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a b s t r a c t

The joint knowledge of many diverse individuals can outperform experts in estimation and decision-
making problems. This wisdom of the crowd has been demonstrated in different societal areas such as
internet search engines, political elections or stock markets. Recently, psychologists argued that humans
may even simulate a diverse society in their own minds by drawing different answers from their brain
(Vul & Pashler, 2008). The underlying idea is that individuals can access different knowledge areas in
their brain, whose joint evaluation yields better estimates than their separate consideration. This article
presents a mathematical treatment of the wisdom of crowds and two potential mechanisms to quantify
the wisdom of crowds in one mind. The implications of both methods are analyzed and applied to new
experimental data (N = 144), which contain five consecutive estimates from the same individuals.
The theoretical and empirical analysis demonstrates limitations of the wisdom of crowds in one mind:
Asking oneself several times is on average less powerful than asking only one other individual. This is
due to the smaller diversity of estimates of similar individuals and the larger average bias to which they
converge. Further, individuals cannot perform independent draws from an ‘‘internal distribution’’. Hence,
there may be other mechanisms at work such as talking oneself into believing initial guesses or eliciting
progressively wilder ones.

© 2010 Elsevier Inc. All rights reserved.
Under the right circumstances, social groups can be remarkably
intelligent and statistical aggregates of individuals’ decisions can
outperform individual’s and expert’s decisions. Examples of this
wisdom of crowds effect range from markets, auctions, political
polls, internet search engines to quiz shows (Galton, 1907;
Lorge, Fox, Davitz, & Brenner, 1958; Mannes, 2009; Page, 2007;
Surowiecki, 2004). Recently, Herzog and Hertwig (2009) and Vul
and Pashler (2008) demonstrated awisdom of crowds effectwithin
one mind by an experiment, in which individuals could respond to
the same question a second time. The underlying conceptual ideas
are that individual estimates are draws froman internal probability
distribution (Stewart, 2009; Vul & Pashler, 2008) such that their
different estimates represent answers derived from different
arguments or bodies of knowledge (Herzog &Hertwig, 2009).More
intuitively, one can think of this as sleeping on a decision problem.

While this evidence suggests that individuals are able to sim-
ulate a crowd in their brain, it remains open as to whether this
hypothetical society can compete with a real society when indi-
viduals ask themselves ad infinitum. Previous data showed that
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the average of multiple estimates from the same individuals are
worse than those from different individuals. This article develops
two potentialmechanisms for this effect. The first assumes that the
joint knowledge of a single individual’s brain contains on average
a larger error than the joint knowledge of multiple individuals. The
second assumes that individuals’ estimates converge slower to the
truth. We analyze the underlying assumptions of both approaches.
We further demonstrate their implications by using empirical
examples from new experimental data, which contain five con-
secutive estimates from the same individuals. The data analysis
demonstrates that the first method better fits the data. In particu-
lar, this method allows one to analyze how many own guesses are
equivalent to asking someone else and to approximate the gained
value of asking oneself ad infinitumby extrapolating the time trend
to the limit.

1. A general treatment of the wisdom of crowds

Let us consider the random variable X representing estimates
either from a crowd of diverse people from which estimates
are sampled at random, or the hypothetical ‘crowd within one
mind’ (Vul & Pashler, 2008) from which an individual samples its
estimates. The true value for the question is labeled ‘truth’.
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The mean of the squared deviations of X with respect to the
truth

MSE(X) = E((X − truth)2) (1)

represents the average individual error.
The population bias is the squared deviation of the expected

value of X with respect to the truth

Pop(X) = (E(X) − truth)2. (2)

The ‘diversity prediction theorem’ (Krogh&Vedelsby, 1995; Page,
2007) states that the population bias is the average individual error
minus the variance,1 or equivalently

MSE(X) = Var(X) + Pop(X). (3)

The proof is essentially using the linearity of the expected value
and Var(X) = E(X2) − E(X)2:

MSE(X) = E(X2
− 2Xtruth + truth2)

= E(X2) − 2E(X)truth + truth2

= E(X2) − 2E(X)truth + truth2
+ E(X)2 − E(X)2

= E(X2) − E(X)2 + E(X)2 − 2E(X)truth + truth2

= Var(X) + (E(X) − truth)2

= Var(X) + Pop(X).

Let us nowconsider a sequence of estimatesXt , whereXt has the
same distribution as X . Now, we define the new random variable
belief of the crowd of T sampled estimates as the arithmetic mean2

of the first T estimates:

X̄T =
1
T

T−
t=1

Xt . (4)

The mean of the squared deviations of the belief of the crowd X̄T
with respect to the truth,MSE(X̄T ), represents the average collective
error of a sample of T estimates.

Obviously, it holds that limT→∞ MSE(X̄T ) = Pop(X). Therefore,
the population bias can also be called the limit collective error.
Further on, it holds

Pop(X̄T ) = Pop(X) (5)

for all T . For the variance it holds

Var(X̄T ) =
1
T
Var(X) (6)

due to the Bienaymé equation Var
∑

t Xt


=
∑

t Var(Xt) and the
fact that Var

 1
T X


=

1
T2

Var(X).
Thus, by putting X̄T into (3) and using (5) and (6), we see that

the average collective error of T aggregated estimates follows the
hyperbola

MSE(X̄T ) =
Var(X)

T
+ Pop(X). (7)

That means, the average collective error converges to the popu-
lation bias with an increasing number of considered estimates
T .3

1 Page (2007) introduced the diversity prediction theorem as follows: The
collective error is the average individual error minus the group’s diversity. Thus,
the larger the group’s diversity, the smaller is the collective error compared to the
average individual error. In our terminology, the collective error is the population
bias and the group diversity is the variance.
2 Other measures of aggregation than the arithmetic mean may be more

appropriate to elicit the wisdom of crowd. This typically depends on the
distributional form of the data.
3 That explanation has also been given in Vul and Pashler (2008). However, it is

actually not related to the central limit theorem, which is not used in the derivation
of this result.
2. The wisdom of crowds in one mind

We can utilize the above described general treatment of the
wisdomof crowds for the analysis of the so-calledwisdomof crowds
in one mind. Vul and Pashler (2008) argue that single individuals
can simulate a ‘‘crowd’’ of two persons within their own brain,
whose joint evaluation yields better estimates than single esti-
mates. Let us consider (Xi)i∈N to be a sequence of estimates from
the same person. Vul and Pashler (2008) found that the average in-
dividual error of the two estimates MSE(X̄2) is on average smaller
than each of the single errors MSE(X1) and MSE(X2), lending sup-
port for the notion of thewisdomof crowds in onemind and for the
hypothesis that individual estimates are sampled from an inter-
nal distribution of estimates composed of different fields of knowl-
edge.

Vul and Pashler (2008) suggested a method to quantify to what
extent the crowd within one mind can compete with a crowd
of different persons. The general idea is to compare the error of
two averaged estimates from the same individual with the error
of two averaged estimates from two randomly chosen different
individuals. Their theoretical framework extends tomore than two
estimates from the same individual.

In the following, we present our method which is derived
straightforwardly from the mathematical framework presented
in the former section. Then, we describe the method of Vul and
Pashler (2008) and explicate its underlying implicit assumptions
more formally.

2.1. Method 1: howmanymore times one has to ask oneself compared
to asking others

Let Y be the random variable of estimates from randomly cho-
sen different people and X be the random variable of estimates
from a single individual. Further on, let (Yi)i∈N and (Xi)i∈N be the
corresponding sequences of sampled values.

Wedefine T ∗

T to be the average number of different individuals one
needs to ask to achieve the same improvement than asking oneself T
times. This number need not be an integer and one should expect
T ∗

T < T . Graphically it is the projection of a data point of MSE(X̄T )

horizontally to the hyperbola of MSE(ȲT ) and down to the T -axis
(cf. red lines in Fig. 1 and the figure in Vul and Pashler (2008) for
T ∗

2 ). Vul and Pashler (2008) measured T ∗

2 empirically to be 1.11
for intermediate guesses and 1.32 for delayed guesses. This can be
interpreted as ‘‘instead of asking myself twice, I need to ask only
1.11 (or 1.32 in the delayed condition) different people’’.

In our framework we can explicate T ∗

T with the equation

T ∗

T =
Var(Y )

MSE(X̄T ) − Pop(Y )
(8)

=
Var(Y )

Var(X)

T + Pop(X) − Pop(Y )
. (9)

The equation is derived from (7) for the distribution of estimates
from different people MSE(ȲT ) =

Var(Y )

T + Pop(Y ) by replacing
T with T ∗

T and MSE(ȲT ) with MSE(X̄T ), followed by solving for T ∗

T .
Taking T → ∞ we reach

T ∗

∞
=

Var(Y )

Pop(X) − Pop(Y )
, (10)

which is the number of different individuals one needs to ask to reach
the same improvement than asking oneself ad infinitum (cf. magenta
line in Fig. 1). In other words, T ∗

∞
measures how many estimates

from different individuals one single individual can simulate on
average by asking oneself.
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One practical problem consists in computing the variance and
the population bias for each individual, because we usually do not
have enough estimates from the same person to generate a reliable
estimator. We will address this problem later when we turn to the
statistical analysis of our experimental data.

2.2. Method 2: how much slower do additional own estimates
improve compared to asking others

Vul and Pashler (2008) invented the graphical idea on which
Eq. (9) is based. However, mathematically they proposed to esti-
mate λ ∈ [0, 1] instead, which is ‘‘the proportion of an additional
guess from another person that an additional guess from the same
person is worth’’. Asking oneself T times should thus correspond to
asking different people 1 + λ(T − 1) times. Formally this can only
mean that MSE(X̄T ) follows a hyperbola as4

MSE(X̄T ) =
Var(Y )

1 + λ(T − 1)
+ Pop(Y ). (11)

The parameter λ can be computed from this equation for a given
value of T ,MSE(X̄T ),Var(Y ), and Pop(Y ). The description of Vul
and Pashler (2008) suggests the hypothesis that λ is a parameter
which is independent of T .

2.3. Discussion of the two methods

There are two implicit assumptions in Eq. (11), which seem
problematic in light of the statistical theory given in Eq. (7): First,
themethod of Vul and Pashler (2008) implies that asking oneself ad
infinitum yields the same quality as asking different people in the
limit of time. Second, the method implies that multiple estimates
of the same individual are more diverse than those from different
individuals.

Themethod neglects that individuals may have a different pop-
ulation bias they converge to than a crowd of different individu-
als.5 In otherwords, Pop(X) does not need to coincidewith Pop(Y ).
Although, this is not explicitly stated by Vul and Pashler (2008) it
would otherwise not make sense to propose a parameter λ which
is independent of T . In essence, Eq. (11) assumes that an individ-
ual’smean of squared errors converges to the same population bias
as a crowd of different individuals; however, with a slower conver-
gence. This can only happen if the variance of estimates from the
same individual is larger than the variance from different individ-
uals. An assumption which is implausible.

Method 1 resolves this implausibility by adding the individ-
ual population bias as an independent parameter. It is thus an ex-
tended version,which includes another parameter,whichwe think
is necessary to avoid the overestimation of the wisdom of crowds
effect within single individuals.

Despite our theoretical argument that the underlying assump-
tion of method 2 is implausible, it is still an empirical question
which method better predicts the reduction of average collective
errors for more than two estimates. It would be possible that the
population bias of the crowd within an individual is on average
close to the population bias of different individuals. Furthermore,
it is an empirical question whether a sequence of estimates for the
same question from the same person can be seen as a sequence of
independent draws from an internal distribution. These questions
can only be answered empirically by new experimental data.

4 The graphical representation of projecting the empiricallymeasuredMSE(X̄2) to
the hyperbola for MSE(ȲT ) underpins that our formal interpretation was implicitly
assumed by Vul and Pashler (2008).
5 ‘‘Individual population bias’’ may sound contradictory. What is meant is the

population bias of the crowd within, thus the bias of the distribution of estimates
for the same individual.
3. Experimental design

We conducted a laboratory experiment with 144 participants
from ETH Zürich, consisting of twelve sessions with twelve sub-
jects each. All participants were asked to provide five consecutive
answers without any information about the other subjects’ esti-
mates. It was left to the subjects as to how they generated five re-
sponses to the same question andwhether they chose to vary their
answers or stick to the same one. Directly after all subjects gave
their first response, all subjects were asked to give their second
response and so forth until the fifth response. Six different estima-
tion tasks probed their real-world knowledge, such as ‘‘What is the
population density in Switzerland?’’ or ‘‘How many murders were
registered in Switzerland in 2006?’’ (see Table A.1 for the full list of
questions). Subjects received monetary payments taking into ac-
count the distance between estimate and true value (0%–10% (1.40
CHF), 11%–20% (0.70 CHF), 21%–40% (0.35 CHF),>40% (0 CHF)). The
correct values and the achievedpaymentswere only disclosed after
completion of all five responses to avoid informed guesses of the
true values. This induced truthful revelation of judgments, resem-
bling a scoring rule (Camerer, 1995). The order of questions was
randomized across sessions. This procedure delivered the sample
x̃, consisting of 1440 raw data points (Nt = 5 time steps, Ni = 48
subjects per question, Nq = 6 questions) with x̃i,qt , denoting the
t-th answer of subject i to question q.6

4. Statistical estimation

For calculating the wisdom of crowds with our empirical data,
we aggregate the individuals’ estimates to the geometric mean.
This takes into account that our empirical distribution is skewed
and non-Gaussian and is reflected in the fact that the geomet-
ric mean delivers results closer to the truth than the standard
arithmetic mean (see Table A.1). Therefore, we normalized and

transformed the raw data xi,qt = log x̃i,qt
truthq so that the true values

correspond to zero and the arithmetic mean of x delivers the log-
arithm of the geometric mean of x̃.7 See Fig. A.1 for visualizations
of the empirical distributions of the normalized data and the loga-
rithms of the normalized data.

We will apply our theory to the data in the following way.
Assume that we are dealing with question q, then we regard Y q

to be the random variable of asking different randomly selected
people the same question q. Thus, we define the random variable
to take random values of the set of the first estimates of all subjects
Y q

= xi,q1 with i ∈ {1, 2, . . . , 48}.We compute the variance and the
population bias for this random variable to extract the hyperbola
according to Eq. (7), which will be used as a benchmark in Figs. 1
and 2.

For asking the same individual multiple times, we have 48 ran-
dom variables X i,q

= xi,qt with t ∈ {1, 2, 3, 4, 5} as the time steps.
The five data points of the time steps of each individual determine
a random variable from which we can sample at random. Further
on, we can compute the variance and population bias for these five
estimates for each individual. From these values we can compute

6 Note that not all participants were presented with all questions, but with a
random subset. This is why there are only 48 instead of 144 subjects. This is due to
the fact that we implemented two other experimental treatments in random order,
which considered information feedback (in contrast to the present investigation of
the treatment without information feedback.
7 Note that this logarithmic transformation yields a relatively lowpopulation bias

reported in Figs. 1 and 2. The point here is not to demonstrate a low population
bias but rather to transform the data such that it follows more closely a normal
distribution. Fig. A.1 provides more details on the raw and transformed data.
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Fig. 1. The wisdom of crowds for asking repeatedly oneself compared to asking others (144 subjects, 288 responses, averaged over all questions). The x-axis denotes T
answers from the same respectively different individuals. The y-axis represents the wisdom of crowds, measured by the mean of the squared errors between estimates and
truth. The blue circles denote the wisdom of asking different individuals MSE(ȲT ). The dashed blue line represents the population bias Pop(Y ). The black stars denote the
wisdom of asking repeatedly oneself MSE(x̄T ). The error bars are standard errors. The left panel shows method 1 to quantify the wisdom of crowd within on mind; in cyan
the unordered method based on Eq. (12) and in gray the ordered method based on Eq. (13). Dashed lines indicate the corresponding average individual population bias

¯MSE(X̄T ) and b. The red line illustrates the projection of T ∗

2 , providing a comparison between the wisdom of one to many minds: Asking oneself twice corresponds with
asking 1.1 other individuals. The magenta line projects T ∗

∞
, the benefit of asking oneself ad infinitum, based on the ordered method. Empirically, asking oneself ad infinitum

corresponds with asking 1.28 other individuals. The left panel is a demonstration of method 2 proposed by Vul and Pashler (2008), extended to 15 responses for illustrative
purposes. The estimated parameter λ is computed for MSE(x̄T ) with T = 2, 3, 4, 5. The estimated values of λ are further shown in Table A.3. The figure contains the four
functions according to Eq. (11). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. The wisdom of crowds for asking repeatedly oneself compared to asking others (144 subjects, 288 responses). This figure shows the same analysis as in Fig. 1, but
separately for each question. The magenta lines show that there is only a benefit of asking oneself multiple times for some questions. The green lines show that the method
of Vul and Pashler (2008) typically overestimates this benefit for larger numbers of multiple estimates from the same individuals. A comparison between gray and cyan
hyperbolas suggests that individuals do not sample estimates independently from a stable internal distribution. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
MSE(X̄ i,q
T ) =

Var(X i,q)
T + Pop(X i,q) with Eq. (7). Note that Var and

Pop are computed over t here.
This method neglects the order of estimates as they happened

in reality and thus it treats the estimates xi,qt as random draws
with respect to time. This relates to the hypothesis that individual
estimates are independent random samples from an internal
distribution. In order to check the validity of this hypothesis, let
us define the real aggregated belief of the crowd within the T ’th
estimate as x̄i,qT =

∑T
t=1 x

i,q
t for each i on the sample data. For these
values we can compute the mean of squared errors MSE(x̄qT ) over
all individuals i according to the definition above.

For a comparison of the crowd ‘‘within’’ an individual and a
crowd of different individuals we need to define the average in-
dividual bias and the average individual variance. We estimate both
in two different ways according to the difference of MSE(X̄ i,q

T ) and
MSE(x̄qT ).

We call the first method the unordered method. Here, it is
assumed independence of estimates and a stable distribution over
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Table A.1
List of all questions in the experiment, their corresponding true values and further the geometric and arithmetic means of the responses (N = 48 for each question except
Question 2 with N = 47).

No. Question Truth Wisdom-of-crowd aggregation
Geo. mean Arith. mean

1 How high is the population density in Switzerland in inhabitants per square kilometer? 184 175 6046
2 How long is the border between Switzerland and Italy in kilometers? 734 428 4138
3 How much did the resident population in the city Zurich grow from 2006 to 2007? 10067 8947 26927
4 How many officially registered murders took place in Switzerland in 2006? 198 190 1250
5 How many officially registered rapes took place in Switzerland in 2006? 639 348 1324
6 How many officially registered assaults took place in Switzerland in 2006? 9272 16221 356875
Table A.2
Statistics for our proposedmethods illustrated in Figs. 1 and 2. The parameters aq and bq and the goodness-of-fitmeasures SSE and R2 have been fit withmatlab’s curve-fitting
functions.

Question 1 2 3 4 5 6 All

Var(Y q) 4.28 2.48 2.14 3.30 3.17 7.41 3.95
Pop(Y q) 0.00 0.30 0.01 0.00 0.37 0.31 0.02
¯Var(Xq) 1.03 0.51 0.36 0.37 0.30 0.54 0.52
¯Pop(Xq) 2.16 1.71 2.12 3.09 3.98 6.56 3.27

aq 2.77 1.39 0.01 0.25 −0.47 1.34 0.88
bq 1.59 1.44 2.13 3.14 3.99 6.34 3.11
SSE (fit aq, bq) 0.10 0.03 0.00 0.10 0.01 0.07 0.01
R2 (fit aq, bq) 0.97 0.96 0.01 0.20 0.89 0.91 0.98
T ∗
∞

(based on bq) 2.70 2.18 1.01 1.05 0.88 1.23 1.28
T ∗
∞

(based on ¯Pop(Xq)) 1.98 1.76 1.01 1.07 0.88 1.19 1.21
time so that we compute ¯Var(Xq) =
1
N

∑N
i=1 Var(X

i,q), ¯Pop(Xq) =

1
N

∑N
i=1 Pop(X

i,q) and ¯MSE(Xq) =
1
N

∑N
i=1 MSE(X i,q). It is easy to

see that it holds

¯MSE(X̄q
T ) =

¯Var(Xq)

T
+ ¯Pop(Xq). (12)

The values for ¯Var(Xq) and ¯Pop(Xq) are given in Table A.2.
We call the second method ordered method. Here, the estima-

tion of both quantities is based on real-time data MSE(x̄qT ) so that
we fit aq and bq for the hyperbola-model

¯MSE(x̄qT ) =
aq
T

+ bq (13)

with aq representing the average individual variance and bq the
average individual bias. Thus, we try to estimate parameters for a
hyperbolawhich best fits the averages of real estimates in the order
how participants elicited them. The choice of the hyperbola-model
is based on the theory behind Eq. (7). Fitted data and goodness-of-
fit results are shown in Table A.2.

We applied both methods on the 48 individuals answering the
same question five times and also on the set of 288 responses to
the six different questions. In the latter case we treat all questions
equal which is possible due to the normalization of answers by
their true values.

5. Empirical results

We will first report results which are averaged over all ques-
tions. We compare the results for the method of Vul and Pashler
(2008) in the right panel of Fig. 1 with our proposed method in
the left panel. We apply the same graphical representation as Vul
and Pashler (2008) in order to compare individuals with crowds.
Both methods are conducted using the two alternative statistical
estimation techniques, the ordered and the unordered method. In
addition to these overview figures, we conduct the graphical anal-
yses separately for all six questions in Fig. 2. Here, we do not divide
the figures in two panels but report the different methods in one
subfigure.

In the following we summarize three main results we can draw
from the figures and the additional data in Tables A.2 and A.3.
Result 1. Asking oneself ad infinitum does on average not outperform
asking only one other person.

Vul and Pashler (2008) obtain the empirical results of T ∗

2 = 1.11
in the ‘immediate’-condition and T ∗

2 = 1.32 in the ‘3-week delay’-
condition. Thus, asking oneself once again corresponds in their case
on average to asking 1.11 or respectively 1.32 other persons. Our
results for the average over all questions demonstrate that asking
oneself twice corresponds with asking T ∗

2 = 1.1 other persons
(red line in Fig. 1). Further, asking oneself ad infinitum corresponds
with asking T ∗

∞
= 1.28 other persons (magenta line). When we

estimate according to the unordered method we achieve T ∗
∞

=

1.21. Our findings suggest that decision-makers can indeed make
use of societal effects in the sense of averaging their ownestimates;
however, the effect does on average not outperform asking only
one other person (although Fig. 2 shows some values which are
slightly higher than two for some questions).

Result 2. The hypothesis that individuals sample independently
from a ‘‘mental’’ distribution when they estimate several times is
questionable. In particular, there is only a benefit of asking oneself
several times for some questions.

In general, the hyperbolas based on the unordered and ordered
(cyan and gray hyperbolas) method of estimating the average in-
dividual variance and population bias deviate. Thus, the unordered
method (cyan), which does not consider the order of estimates,
does not match the data for real time steps (black stars). More-
over, the benefit of taking the average of multiple own estimates is
different for different questions. While there is a benefit for some
questions, e.g. questions 1 and 2, the results become even worse
for other questions for an increasing number ofmultiple responses
(e.g. question 5). This effect contradicts the idea of the wisdom of
crowds in onemind.While a slow, barely visible reduction of errors
could be explained with a large error variance of individuals’ esti-
mates, increasing errors with an increasing number of estimates
cannot be explained with the theory of the wisdom of crowds. It
is not possible to yield increasing errors with an increasing num-
ber of draws from the same population. This is evidence that other
mechanisms are at work such as people talking themselves into
believing their initial guesses, working themselves into emotions,
or becoming more speculative over time by eliciting progressively
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Fig. A.1. Distributions of the first estimates for each question normalized by the true value x̃q1/truth and the logarithm of it log(x̃q1/truth). Gray bars belong to a histogram
with 20 equidistant bins in the range. The red line is a standard KS-density plot. The legend at the top left panel holds for the whole left column. The corresponding dots in
the right column are respectively the logarithms of the arithmetic mean (circle) and geometric mean (triangle). The truth is at one in the left column and at zero in the right
column. (The logarithm of the geometric mean is the arithmetic mean of the logarithms of the values.) Values where normalized to make the panels comparable. For the
raw values see Table A.1. (N = 48 for each question except question 2 with N = 47.)
wilder guesses. In other cases, asking oneself several times seems
to add only noise (questions 3 and 4). One reason could be the dif-
ficulty of questions; for too difficult questions, individuals may not
be able to draw sufficiently different responseswhich surround the
true value. As additional informationwe report the population bias
Pop(xqT ) and the variance Var(xqT ) as it changes over time for each
question in Fig. A.2.
Result 3. The suggested method by Vul and Pashler (2008) of how to
calculate the benefit of asking oneself several times overestimates the
effects.

Fig. 1 and Table A.3 demonstrate further that there is no
globally uniform λ and that the method of Vul and Pashler (2008)
overestimates the effect of asking oneself multiple times. We
demonstrate this in more detail with analyzing each question
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Fig. A.2. Population bias Pop(xqT ), variance Var(xqT ), and mean of squared errors MSE(xqT ) for questions 1–6. Note, that MSE(xqT ) is not the same as MSE(x̄qT ) from Fig. 2.
Table A.3
A table of the computed values of λ according to Eq. (11) of Vul and Pashler (2008)
for the data points at T = 2, 3, 4, 5. The functions are shown as green lines in the
plots. There is clearly no globally valid λ as suggested by Vul and Pashler (2008).

Question 1 2 3 4 5 6 All

λ2 0.32 0.25 0.03 −0.05 −0.05 0.14 0.10
λ3 0.40 0.31 0.00 −0.01 −0.04 0.06 0.08
λ4 0.32 0.24 −0.00 0.03 −0.03 0.05 0.07
λ5 0.24 0.19 0.00 0.02 −0.03 0.05 0.05

separately in Fig. 2. Let us consider questions 1 and 2, for which
the effect works best. As can be seen from Fig. 1 and Table A.3,
the proportional effect of asking oneself exactly three times is
better than Vul and Pashler’s theory predicts. However, with an
increasing number ofmultiple estimates from the same individual,
the effect is worse than predicted by themethod of Vul and Pashler
(2008).

6. Discussion

This article confirmed the psychological notion that individu-
als are capable of simulating a diverse society in their own mind.
Thus, individuals may apply the wisdom of crowds effect for their
estimation of vaguely known facts by conducting multiple recon-
siderations and averaging them. However, our empirical results
demonstrate that the effect is more limited than previous anal-
yses suggested. Even if individuals ask themselves ad infinitum,
their simulated crowd returns on averageworse results than if they
would only ask one other person. Further, our analyses demon-
strate that the previously proposed measure by Vul and Pashler
(2008) of the wisdom of crowds in one mind only holds for two in-
dividual reconsiderations. This measure overestimates the power
of the wisdom of crowds for multiple reconsiderations, lending
more support for our claim that the proposed psychological effect
is weaker than previously assumed.

Furthermore, our results suggest that the method of how to
elicit multiple responses in the experiment does not change the
results considerably. In our treatment, people were from the be-
ginning well aware that they will be asked the same question five
times. Further, we paid for every of the five estimates based on its
closeness to the truth. This may have stimulated people to elicit
different values to ensure at least some profit in the case of uncer-
tainty. In contrast, Vul and Pashler (2008) ensured that the subjects
did not know that they will be asked to respond to the same ques-
tion once again. Further, in one condition, they asked for the sec-
ond response three weeks later, which improved the accuracy of
the average of both estimates. Herzog and Hertwig (2009) used the
method ‘consider the opposite’, which yielded better average re-
sults than eliciting second responses without this technique. Thus,
there seem to be conditions for which the accuracy of the wisdom
of the crowd in one mind differs; however, the basic effect is sim-
ilarly triggered by any of these mechanisms.

Our intention here is to provide an analytical framework and
to stimulate subsequent analyses. Questions arise as to what ex-
tent and under which conditions individuals are able to simulate a
diverse society in their mind. It would be interesting to disentan-
gle more successful from less successful sampling strategies. For
instance, individuals who can draw highly independent estimates
from their own knowledge without ordered patterns or correla-
tions between their estimates should be more successful. Further,
the difficulty and the emotional extent of the estimation problems
may affect individuals’ capacity to apply the mechanism.
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