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Abstract—This paper proposes a Gaussian process-based self-
organizing incremental neural network (GPINN) to address the
density estimation problem of online unsupervised learning. First,
we adopt Gaussian process models with adaptive kernels that
map the distribution of the neighbors of each node to its
link relationship. Second, combining GPINN and kernel density
estimation, we derive the bandwidth matrix updating rule for
adapting to the generated network. We theoretically analyze the
advantages of the proposed approach in determining threshold
regions over using distance measures. The experimental results
on both synthetic data sets and real-world data sets show that our
method achieves remarkable improvement in density estimation
accuracy for large noisy data.

I. INTRODUCTION

In general online Bayesian nonparametric mixture models
[1]–[3], data becomes available in sequential order to update
the parameters of mixture components sampled from conju-
gate prior parametric distributions (e.g., exponential families).
In these models, the trained density function is based on
partition space exploration. There, 1) the commonly used
Gibbs samplers could suffer from poor mixing across partition
space and non-convergence [4]–[6], and 2) each component
is simulated by only one parametric distribution model, so
that the knowledge of the underlying local distribution at
each sample cannot be conserved in the learning process,
thus limiting the performance for complicatedly distributed
data. Moreover, in real-world data sets, data often includes
substantial amounts of noise that can significantly affect the
latent allocation variables and component parameters. Preva-
lent methods assume a parametric distribution of noise to solve
the overfitting problem, but if the assumed distribution does
not correspond to the true distribution of noise, the accuracy
decreases severely. Thus, online learning algorithms that can
successfully learn large, noisy data are required.

Several approaches have been developed to address the
above requirements. Considering the knowledge that the data
belonging to the same subclass lie near a much lower nonlin-
ear dimensional manifold [7], [8], instead of exploring the
partition space and using just one Gaussian distribution to
simulate each component, a higher accuracy is expected to
be achieved by learning the underlying manifold on which
the probability density estimation is based. In manifold learn-
ing, the classic topology-preserving self-organizing mapping
(SOM) is frequently employed [9]–[11]. SOM, in particular,

generally adopts a 1-D or 2-D lattice to represent the input
space of samples. However, the fixed number of nodes and the
discontinuity associated with boundaries in SOM [12] make
it undesirable for learning large data with unknown complex
distributions.

Recently, based on competitive learning, SOM, and growing
neural gas theory, researchers introduced self-organizing incre-
mental neural networks (SOINN) [13]–[16]. During its learn-
ing process, the number of nodes and the link relationships
are determined adaptively from the data, and the influence
of noise is reduced based on these link relationships. The
experimental results in [16] show that its density estimation
accuracy outperforms the current state-of-the-art algorithms.

In SOINN, for each node, there is a corresponding threshold
region determined either by the maximum Euclidean distance
(ESOINN), or by Mahalanobis distance (KDESOINN) with its
neighbors. An edge is then generated between a pair of nodes
(i.e., the first and second winning nodes) when a new arrival
falls into the intersection of their threshold regions. However,
the threshold regions given by the distance measures – adopted
by existing research – are shown to be either over-broad or
over-narrow. Specifically, in ESOINN, the threshold region
of one node is the interior of the sphere with radius defined
by the maximum Euclidean distance from its neighbors. This
definition does not comprehensively consider the distribution
of the neighbors, so that numerous inappropriate edges are
generated between nodes far away, and a large number of iso-
lated subgraphs are distributed in the area with low probability
density. This is shown in Figure 1(a,c). In KDESOINN instead,
1) the threshold regions given by Mahalanobis distance have
extremely high fractional anisotropy values, which also results
in a neural network with many inappropriate edges. Further-
more, 2) nodes are only distributed in a very small area with
high probability density. This is shown in Figure 1(b,d). Please
refer to Section II for detail.

By mapping data to a high-dimensional Hilbert space in
implicit representations [17], [18], kernel functions are ex-
tensively employed to simulate complex relations between
data points. Kernel density estimation (KDE) is then the
most prevalent tool among density estimators for complex dis-
tributed data. However, for large, noisy data, the computational
complexity of calculating the optimal bandwidth parameters
for the popular cross-validation methods [19] is extremely
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Fig. 1. Sample Volume=2000,λ=500, (a)(b)x ∼ 1
5

∑
|x1|+|x2|={0,5},x1x2=0

N ((x1, x2), I), (c)(d)x ∼ 1
2

∑
a∈{1,5}

(N (0, aI).

TABLE I
DEFINITIONS OF VARIABLES, PARAMETERS AND SYMBOLS

N (E) the set of nodes (edges)
Nni the set of the nodes connected with node ni

Nni
∆
= {n1,i, ..., n|Nni |,i}, |Nni | is the cardinality

D the distance measure adopted
Tni the threshold region of node ni

rni the similarity threshold of ni

Wni the number of node ni being the 1st winning node in
competitive learning, that is the winning times of ni

W the set of the winning times of nodes, that is {Wni}
age(ni, nj) the age of the edge linking node ni and node nj

agemax a predetermined upper bound for deleting initially
formed edges

f(Wnj ) gives the coefficient to update the position
vector, generally f(Wnj ) =

1
100Wnj

,

λ the number of inputs in one learning period

high, and KDE is well-known to be sensitive to the noise
present. As far as we know, very little work has been done to
address these issues.

The remainder of this paper is organized as follows. In
Section II, we present the basic idea of SOINN and the
shortcomings of previous work. In Section III, we 1) pro-
pose a novel online learning self-organizing neural network
(GPINN) that adopts Gaussian process models in calculating
winning nodes and threshold regions, and 2) we derive the
kernel bandwidth matrix updating rule. Finally, we theoreti-
cally analyze the optimal threshold parameter selection. The
experimental results in Section IV demonstrate that, compared
with previous work, our approach achieves considerably higher
density estimation accuracy.

II. OVERVIEW OF SOINN

Algorithm 1 shows the general learning process of various
versions of SOINN, and Table I gives the definition of all
variables, parameters, and symbols.

As an extension to SOM where the number of nodes |N |
and link relationship E are fixed, in order to adapt to online
machine learning, in SOINN, N and E are adjusted based
on the positional relationship between new inputs and on the
threshold regions of nodes. Specifically, when a new arrival
si comes, first lines 2-4 calculate the nearest 2 nodes w1, w2

Algorithm 1 General SOINN
Initialization: N ← {s1, s2}, E ← ∅
1: while ∼ isempty(si) do
2: w1 ← arg min

ni∈N
D(si, ni)

3: w2 ← arg min
ni∈N\w1

D(si, ni)

4: rw1
, rw2

← (1, 2)
5: if D(si, w1) > rw1

‖ D(si, w2) > rw2
then

6: N ← N ∪ {si}
7: else
8: E ← E ∪ {(w1, w2)},
9: age(w1, w2) = 0

10: age(w1, nj) = age(w1, nj) + 1 % nj ∈ Nw1

11: Ww1
←Ww1

+ 1
12: w1 = w1 + 1

Ww1+1 (si − w1)

13: nj = nj + f(Ww1
)(si − nj)

14: E ← E \ {e | age(e) > agemax}
15: N ← N \ {ni | |Nni | = 0}
16: end if
17: if mod(i, λ) = 0 then
18: N ← N \ {s | |Ns| = 0}
19: end if
20: end while

(named the first and second winning nods of si, respectively)
based on the employed distance measure – ESOINN: Eu-
clidean distance; KDESOINN: Mahalanobis distance – and
compute their threshold regions Tw1(2)

. For node ni, its
threshold region

Tni = {x | D(x, ni) ≤ rni}

where

rni =


max
nj∈Nni

D(nj , ni), if |Nni | 6= 0

min
nj∈N\ni

D(nj , ni), if |Nni | = 0,

D(x, ni) =

{
‖x− ni‖2, ESOINN√

(x− ni)TM−1
ni (x− ni), KDESOINN,

(1)
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and

Mni =
1

|Nni |∑
j=1

Wnj,i

|Nni |∑
j=1

Wnj,i(nj,i − ni)(nj,i − ni)T + σ2I,

(2)
σ is a fixed very small number. Then, depending on whether
si ∈ Tw1 ∩ Tw2 , lines 5-16 update the network parameters
(e.g., the node set N , or the position vector of w1 and its
neighbors). Considering that the initially formed edges may
not be appropriate as the input of the samples, one simple
but effective method is to delete the initially formed edges
when their ages come to an upper bound agemax. After each
learning period (i.e., the number of input samples is an integer
multiple of λ), outliers defined with degree 0 are deleted at
line 18.

In ESOINN, the threshold region is determined by the
maximum Euclidean distance from the connected neighbors.
However, 1) because of the curse of dimensionality, and 2)
because the underlying much lower dimensional nonlinear
manifold [7], [8], ESOINN can 1) generate numerous inappro-
priate edges between nodes far away, measured by geodesic
distance on the manifold, and 2) many subgraphs with very
few nodes are isolated from the main graph, and distributed in
the area with low probability density. The recently proposed
KDESOINN attempted to solve the problems in ESOINN by
employing Mahalanobis distance. However, the first principal
component derived from the covariance matrix given in (2)
can be greatly affected by the inappropriate edges. For this
reason, first, Tni has high fractional anisotropy value, and
seriously neglects the probability of the subsequent samples
falling into the span of the principal axes of Tni with
small eigenvalues. Second, many initially formed inappropriate
edges are conserved. Third, many of the temporarily remained
representative nodes are mistaken as outliers and deleted after
each learning period. As shown in the experiments, the nodes
of the generated network are distributed in a very small area
with high probability density.

III. PROPOSED METHOD

In this section, we comprehensively explain the Gaussian
process-based incremental neural network, its kernel band-
width matrix updating rule, and its advantages compared to
using distance measures as done in previous research.

A. Gaussian Process-based Calculations of Winning Nodes
and Threshold Regions

Gaussian processes (GPs) [20]–[22] extend multivariate
Gaussian distributions to infinite dimensionality, and can be
used to represent the underlying function rigorously in a non-
parametric form. Formally, a Gaussian process generates data
located at the domain where any finite subset of the dependent
variables is subject to a multivariate Gaussian distribution.
Specifically, y = {yx1 , yx2 , ..., yxn}, the observations of a
dependent variable at n values of the independent variable x =
{x1, x2, ..., xn}, is sampled from a n−dimensional Gaussian

distribution with a kernel matrix as its covariance and mean
0n×1 very often. So, given x and y, using Gaussian process
regression (GPR), the prediction of the dependent variable at
a new value x0, yx0

, follows the Gaussian distribution

yx0
| x, y ∼ N(Kx0,xK

−1
x y,K∗ −Kx0,xK

−1
x KT

x0,x) (3)

where

Kx0,x =
[
k(x, x1) k(x, x2) · · · k(x, xn)

]
,K∗ = k(x, x),

(4)

Kx =


k(x1, x1) k(x1, x2) · · · k(x1, xn)
k(x2, x1) k(x2, x2) · · · k(x2, xn)

...
...

. . .
...

k(xn, x1) k(xn, x2) · · · k(xn, xn)

 , (5)

and k is a kernel function. Since using a fixed bandwidth scalar
or matrix leads to a sub-optimal rate of convergence [23]–[26],
this paper adopts an adaptive bandwidth matrix Mni , that is,
∀nj , nk ∈ Nni ,

ki(nj , nk) = exp
{
− 1

2
(nj − nk)TM−1

ni (nj − nk)
}
, (6)

where Mni is calculated in subsection B.
GPs have the property that when xi ∈ x is distant

from {x0} ∪ x \ xi, the divergence between yx0
|(x, y) and

yx0
|(x \ xi, y \ yxi) is very small. Applying Gaussian process

classification (GPC) to SOINN, for node ni, with the position
vector as the independent variable, and the link relationship
with ni as the dependent variable, the nodes in Ni far away
from ni have little influence on inferring the link relationship
between a new arrival and ni. This means that such an incre-
mental neural network is robust to inappropriate edges, and can
solve the high fractional anisotropy problem in KDESOINN.

Specifically, let’s assume that an incremental network I ∆
=

(N , E ,W ) (please refer to Table I) is generated after the
input of the first m− 1 training samples (the training samples
are d-dimensional). Then, for new arrival sm, according to
Bayes theorem, the probability of node ni being chosen as
the winning node of sm is

P (ni | sm, I) ∝ P (ni | I)P (sm | Nni). (7)

There, P (ni | I) is the probability of drawing ni from I,
and is proportional to its winning times Wni . P (sm | Nni)
is the probability of sm linking with ni given the distribution
of its neighbors Nni , and is calculated by a GPC model with
Φ(z|0, δ2

1) (the cumulative normal distribution function with
mean 0 and variance δ2

1) as the squashing function, that is

P (sm | Nni) =

∫
Φ(z|0, δ2

1)N(z|Esm,ni , Vsm,ni)dz

= Φ

 Ksm,niK
−1
ni y√

1 + δ2
1 −Ksm,niK

−1
ni K

T
sm,ni

 (8)
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where

Ksm,ni =
[
ki(sm, n1,i) ki(sm, n2,i) · · · ki(sm, n|Nni |,i)

]T
,

Esm,ni = Ksm,niK
−1
ni yNni ,

Vsm,ni = 1−KT
sm,niK

−1
ni Ksm,ni ,

(9)

and Kni = [k(np,i, nq,i)]1≤p,q≤|Nni |.
Regarding the values of the dependent variable yNni at Nni ,

for ∀nj ∈ Nni , P (nj |Nni) is set to a constant α1, and since
Kx,ni is a row of Kni , from the property of determinant
calculation, we have

yNni =

[
Φ−1(α1)

√
1 + δ2

1 −Knj ,niK
−1
ni K

T
nj ,ni

]
n×1

= Φ−1(α1)δ11n×1,

(10)

thus (7) is equivalent to

P (ni | sm, I) ∝WniΦ

 Φ−1(α1)δ1Ksm,niK
−1
ni 1n×1√

1 + δ2
1 −Ksm,niK

−1
ni K

T
sm,ni

 .

(11)
Tni is given by setting a threshold βi (discussed in subsec-

tion C) for P (x|Nni),

Tni ={x | P (x | Nni) ≥ βi}

=

{
x |

δ1Kx,niK
−1
ni 1n×1√

1 + δ2
1 −Kx,niK

−1
ni K

T
x,ni

≥ Φ−1(βi)

Φ−1(α1)

}
.

(12)

B. Optimal Bandwidth Matrices and Online Kernel Density
Estimation

1) Bandwidth Matrix Optimization: Since calculating M
by directly maximizing

∏
nj∈N

(P (nj | N ,M))Wnj can cause

overfitting [27], [28], the leave-one-out method is employed
here, that is

Mnp = arg max
Mnp

∏
nj∈N

(P (nj | N \ {nj},M \ {Mnj}))
Wnj .

(13)
One natural idea is to calculate the derivative of its log-

likelihood:

5Mnp

∑
nj

Wnj logP (nj | N \ {nj},M \ {Mnj})

=
∑
j 6=p

WnpWnjM
−1
np (Mp,j −Mnp)M−1

np kp(nj , np)

2|Mnp |
1
2P (nj | N \ {nj},M \ {Mnj})

,

(14)

where Mp,j = (np − nj)(np − nj)T . By setting it equal to 0,
one finds

Mnp =

∑
j 6=pWnj

(np−nj)(np−nj)T kp(nj ,np)∑
i6=jWni

ki(nj ,ni)|Mni
|−

1
2∑

j 6=pWnj
kp(nj ,np)∑

i6=jWni
ki(nj ,ni)|Mni

|−
1
2

. (15)

It is a transcendental equation, hence we employ an EM
algorithm. After some derivations, we have
E-Step:

cj,p =
Wnpkp(nj , np)|Mni |−

1
2∑

q 6=jWnqkq(nj , nq)|Mnq |−
1
2

(16)

M-Step:

Mnp =

∑
j 6=pWnjcj,p(np − nj)(np − nj)T∑

j 6=pWnjcj,p
. (17)

From the perspective of kernel density estimation, cj,p
refers to the probability of one sample located at nj being
drawn from the kernel component at np. Considering the
underlying lower dimensional manifold, the kernel component
at np should be aligned with the plane locally tangent to this
underlying manifold, and the information about this tangent
plane can be gathered from the neighboring points of np
[7], [8]. So, from Bayes theorem, cj,p can be reasonably
approximated as

ĉj,p ≈


P (np|nj ,I)∑

nk∈Nnj
P (nk|nj ,I) =

Wnp∑
nk∈Nnj

Wnk
, np ∈ Nnj

0, np /∈ Nnj .
(18)

Thus, Mnp can be calculated in a significantly simplified form
according to the following 3 steps:

(1) Preliminary Approximation. Substituting (18) into (17),
we obtain the preliminary approximation of Mnp

M
′

np =

∑
ni∈Np∩Nnp

Wni∑
nj∈Ni∩Nni

Wnj
(ni − np)(ni − np)T∑

ni∈Np∩Nnp

Wni∑
nj∈Ni∩Nni

Wnj

.

(19)
where Np(i) is the set of the first max{|Nnp(i) |, 3d}-nearest
nodes of np(i) measured by Euclidean distance (d is the
dimensionality of data points), and we adopt Np(i) ∩ Nnp(i)
here to exclude possible inappropriate edges.

(2) Positive Definiteness Adjustment. In order to guarantee
the positive definiteness of Mnp , we add a small isotropic
(spherical) Gaussian noise of variance in all directions,

Mnp = M
′

np +
ρ

d
min
nj∈N

‖nj − np‖22Id, . (20)

where 0 < ρ ≤ 1 (ρ = 0.1 in this paper).
(3) Bandwidth Matrix Smoothing. For the sake of, firstly,

simulating the underlying manifold and local distribution
around each node more accurately, and, secondly, further
decreasing the influence of inappropriate edges on Mnp calcu-
lation, we improve the similarity between the threshold regions
of connected nodes instead of regarding them as independent.
Because different nodes ni have different winning times Wni ,
instead of considering only the spatial distribution of nodes,
we set an estimated density ei

∆
=

Wni

|Mni |Vd
(Vd is the volume

of d-dimensional unit sphere) as the value of the dependent
variable at each node ni ∈ N , and then adopt GPR to calculate
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the likelihood of ei given the values at Nni . Specifically, after
each learning period, if

|Nni |∑
j=1

Wnj,i

|Nni |∑
j=1

Wnj,i

Φ

∣∣∣∣
Wni

|Mni |Vd
−Kni,nj,iK

−1
nj,i

Wnj,i

|Mnj,i |Vd√
1−Kni,nj,iK

−1
nj,iK

T
ni,nj,i

∣∣∣∣


≥ 1

2
(erf(

α2√
2

) + 1),

(21)

where erf is the error function and α2
∆
= 2 in this paper, Mni

is adjusted as

Mni =
1

|Nni |∑
j=1

Wnj,i

|Nni |∑
j=1

Mnj,iWnj,i . (22)

2) Online Kernel Density Estimator: Based on kernel den-
sity theory, the probability density estimation at point y is thus
expressed as

P (y) =
1∑|N |

j=1Wnj

|N |∑
i=1

Wni exp{− 1
2 (ni − y)TM−1

ni (ni − y)}√
(2π)d|Mni |

.

(23)

C. Discussion of Thresholds βi
Consider the property that GPC is robust to insignificant

edges, for each node ni, lim
n→+∞

max
nj1,nj2∈Ni∪ni

Wnj1

Wnj2
= 1 (n

is the number of training samples), and Nni are fine-tuned
and tend to evenly distribute on a spherical surface Sni in
{ni + Q} (for a set A, {ni + A} ∆

= {ni + a|a ∈ A}, Q ∆
=

Span{nj,i − ni | nj,i ∈ Nni} and assume its dimensionality
is d1). So, to simplify the theoretical analysis, we assume that
the cardinality of {Wnj∈N̂i} is 1 and Nni forms a regular
polytope with center ni and outer d1−radius h.

Then, we have

Theorem 1. When P (ni | Nni) = βi,

d∗(Tni ,Nni) = h. (24)

where for set A and set B, d∗(A,B) = sup
x∈A

inf
y∈B
‖x− y‖2.

Proof.
1). Since ni ∈ Tni , d∗(Tni ,Nni) ≥ h.
2). from (8),

P (x | Nni) < βi,

⇔ δ1
Φ−1(α1)

Φ−1(βi)
Kx,niK

−1
ni 1|Nni |×1 <√

1 + δ2
1 −Kx,niK

−1
ni K

T
x,ni

⇔ Kx,ni(K
−1
n +

δ2
1(Φ−1(α1)2

c21(Φ−1(βi)2
1|Nni |×|Nni |)K

T
x,ni < 1 + δ2

1 ,

(25)

where c1 =
∑|Nni |
j=1 ki(nj,i, n1,i) and the second ⇔ is derived

from the regular polytope assumption.
3). For point p, sp

∆
= arg minx∈Nni ‖p − x‖2, decompose

p− sp = p1 + p2, where sp + p1 ∈ {ni +Q} and p2 ∈ Q⊥.
Considering the form of Mni given by (19), (20), we have the
following property

Kp,ni = exp{−1

2
pT2 M

−1
ni p2}Ksp+p1,ni . (26)

Thus

Kp,niK
−1
ni Kp,ni = exp{−pT2 M

−1
ni p2}Ksp+p1,niK

−1
ni K

T
sp+p1,ni

≤ exp{−pT2 M
−1
ni p2} exp{−pT1 M

−1
ni p1}11×|N|niK

−1
ni 11×|N|ni

≤ exp{−d(‖p− sp‖22 − h2)

h2
}Kni,niK

−1
ni Kni,ni ,

(27)

the second ≤ results from the condition 0 < ρ ≤ 1.
4). For ∀p1 satisfying inf

y∈Nni
‖p1 − y‖2 > h,

Kp1,ni1|N |ni×|N|niK
T
p1,ni

< Kni,ni1|N |ni×|N|niKni,ni .
(28)

Define the left-hand side of (25) as fni(x). When P (ni |
Nni) = βi, multiple exp{d(‖p1−sp‖

2
2−h

2)
h2 } at both sides of

(27) and sum with (28), we have

fni(p1) < fni(ni) = 1 + δ2
1 . (29)

From (25), it is equivalent to P (p1 | Nni) < βi, that means
d∗(Tni ,Nni) ≤ h.

Combining 1) and 4), d∗(Tni ,Nni) = h.

Theorem 2. When βi = P (ni | Nni) and d1 < d, for Q̂ ∆
=

Tni ∩ (∪s∈Nni{s+Q⊥}),

d∗(Q̂,Nni) ≤ h
√
ρ. (30)

Proof. For ∀s ∈ ∂Q̂ (∂Q̂ means the boundary of Q̂), by
substituting ni into (12) and from the property (26), one
can obtain an upper bound of d∗(s,Nni) (denoted as ĥ) that
satisfies

exp{− dĥ2

2ρh2 }√
1 + δ2

1 − exp{−dĥ2

ρh2 }
=

e−
d
2 |Nni |∑|Nni |

j=1 ki(nj,i,n1,i)√
1 + δ2

1 −
e−d|Nni |∑|Nni |

j=1 ki(nj,i,n1,i)

,

(31)
and since x√

1+δ21−x2
(0 ≤ x ≤

√
1 + δ2

1) is a monotonically

increasing function of x, we have

exp{− dĥ2

2ρh2
} > e−

d
2

√√√√ |Nni |∑|Nni |
j=1 ki(nj,i, n1,i)

> e−
d
2 ,

that is ĥ < h
√
ρ, (30) is proven.

These theorems show when βi = P (ni | Nni), d∗(Q̂,Nni)
is smaller than h. This means that our algorithm can assign
different link-generating probabilities to different directions
based on the distribution of neighbors, so that the over-broad

A Gaussian Process-based Self-Organizing Incremental Neural Network

paper N-20369.pdf- 5 -

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 08,2021 at 13:07:30 UTC from IEEE Xplore.  Restrictions apply. 



threshold region problem in ESOINN can be solved. Besides,
for the continuity of GP posterior probability function and
the robustness of Tni to inappropriate edges, the proposed
method can also effectively overcome the shortcomings of
KDESOINN described above.

In the learning process, considering the variance of the
distribution of Nni , in our algorithm, βi is given as

βi = max
{

min
nj∈Nni

P (nj |Nni \ nj), P (ni|Nni)
}
, (32)

and actually, for a large |Nni |,

βi ≈ Φ(
δ1Φ−1(α1)√

γ2(1 + δ2
1)ed1 − γ

) (33)

where

γ =
Γ(d12 )

∫ π
2

−π2
exp{d1 sin θ}(cos θ)d1−2dθ
√
πed1Γ(d1−1

2 )
. (34)

D. Algorithm: Gaussian Process-based Self-organizing Incre-
mental Neural Network (GPINN)

Based on the proposed 1) winning node and threshold
region calculations, and 2) bandwidth matrix updating rule,
a Gaussian Process-based self-organizing incremental neural
network (GPINN) is achieved. The Algorithm is shown in 2.

First, in order to reduce the searching time of winning
nodes, we preliminarily determine the set of candidates A for
new arrivals si, using Euclidean distance at line 2. Second,
we further identify the first 2 winning nodes w1 and w2 by
calculating the probability of connecting with si using (11)
in lines 3-4. Third, depending on whether si ∈ Tw1

∩ Tw2

by (12), (32) at line 5, the network parameters (e.g., nodes,
position vectors, and edges) are updated in lines 5-16 where
the kernel bandwidth matrix is adjusted as (19), (20) at line
15. Fourth, at the end of each learning period, the bandwidth
matrices are modified according to (21), (22) in lines 18-22.
Then we re-check whether the currently maintained edges are
appropriate or not by comparing P (nk(j) | Nnj(k) \nk(j)) and
P (nj(k) | Nnj(k)) using (8) in lines 23-29. In addition to this,
in order to make the currently achieved latent manifold more
robust in our online learning network and following the idea
of the manifold learning algorithms in [29]–[31], we add some
edges between the nodes that have duplex edges in a k-NN
graph (k ∆

= 3d) on the set of nodes N at line 31.
Complexity: 1). In the winning node and threshold region

calculations, the complexity of line 2 is O(|N |). Regarding
the GPC involved in line 3-4, instead, the time complexity for
calculating {K−1

nφj
} is O(age3

max|A|). It is worth noting that
|A| ≤ 3d and agemax is a predetermined value, so it is O(1).
2). In the adjustment process for the network parameters, the
complexity of {Mni} modification in lines 18-22, and the
inappropriate edges deletion in line 23-29 are both O(|N |).
The complexity in obtaining the k-NN graph is O(|N |2). The
time complexity of other lines are O(1).

Algorithm 2 GPINN
Initialization: N ← {s1, s2}, E ← ∅
1: while ∼ isempty(si) do

2: A ← arg min
{nφ1:min(i,3d)

}⊂N

min(i,3d)∑
j=1

‖si − nφj‖2

%{φj} the indexes of the nodes in A
3: ζ1

(11)←−− arg max
φj

P (nφj | si, I), w1 ← nζ1

4: ζ2
(11)←−− arg max

φk∈{φj}\ζ1
P (nφk | si, I), w2 ← nζ2

5: if P (si | Nw1) ≤ βζ1 || P (si | Nw2) ≤ βζ2%(12),(32)
then

6: N ← N ∪ {si}
7: else
8: E ← E ∪ {(w1, w2)}
9: age(w1, w2) = 0

10: age(w1, nj) = age(w1, nj) + 1 % nj ∈ Nw1

11: Ww1 ←Ww1 + 1, w1 = w1 + 1
Ww1

+1 (si − w1)

12: nj = nj + f(Ww1
)(si − nj) % nj ∈ Nw1

13: E ← E \ {e | age(e) > agemax}
14: N ← N \ {ni | |Nni | = 0}
15: Mni ← (19), (20)
16: end if
17: if mod(i, λ) = 0 then
18: for j = 1 : |N | do
19: while (21) holds do
20: Mj ← (22)
21: end while
22: end for
23: for j = 1 : |N | do
24: for nk ∈ Nnj do
25: if P (nk | Nnj \ nk) ≤ P (nj | Nnj )&&P (nj |

Nnk \ nj) ≤ P (nk | Nnk) %(8) then
26: E ← E \ {(nj , nk), (nk, nj)}
27: end if
28: end for
29: end for
30: N ← N \ {s | |Ns| < 0}
31: E ← E ∪ {(nj1, nj2) | {(nj1, nj2), (nj2, nj1)} ⊂

E},%(V,E) = k-NNG(N )
32: Mni ← (19), (20)
33: end if
34: end while

IV. EXPERIMENTAL RESULTS

In order to demonstrate the performance of GPINN, we
have conducted experiments on both synthetic data and real-
world data. Since [16] shows that KDESOINN outperforms
or achieves performance comparable to the current state-of-
the-art approaches in terms of density estimation accuracy,
we took it as benchmark. Moreover, considering that so far
there existed no density estimation method based on ESOINN,
we calculated the bandwidth matrix at its nodes using the
proposed optimization method in (19), (20). Hence, besides
GPINN, this paper also gives another density estimator by
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Fig. 2. Multimodal data: (a) The change in Jensen-Shannon Divergence with
sample size; (b) The change in the number of nodes with sample size.

combining ESOINN and kernel density estimation theory.

A. Synthetic data

1) Multimodal data: The training data are sampled from
f(x1, x2) composed of 5 Gaussian distributions that have the
same covariance matrix, but different mean values. In addition,
we have added as noise a 5% contaminating distribution
(Gaussian distribution with the same mean and 50 times the
covariance matrix as those of f(x1, x2)). That is

x ∼ 0.95
∑

|x1|+|x2|={0,5},x1x2=0

1

5
N ((x1, x2), I) + 0.05fnoise.

2) Multiscale data: The training data are randomly sampled
from f(x1, x2) composed of 2 Gaussian distributions with the
same mean value but different covariance matrices. Similarly,
5% noise is mixed as above,

x ∼ 0.95
∑

s∈{0,5}

1

2
N ((0, 0), sI) + 0.05fnoise.

agemax = 10, λ = 500, δ2
1 = 2 in both cases. In order to

compare these 3 approaches comprehensively, we have tested
on different training sample size. In the multimodal case, the
size ranges from 500 to 9000, in the multiscale case, it ranges
from 1000 to 5000. Furthermore, for each input data size,
we tested 10 times and took the average Jensen-Shannon (JS)
divergence between the estimated density function and the true
density function. The changes in JS divergence and the number
of nodes with sample size are depicted in Figure 2 and Figure
3, respectively.

As the results show, GPINN gives the most accurate density
estimation among the three methods. In correspondence with
our analysis above, at the initial training process, KDESOINN
performs the worst since most of the currently maintained
nodes are deleted after the first learning periods. This cor-
responds to the nearly linear increase in |N | of KDESOINN
at the initial learning stage. Thus, a large input size is required
to simulate the underlying distribution. Moreover, although
ESOINN generates a neural network with large amounts of
nodes for its over-broad threshold regions, the noise data
cannot be efficiently detected which greatly reduces its esti-
mation accuracy. In contrast, GPINN reasonably considers the
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Fig. 3. Multiscale data: (a) The change in Jensen-Shannon Divergence with
sample size; (b) The change in the number of nodes with sample size.
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Fig. 4. (a) The change in Classification Accuracy with sample size on Gamma
Telescope Data Set with 5% Noise; (b) The change in Classification Accuracy
with sample size on Occupancy Detection Data set with 10% Noise.

different probabilities of the incoming samples falling along
different principal directions, and can learn the probability
distribution much more accurately.

B. Real-world Data Sets

We have tested our methodology on two real-world data sets
from UCI ML Repository: 1) the MAGIC Gamma Telescope
data set (10 dimensional, 2 classes) and 2) the Occupancy
Detection data set (5 dimensional without the time attribute,
2 classes). Additionally, 5% and 10% noise is added to the
MAGIC Gamma Telescope data set and to the Occupancy
Detection data set, respectively. We have first estimated the
probability density functions using different approaches for
each class, and then determined the labels for the test data
by a naı̈ve Bayes classifier. For each training sample size, we
tested 10 times and recorded the average accuracy.

Figure 4 gives the results of KDESOINN, ESOINN and
GPINN. We have used agemax = 10, δ2

1 = 2, and λ = 500
for the Occupancy Detection data set, or λ = 1000 for
the Telescope data set). In addition, the performance of the
commonly used SVM is given as a comparison. The no-node-
left states of KDESOINN clearly reveal the high fractional
anisotropy shortcoming of the threshold region in KDESOINN
(where the default accuracy is given). It is worth noting that,
although SVM is a batch learning, the noise data can greatly
affect the location of separating hyper-plane. This can very
easily cause over-fitting. In fact, for the noisy occupancy
detection data set, SVM gives the lowest accuracy in these
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approaches. As the results show, GPINN achieves the highest
classification accuracy on both data sets.

V. CONCLUSION

This study proposes a Gaussian process-based self-
organizing incremental neural network (GPINN) to address
the online probability density estimation problem. Instead of
using distance measures, GPINN adopts Gaussian process
models with adaptive kernels. This allows to calculate winning
nodes and threshold regions by mapping the distribution of the
neighbors of each node to its link relationship. The bandwidth
matrix updating rule is derived, and thus a novel online kernel
density estimator is presented. Moreover, we theoretically
analyze the threshold parameter optimization problem and the
advantages of the proposed approach. We find that 1) the
selection of winning nodes is robust to inappropriate edges,
and 2) the calculation of threshold regions can effectively
solve the shortcomings of adopting distance measures. The
experimental results on both synthetic data sets and real-
world data sets demonstrate that GPINN achieves remarkable
improvement in density estimation accuracy for large noisy
data.
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