
Will Computer Science become a Social Science?

Ingo Scholtes?, Markus Strohmaier†, Frank Schweitzer?
? Chair of Systems Design, ETH Zurich, Switzerland

† GESIS - Leibniz Institute for the Social Sciences, Cologne, Germany

February 28, 2017

When Tay - a Twitter chatbot developed by Microsoft - was activated this
March, the company was taken by surprise by what Tay had become. Within
less than 24 hours of conversation with Twitter users Tay had learned to make
racist, anti-semitic and misogynistic statements that have raised eyebrows in
the Twitter community and beyond. What had happened? While Microsoft
certainly tested the chat bot before release, planning for the reactions and the
social environment in which it was deployed proved tremendously difficult.

Yet, the Tay Twitter chatbot incident is just one example for the many
challenges which arise when embedding algorithms and computing systems into
an ever increasing spectrum of social systems. In this viewpoint we argue that,
due to the resulting feedback loops by which computing technologies impact
social behavior and social behavior feeds back on (learning) computing systems,
we face the risk of losing control over the systems that we engineer. The
result are unintended consequences that affect both the technical and social
dimension of computing systems, and which computer science is currently not
well-prepared to address. Highlighting exemplary challenges in core areas like
(1) algorithm design, (2) cyber-physical systems, and (3) software engineering,
we argue that social aspects must be turned into first-class citizens of our
system models. We further highlight that the social sciences, in particular the
interdisciplinary field of Computational Social Science [1], provide us with means
to quantitatively analyze, model and predict human behavior. As such, a closer
integration between computer science and social sciences not only provides social
scientists with new ways to understand social phenomena. It also helps us to
regain control over the systems that we engineer.

Regaining Control about Algorithms The design of algorithms is tradition-
ally seen as a combination of mathematical problem solving, programming tech-
niques, and performance optimization. While it is clear that space and runtime
complexity of algorithms are key aspects that must guide their design, we lack
proper language and methods to deal with their social complexity. This social
complexity can refer to, e.g., legal, sociological or ethical implications of algo-

1



rithms which arise if computing is applied to analyze or – increasingly – influence
and steer human behavior. As an example consider recommendation algorithms
which recommend, for instance, news items, books, food, or even potential
dating partners based on past user behavior. Including personal characteris-
tics like education, income, age, gender, ethnicity or even sexual preferences
may improve the predictive quality of such algorithms. At the same time it
can reinforce adverse social phenomena like, e.g., socio-economic segregation,
discrimination, echo-chambers or polarization, all of which recently triggered a
debate about legal regulations of machine learning algorithms and the role of
social media in our political landscape. Although issues like the responsible use
of computing or values in the design of technical systems [2] have been discussed
for decades1, since algorithms become the “sensory gating” of both individuals
and the digitized society as a whole, the problem has reached a new level of
complexity and urgency. It opens up new avenues of research that require us
to answer questions like: Can we quantitatively assess and predict the impact
of recommender algorithms on public opinion formation and polarization? How
to incorporate fairness, transparency and accountability aspects into machine
learning and information retrieval algorithms? Can new classes of algorithms
reconcile the undoubted economic opportunities of big data with the individual
right of anonymity, with societal needs as well as ethical and legal constraints?

Both applied and theoretical computer scientists have taken on the chal-
lenge of addressing these questions. In the machine learning community this
is documented in, e.g., the Fairness, Accountability, and Transparency in Ma-
chine Learning (FAT ML) workshop series2, and recent works addressing prob-
lems like, e.g., implicit discrimination in data mining [3] or classification algo-
rithms that incorporate fairness constraints [4]. Similarly, the development of
privacy-enhancing technologies based on ‘zero-knowledge’ proofs [5], statistical
databases and differential privacy [6] pose interesting challenges for theoretical
computer science and algorithm design and offer ways to mitigate some of the
imminent challenges. These can be seen as promising examples for a new class
of algorithms whose design not only takes into account what is computationally
possible, but also by what is socially desirable and ethically and legally justifi-
able. However, if and how algorithm design can be informed by theories about
the mechanisms behind (adversary) collective phenomena like the ones men-
tioned above is still an open question. Future research is thus likely to benefit
from a closer integration of existing (computational) models of human behavior.

Regaining Control about Cyber-Physical Systems How digital technolo-
gies affect the life of citizens and the development of whole societies has recently
become the focus of a lively public debate. What has been less discussed is that
the digitization of society also implies that technical systems are increasingly

1cf. the Computer Professionals for Social Responsibility (CPSR) founded in 1983
2http://www.fatml.org/

2



affected by human behavior and societal phenomena which are impossible to
predict at design time, and difficult to anticipate at run time. Examples can
be found in cyber-physical systems and smart infrastructures like power grids,
communication networks, information or mobility systems, which increasingly
incorporate autonomous components that monitor and adapt to the behavior of
users. This not only leads to a feedback cycle between technical systems and
human behavior, but it also threatens models which treat humans as an exter-
nality rather than as an integral component of technical systems. Changing this
requires us to tackle questions like: How do incentive and pricing mechanisms
in smart infrastructures, e.g. for energy, mobility or communication, influence
collective user behavior, and how does this behavior feed back on the infras-
tructure? How will human drivers in traffic infrastructures respond to adaptive
traffic control schemes, and how will this very response influence their perfor-
mance? Will human drivers react differently to (fleets of) self-driving cars, and
can we incorporate this human reaction into the design of autonomous vehicles?

Answering these questions requires extensive competencies in the modeling
of human behavior and social systems which is far outside the scope of tradi-
tional computer science curricula. Nevertheless, the urgency to better integrate
technical and social aspects in the modeling of systems is being acknowledged
by a growing community of researchers that call for multi-level modeling tech-
niques.Promising examples can be found in works showing that the feedback
between dynamic pricing mechanisms and consumer behavior can possibly trig-
ger blackouts in smart grids [7]. To prevent such detrimental phenomena, we will
need to incorporate models for human behavior into smart grid technologies [8].
As an example, it has argued how formal calculus allows to operationalize social
aspects in socially-intelligent infrastructures [9, 10].

Regaining Control about Software Engineering With more than five decades
of experience, software engineering is one of the oldest disciplines in computer
science. Pioneers in this field provided us with powerful programming languages,
software design principles, methods to test, analyze and validate code, as well as
tools that support developers in their daily work. But despite these technological
and procedural advances, software engineering still poses a substantial challenge:
Credible reports indicate that a substantial fraction of software projects either
run over time (and budget) or fail altogether [11]. Technical factors aside, the
software engineering community has long ago acknowledged that human and
social aspects crucially influence the genesis of software systems [12]. Under-
standing development processes thus requires us to answer questions like: How
are coordination and communication structures of software developers related
to project success or code quality? How do motivational and psychological fac-
tors, such as emotions, influence software development? Does the social status
of developers influence how their software artifacts are perceived? And how
resilient is a development team against the departure of central team members?

3



A growing number of quantitative studies at the interface between software
engineering and social science has taken on the challenge to answer these ques-
tions. Examples can be found in major software engineering venues like Mining
Software Repositories, Empirical Software Engineering or the International Con-
ference on Software Engineering. A key aspect of these works is that they apply
state-of-the-art data mining and pattern recognition techniques to large-scale
data sets that capture rich, multifaceted traces of the collaboration and coordi-
nation between developers [13, 14]. This has allowed researchers to show how
social factors influence the productivity of software development teams [15, 16]
or how developer emotions influence software development processes [17, 18].
We are convinced that a wider adoption of such data-driven techniques, and
their integration with social science theories, will generate actionable insights
into the social dynamics at work in development teams, helping us to improve
both the process and the outcome of collaborative software engineering.

Will Computer Science become a Social Science? The fact that com-
puter scientists are currently not well-trained for the challenges that we have
outlined calls for a more systematic integration of computer science with the
social sciences. A promising development in this direction is the emergence of
computational social science, which combines theories and methodologies from
the social sciences, including social psychology and behavioral economics, with
computer science approaches like large-scale simulations, data mining, and ma-
chine learning. The growing availability of large data sets of humans and their
interactions, both from offline and online domains, is a major driving force of
this interdisciplinary research community [19]. Pioneering works have shown
how large-scale analyses can be used to detect subtle patterns in social behavior
which can either corroborate or invalidate theories from the social sciences.

As such, the ubiquitous adoption of computing systems not only complicates
the design of technical systems. Making human and social aspects accessible to
measurement, modeling and thus specification can also help us to better design
and control socio-technical systems whose study has so far mostly been based
on anecdotal evidence or small-scale case studies [20]. However, for this we
must go beyond a mere phenomenological perspective, focusing instead on the
mechanisms underlying these phenomena. Data-driven modeling approaches
which, e.g., model dynamical processes in social networks or utilize agent-based
models to study collective phenomena, are needed to reproduce social behavior
and thus open up new ways to forecast and control systems dynamics. To
address these challenges, computer science must engage in a cross-fertilization
with sociologists, political scientists and psychologists. Failing to reach out to
these communities would have consequences not only for computer science, but
for society as a whole. As such, the question whether computer scientists will
be seen as part of the problem or as part of the solution is still open. The choice
is ours.

4



References

[1] David Lazer, Alex Sandy Pentland, Lada Adamic, Sinan Aral, Albert Laszlo
Barabasi, Devon Brewer, Nicholas Christakis, Noshir Contractor, James
Fowler, Myron Gutmann, et al. Life in the network: the coming age of
computational social science. Science (New York, NY), 323(5915):721,
2009.

[2] Helen Nissenbaum. Values in the design of computer systems. Computers
and Society, 28(1):38–39, 1998.

[3] Sara Hajian and Josep Domingo-Ferrer. A methodology for direct and
indirect discrimination prevention in data mining. Knowledge and Data
Engineering, IEEE Transactions on, 25(7):1445–1459, 2013.

[4] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Kr-
ishna P Gummadi. Fairness constraints: A mechanism for fair classification.
arXiv preprint arXiv:1507.05259, 2015.

[5] Bernard Chazelle. Computing: The security of knowing nothing. Nature,
446(7139):992–993, 2007.

[6] Cynthia Dwork. Differential Privacy, pages 1–12. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2006.

[7] Sebastian M. Krause, Stefan Börries, and Stefan Bornholdt. Econophysics
of adaptive power markets: When a market does not dampen fluctuations
but amplifies them. Phys. Rev. E, 92:012815, Jul 2015.

[8] Peter Palensky and Dietmar Dietrich. Demand side management: Demand
response, intelligent energy systems, and smart loads. IEEE transactions
on industrial informatics, 7(3):381–388, 2011.

[9] Andrew J. I. Jones, Alexander Artikis, and Jeremy Pitt. The design of
intelligent socio-technical systems. Artif. Intell. Rev., 39(1):5–20, 2013.

[10] Jeremy V Pitt, D́ıdac Busquets, Ada Diaconescu, Andrzej Nowak, Ag-
nieszka Rychwalska, and Magdalena Roszczynska-Kurasinska. Algorithmic
self-governance and the design of socio-technical systems. In ECSI, pages
262–273. Citeseer, 2014.

[11] Narciso Cerpa and June M. Verner. Why did your project fail? Commun.
ACM, 52(12):130–134, December 2009.

[12] Melvin E Conway. How do committees invent. Datamation, 14(4):28–31,
1968.

5



[13] Georgios Gousios and Diomidis Spinellis. GHTorrent: GitHub’s data from
a firehose. In Michael W. Godfrey and Jim Whitehead, editors, MSR ’12:
Proceedings of the 9th Working Conference on Mining Software Reposito-
ries, pages 12–21. IEEE, June 2012.

[14] Marcelo Cataldo, Ingo Scholtes, and Giuseppe Valetto. A complex networks
perspective on collaborative software engineering. Advances in Complex
Systems, 17(7-8), 2014.

[15] Ingo Scholtes, Pavlin Mavrodiev, and Frank Schweitzer. From Aristotle to
Ringelmann: a large-scale analysis of team productivity and coordination in
open source software projects. Empirical Software Engineering, 21(2):642–
683, 2015.

[16] Casey Casalnuovo, Bogdan Vasilescu, Premkumar Devanbu, and Vladimir
Filkov. Developer onboarding in github: The role of prior social links and
language experience. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, pages 817–828,
New York, NY, USA, 2015. ACM.

[17] Emitza Guzman, David Azócar, and Yang Li. Sentiment analysis of commit
comments in github: An empirical study. In Proceedings of the 11th
Working Conference on Mining Software Repositories, MSR 2014, pages
352–355, New York, NY, USA, 2014. ACM.

[18] David Garcia, Marcelo Serrano Zanetti, and Frank Schweitzer. The role of
emotions in contributors activity: A case study of the gentoo community.
In Proceedings of the International Conference on Social Computing and
Its Applications, pages 410–417, 2013.

[19] Markus Strohmaier and Claudia Wagner. Computational social science for
the world wide web. IEEE Intelligent Systems, 29(5):84–88, 2014.

[20] Alessandro Vespignani. Predicting the behavior of techno-social systems.
Science, 325(5939):425–428, 2009.

6


