dynamics of x(t), Eq. (13).

Keeping in mind that the ensemble average and the differential are linear operators and thus interchangeable:

d ⟨δ(0)δ(t)⟩
dt

=

⟨
dδ(0)δ(t)

dt

⟩
=

⟨
dδ(t)
dt

δ(0) + δ(t)
dδ(0)
dt

⟩
(24)

he terms dδi(0)/dt = 0 since all δi(0) are constants. Hence:

d ⟨δ(0)δ(t)⟩
dt

=

⟨
dδ(t)
dt

δ(0)
⟩

=

⟨
d(x(t) − ⟨x(t)⟩)

dt
δ(0)

⟩
=

⟨
dx(t)
dt

δ(0)
⟩
−

⟨
d ⟨x(t)⟩

dt
δ(0)

⟩
=

⟨
dx(t)
dt

δ(0)
⟩
−

d ⟨x(t)⟩
dt

⟨δ(0)⟩  
=0

=

⟨
dx(t)
dt

δ(0)
⟩

(25)

Now we can plug in x(t) from Eq. (13):

d ⟨δ(0)δ(t)⟩
dt

=

⟨
δ(0)α(⟨x(t)⟩ − x(t)  

=−δ(t)

) + δ(0)β(x(0) − x(t)) + Aξ (t)δ(0)

⟩
= − α ⟨δ(t)δ(0)⟩ + β ⟨δ(0)(⟨x(0)⟩ + δ(0))⟩ − β ⟨δ(0)(⟨x(t)⟩ + δ(t))⟩

+
A

√
N

⟨ξ (t)δ(0)⟩

= − α ⟨δ(t)δ(0)⟩ + β
⟨
δ2(0)

⟩
− β ⟨δ(0)δ(t)⟩ +

A
√
N

⟨ξ (t)δ(0)⟩  
=⟨ξ (t)⟩⟨δ(0)⟩=0

=β
⟨
δ2(0)

⟩
− (α + β) ⟨δ(0)δ(t)⟩ (26)

here we have used the fact that ξi(t) and δi(0) have negligible covariance. This is true because generation of the δi does
ot depend on the white noise, nor does the ξi’s depend on the initial distribution of δi. The solution of the above equation

is:

⟨δ(0)δ(t)⟩ =
β
⟨
δ2(0)

⟩
α + β

+ Ce−(α+β)t (27)

The constant C is given by the initial condition ⟨δ(0)δ(0)⟩:

C = ⟨δ(0)δ(0)⟩ −
β
⟨
δ2(0)

⟩
α + β

(28)

owever, ⟨δ(0)δ(0)⟩ =
⟨
δ2(0)

⟩
, hence:

C =
α

α + β

⟨
δ2(0)

⟩
(29)

herefore:

⟨δ(0)δ(t)⟩ =
β
⟨
δ2(0)

⟩
α + β

+
α

α + β

⟨
δ2(0)

⟩
e−(α+β)t (30)

ppendix B. Derivation of
⟨
δ(0)δ2(t)

⟩
We use again the fact that the ensemble average and the differential are interchangeable:

d
⟨
δ(0)δ2(t)

⟩
dt

=

⟨
dδ(0)δ2(t)

dt

⟩
=

⟨
δ(0)

dδ2(t)
dt

+ δ2(t)
dδ(0)
dt

⟩
(31)

he δ(0) are constant, hence dδ(0)/dt = 0:

d
⟨
δ(0)δ2(t)

⟩
dt

= 2
⟨
δ(0)δ(t)

dδ(t)
dt

⟩
= 2

⟨
δ(0)δ(t)

d
dt

(x(t) − ⟨x(t)⟩)
⟩

= 2

[⟨
δ(0)δ(t)

d
dt

x(t)
⟩
− ⟨δ(0)δ(t)⟩

d
dt

⟨x(t)⟩

]
(32)
9
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lugging in x(t) from Eq. (13) yields:

d
⟨
δ(0)δ2(t)

⟩
dt

= 2

[⟨
δ(0)δ(t)

[
α(⟨x(t)⟩ − x(t)  

=−δ(t)

) + β(x(0) − x(t)) + Aξ (t)
]⟩

− ⟨δ(0)δ(t)⟩
d
dt

⟨x(t)⟩

]

= −2α
⟨
δ(0)δ2(t)

⟩
+ 2β ⟨δ(0)δ(t)⟩

(
⟨x(0)⟩ − ⟨x(t)⟩

)
+ 2β

⟨
δ2(0)δ(t)

⟩
(33)

− 2β
⟨
δ(0)δ2(t)

⟩
+

2A
√
N

⟨ξ (t)⟩ − 2β ⟨δ(0)δ(t)⟩
(
⟨x(0)⟩ − ⟨x(t)⟩ −

2A
√
N

⟨ξ (t)⟩
)

he noise term becomes negligible for large N , hence we can rewrite:

d
⟨
δ(0)δ2(t)

⟩
dt

= 2β
⟨
δ2(0)δ(t)

⟩
− 2(α + β)

⟨
δ2(0)δ(t)

⟩
(34)

aking use of the expression for
⟨
δ2(0)δ(t)

⟩
, Eq. (40), derived below, we can rewrite Eq. (34) as:

d
⟨
δ(0)δ2(t)

⟩
dt

= −2(α + β)
⟨
δ2(0)δ(t)

⟩
+

2β2

α + β

⟨
δ3(0)

⟩
+

2αβ

α + β

⟨
δ3(0)

⟩
e−(α+β)t (35)

which has the closed-form solution:⟨
δ(0)δ2(t)

⟩
=

⟨
δ3(0)

⟩
(α + β)2

[
β2

+ 2αβe−(α+β)t
+ α2e−2(α+β)t

]
(36)

his can be generalized as follows:⟨
δ(0)δn(t)

⟩
=

⟨
δn+1(0)

⟩
(α + β)n

[
β + αe−(α+β)t]n (37)

Appendix C. Derivation of
⟨
δ2(0)δ(t)

⟩
We can use the same method applied in the previous section to expand:

d
⟨
δ2(0)δ(t)

⟩
dt

=

⟨
δ(t)

d
dt

δ2(0)  
=0

+δ2(0)
d
dt

δ(t)

⟩
=

⟨
δ2(0)

d
dt

(
x(t) − ⟨x(t)⟩

)⟩

=

⟨
δ2(0)

d
dt

x(t)
⟩
−
⟨
δ2(0)

⟩ d
dt

⟨x(t)⟩ (38)

sing the expressions for x(t) and ⟨x(t)⟩ from Eqs. (13), (14), we obtain:

d
⟨
δ2(0)δ(t)

⟩
dt

=

⟨
δ2(0)

[
α
(
⟨x(t)⟩ − x(t)

)
+ β

(
x(0) − x(t)

)
+ Aξ (t)

]⟩
−
⟨
δ2(0)

⟩ [
β
(
⟨x(0)⟩ − ⟨x(t)⟩

)
+

A
√
N

⟨ξ (t)⟩
]

= −α
⟨
δ2(0)δ(t)

⟩
+ β

⟨
δ2(0)

⟩ (
⟨x(0)⟩ − ⟨x(t)⟩

)
+ β

⟨
δ3(0)

⟩
− β

⟨
δ2(0)δ(t)

⟩
+ D

⟨
δ2(0)ξ (t)

⟩
− β

⟨
δ2(0)

⟩ (
⟨x(0)⟩ − ⟨x(t)⟩

)
−

A
√
N

⟨
δ2(0)

⟩
⟨ξ (t)⟩

= β
⟨
δ3(0)

⟩
− (α + β)

⟨
δ2(0)δ(t)

⟩
(39)

here we have used that the expectations involving the noise terms are 0. The solution to this first-order ODE is given
y: ⟨

δ2(0)δ(t)
⟩
=

β

α + β

⟨
δ3(0)

⟩
+

α

α + β

⟨
δ3(0)

⟩
e−(α+β)t (40)

sing the same line of arguments, we can obtain:⟨
δm(0)δn(t)

⟩
=

⟨
δm+n(0)

⟩
(α + β)n

[
β + αe−(α+β)t]n, m, n ≥ 0 (41)

which is a generalization of the previous Eqs. (30), (37), (41).
10
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ppendix D. Derivation of
⟨
δ2(t)

⟩
Eventually, we express:

d
⟨
δ2(t)

⟩
dt

= 2
⟨
δ(t)

dδ(t)
dt

⟩
(42)

ewriting δ(t) from Eq. (7), and using Eqs. (13), (14) for x(t) and ⟨x(t)⟩, respectively:

2
⟨
δ(t)

dδ(t)
dt

⟩
= 2

⟨
δ(t)

(
dx(t)
dt

−
d ⟨x(t)⟩

dt

)⟩

= 2

⟨
δ(t)

⎛⎜⎝α(⟨x(t)⟩ − x(t)  
=−δ(t)

) + β
[
x(0) − ⟨x(0)⟩  

=δ(0)

+ ⟨x(t)⟩ − x(t)  
=−δ(t)

]
+ D

(
ξ (t) −

1
√
N

⟨ξ (t)⟩
)⎞⎟⎠⟩

= 2
⟨
δ(t)

(
−αδ(t) + β(δ(0) − δ(t)) + D

(
ξ (t) −

1
√
N

⟨ξ (t)⟩
))⟩

= 2β ⟨δ(0)δ(t)⟩ − 2(α + β)
⟨
δ2(t)

⟩
+ 2

A
√
N

⟨δ(t)ξ (t)⟩ − 2
A

√
N

⟨ξ (t)⟩ ⟨δ(t)⟩ (43)

i(t) is Gaussian white noise, and we assume that it has a negligible influence on xi(t). This is a reasonable assumption,
ecause the major contribution to dxi(t)/dt comes from α and β , hence it is justified to conclude that xi(t) and ξi(t) have

a negligible covariance. Hence ⟨δ(t)ξ (t)⟩ − ⟨δ(t) ⟨ξ (t)⟩⟩ ≈ 0. Using this we obtain:

d
⟨
δ2(t)

⟩
dt

= 2β ⟨δ(0)δ(t)⟩ − 2(α + β)
⟨
δ2(t)

⟩
(44)

lugging in Eq. (30), the closed form solution is given by:⟨
δ2(t)

⟩
=

β2
⟨
δ2(0)

⟩
(α + β)2

+
2Cβe−(α+β)t

α + β
+ C1e−2(α+β)t (45)

here C1 is a constant obtained from
⟨
δ2(t = 0)

⟩
=
⟨
δ2(0)

⟩
, and C is the constant from (29). Substituting the constants

yields:

⟨
δ2(t)

⟩
=

[
e−(α+β)tα + β

]2 ⟨
δ2(0)

⟩
(α + β)2

(46)

gain, this can be generalized to:⟨
δn(t)

⟩
=

⟨δn(0)⟩
(α + β)n

[
β + αe−(α+β)t]n (47)

Appendix E. Derivation of Eq. (17)

We start from Eq. (13), which can be rewritten as:

d ln xi(t)
dt

=
α ⟨x(t)⟩
xi(t)

− α +
βxi(0)
xi(t)

− β +
Aξi(t)
xi(t)

(48)

he ensemble average of Eq. (48) is:

d ⟨ln x(t)⟩
dt

= α

⟨
⟨x(t)⟩
xi(t)

⟩
− α + β

⟨
xi(0)
xi(t)

⟩
− β +

A
√
N

⟨
ξi(t)
xi(t)

⟩
(49)

i(t) and xi(0) can be expressed by small deviations from their respective means, as written in Eq. (7). We further use a
aylor expansion around zero:(

1 +
δ(t)

⟨x(t)⟩

)−1

=

∞∑
n=0

(−1)n

⟨x(t)⟩n
⟨
δn(t)

⟩
(50)

With this, Eq. (49) can be approximated as follows:

d ⟨ln x(t)⟩
dt

= α

⟨(
1 +

δ(t)
⟨x(t)⟩

)−1
⟩

− α + β

⟨
x(0)
x(t)

⟩
− β +

A
√

⟨
ξ (t)
x(t)

⟩

N

11
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W
t

H

T

A

= α

⟨
∞∑
n=0

(
−

δ(t)
⟨x(t)⟩

)n
⟩

+ β

⟨ ⟨x(0)⟩
(
1 +

δ(0)
⟨x(0)⟩

)
⟨x(t)⟩

(
1 +

δ(t)
⟨x(t)⟩

) ⟩− α − β +
A

√
N

⟨
ξ (t)
x(t)

⟩

= α

⟨
∞∑
n=0

(−1)n

⟨x(t)⟩n
⟨
δn(t)

⟩⟩
+ β

⟨x(0)⟩
⟨x(t)⟩

⟨(
1 +

δ(0)
⟨x(0)⟩

)(
1 +

δ(t)
⟨x(t)⟩

)−1
⟩

− α − β +
A

√
N

⟨
ξ (t)
x(t)

⟩
= α

∞∑
n=0

(−1)n

⟨x(t)⟩n
⟨
δn(t)

⟩
+ β

⟨x(0)⟩
⟨x(t)⟩

⟨(
1 +

δ(0)
⟨x(0)⟩

)
.

∞∑
n=0

(−1)n

⟨x(t)⟩n
⟨
δn(t)

⟩⟩

− α − β +
A

√
N

⟨
ξ (t)
x(t)

⟩
= α

∞∑
n=0

(−1)n

⟨x(t)⟩n
⟨
δn(t)

⟩
+ β

⟨x(0)⟩
⟨x(t)⟩

[
∞∑
n=0

(−1)n

⟨x(t)⟩n
⟨
δn(t)

⟩
+

∞∑
n=0

(−1)n ⟨δ(0)δn(t)⟩
⟨x(0)⟩ ⟨x(t)⟩n

]

− α − β +
A

√
N

⟨
ξ (t)
x(t)

⟩
(51)

e now express ⟨δn(t)⟩ by means of Eq. (47) and ⟨δ(0)δn(t)⟩ by means of Eq. (41). Further, we make again the assumption
hat the random noise, ξi(t) is negligibly small and not correlated to xi(t). As a consequence:⟨

ξ (t)
x(t)

⟩
=

⟨ξ (t)⟩
⟨x(t)⟩

(52)

ence, we obtain:

d ⟨ln x(t)⟩
dt

=
(
α + β

) ∞∑
n=0

(−1)n

⟨x(0)⟩n
⟨δn(0)⟩
(α + β)n

[
β + αe−(α+β)t]n

+ β

∞∑
n=0

(−1)n

⟨x(0)⟩n+1

⟨
δ(0)n+1

⟩
(α + β)n

[
β + αe−(α+β)t]n

− (α + β) +
A

√
N

⟨ξ (t)⟩
⟨x(t)⟩

(53)

where we have used that ⟨x(t)⟩ = ⟨x(0)⟩ for large t . We can transform the second term in the following way:

β

∞∑
n=0

(−1)n

⟨x(0)⟩n+1

⟨
δ(0)n+1

⟩
(α + β)n

[
β + αe−(α+β)t]n

=
β(α + β)

β + αe−(α+β)t

∞∑
n=0

(−1)n+1

⟨x(0)⟩n+1

⟨
δ(0)n+1

⟩
(α + β)n+1

[
β + αe−(α+β)t]n+1

=
β(α + β)

β + αe−(α+β)t

∞∑
n=1

(−1)n

⟨x(0)⟩n
⟨δn(0)⟩
(α + β)n

[
β + αe−(α+β)t]n (54)

his leads to the dynamics finally written in Eq. (17).

ppendix F. Derivation of Eq. (18)

Finally, we have to integrate the dynamics of Eq. (17):

1
α + β

∫
d ⟨ln x(t)⟩

dt
dt =

∞∑
n=1

(−1)n

⟨x(0)⟩n
⟨δn(0)⟩
(α + β)n

∫ [
β + αe−(α+β)t]ndt  

:= A(n,t)

− β

∞∑
n=1

(−1)n

⟨x(0)⟩n
⟨δn(0)⟩
(α + β)n

∫ [
β + αe−(α+β)t]n−1dt

+
A

⟨x(0)⟩
√
N

∫ t

0
eβ(s−t)

⟨ξ (s)⟩ ds (55)
12
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T

B

U

w

T

w

he integral A(n, t) yields:

A(n, t) = βnt + C +

n∑
k=1

(
n
k

)
βn−kαk

∫
e−(α+β)tkdt

= βnt + C −

n∑
k=1

(
n
k

)
βn−kαk

[
1

(α + β)k
e−(α+β)kt

− C
]

= βnt + C
[
1 + (α + β)n − βn]

−
1

α + β

n∑
k=1

1
k

(
n
k

)
βn−kαke−(α+β)kt (56)

Now we can write B(n, t) := A(n, t) − βA(n − 1, t) and express the solution of Eq. (55) as:

⟨ln x(t)⟩ =

∞∑
n=1

(−1)n

⟨x(0)⟩n
⟨δn(0)⟩

(α + β)n−1 B(n, t) +
A(α + β)

⟨x(0)⟩
√
N

∫ t

0
eβ(s−t)

⟨ξ (s)⟩ ds (57)

(n, t) equals:

B(n, t) = βnt + C
[
1 + (α + β)n − βn]

−
1

α + β

n∑
k=1

1
k

(
n
k

)
βn−kαke−(α+β)kt

− βnt − βC
[
1 + (α + β)n−1

− βn−1]
+

β

α + β

n−1∑
k=1

1
k

(
n − 1

k

)
βn−1−kαke−(α+β)kt (58)

sing the property of the binomial coefficient that
(n
k

)
=
( n
k−1

)
+
(n−1
k−1

)
we write further:

B(n, t) = C
[
1 − β + α(α + β)n−1]

−
αn

n(α + β)
e−(α+β)nt

−
1

α + β

n−1∑
k=1

1
k

(
n − 1
k − 1

)
βn−kαke−(α+β)kt (59)

ith

B(n, ∞) = C
[
1 − β + α(α + β)n−1]

B(n, 0) = C
[
1 − β + α(α + β)n−1]

−
αn

n(α + β)
−

1
α + β

n−1∑
k=1

1
k

(
n − 1
k − 1

)
βn−kαk (60)

he first term involves the integration constant, C , and can be determined from the initial condition ⟨x(0)⟩:
∞∑
n=1

(−1)n

⟨x(0)⟩n
⟨δn(0)⟩

(α + β)n−1

(
C
[
1 − β + α(α + β)n−1])

= ⟨ln x(0)⟩ +

∞∑
n=1

(−1)n

⟨x(0)⟩n
αn ⟨δn(0)⟩
n(α + β)n

+

∞∑
n=1

(−1)n

⟨x(0)⟩n
⟨δn(0)⟩
(α + β)n

n−1∑
k=1

1
k

(
n − 1
k − 1

)
βn−kαk (61)

here we have also zeroed the stochastic term, which is true for large N . Hence finally:

⟨ln x(t)⟩ = ⟨ln x(0)⟩ +

∞∑
n=1

(−1)n

⟨x(0)⟩n
αn ⟨δn(0)⟩
n(α + β)n

+

∞∑
n=1

(−1)n

⟨x(0)⟩n
⟨δ(0)n⟩
(α + β)n

n−1∑
k=1

1
k

(
n − 1
k − 1

)
βn−kαk

−

∞∑
n=1

(−1)n

⟨x(0)⟩n
αn ⟨δn(0)⟩
n(α + β)n

e−(α+β)nt

−

∞∑
n=1

(−1)n

⟨x(0)⟩n
⟨δn(0)⟩
(α + β)n

n−1∑
k=1

1
k

(
n − 1
k − 1

)
βn−kαke−(α+β)kt (62)

or more compactly as written in Eq. (18).
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