

Spring 2020 Syllabus

Agent-Based Modelling of Social Systems

Prof. Frank Schweitzer, Dr. Giacomo Vaccario

Chair of Systems Design, ETH Zurich

Lecture: Thursday, 13:15-15:00, HG E 1.2 Exercise: Thursday, 17:15-18:00, HG E 33.3

Exercises will be completed by using the programming language Python. During the exercise classes, assistants will help the students with implementation issues and answer their questions, to help them reach the solution by themselves. Towards the end of the semester the students will work in groups on a project: formulating, implementing and analyzing an Agent Based Model. The project will be graded and will make up 30% of the final grade.

1 Introduction

Leature 1 Sections and models

Lecture 1 – Systems and models

20.02.2020

- What are systems and how can we model them?
- ABM implementation: modelling techniques and tools Python

Exercise: Learning about Python, installation (due: 27.02.2020)

Lecture 2 - ABM across disciplines

27.02.2020

- Modelling agents and multi-agents systems
- Capturing social systems

Exercise: ABM in Python (due: 05.03.2020)

2 Models with Boolean Agents	
Lecture 3 - Cellular Automata	05.03.2020
 1-D and 2-D cellular automata Game of Life 	
Exercise: Implementation of Game-Of-Life (due: 12.03.2020)	
Lecture 4 - Systemic Risk and Cascading processes	12.03.2020
models of fragilitymodels of cascading failure	
Exercise: Implementation of ABM for cascading failures (due: $19.03.2020$)	
Lecture 5 - Voter Models	19.03.2020
• Linear and non-linear voter models	
• Social impact theory	
Exercise: Implementation of linear and non-linear Voter models (due: 26.03.2020)	
Lecture 6 – Polya Urn Models	26.03.2020
• path dependence and lock-in effects	
• majority and minority games	

 $Exercise: Implementation \ of \ linear \ and \ non-linear \ Polya \ models \ (due: 02.04.2020)$

Lecture 7 - Game Theoretical Interactions 02.04.2020 • Game theory and Prisoner's dilemma • social herding and cooperation Exercise: Implementation of prisoner's dilemma game (due: 16.04.2020) Models with Brownian Agents 3 Lecture 8 - Opinion Dynamics 16.04.2020 • bounded confidence models • how groups can foster consensus Exercise: Implementation of bounded confidence model (due: 23.04.2020) Lecture 9 - Reputation and Competition 23.04.2020 • reputation in social network • reputation model with emergent hierarchy Exercise: Implementation of reputation ABM (due: 30.04.2020) Lecture 10 - Emotions Dynamics 30.05.2020 • emotions and opinions • emotional influence: communication as nonlinear interaction

Exercise: ABM for collective emotions (due: 07.05.2020)

4 Models with Spatial Interactions

Lecture 11 - Spatial Models with Boolean Agents

07.05.2020

- Schelling's segregation model
- prisoner's dilemma with migration

Exercise: Implementation of Schelling's segregation model (due: 14.05.2020)

Lecture 12 - Spatial Models with Brownian Agents

14.05.2020

- animal swarming
- pedestrian dynamics
- conclusions and wrap-up of the course

Exercise: Course project deadline (due: 01.07.2020)