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Abstract

This thesis investigates the formation, evolution and performance of collaboration net-

works, with an emphasis on those networks in which every link-formation event involves

a knowledge flow. Our work can be conceptually divided in three phases. First, we per-

form an extended empirical analysis of two prominent examples of such systems – namely

R&D and co-authorship networks – to determine the microscopic rules for link formation

and knowledge exchange between individual agents. Such rules include both network-

endogenous and network-exogenous mechanisms. Second, we develop a set of agent-based

models incorporating the interaction rules previously identified, that are able to repro-

duce a number of relevant observed features. We then validate such models against the

empirical data. In doing so, we point out similarities and differences across sectors and

research fields in R&D and co-authorship networks, obtaining – for the first time – a pre-

cise estimate of the relative weights of network-endogenous and -exogenous mechanisms.

Third, by means of another agent-based model, we study how the microscopic rules for

link formation affect the performance generated by these systems. We then validate this

model against empirical R&D alliance and patent data, and investigate the optimality of

such a real system with respect to its performance.

Remarkably, our framework is able to reproduce a large number of measures characterizing

the network topology, including the distributions of degree, local clustering, path length

and component size, as well as the emergence of network clusters. Furthermore, we find

that endogenous mechanisms for link formation are predominant over the exogenous ones

in most of the collaboration networks we study, thus supporting and quantifying the im-

portance of existing network structures for selecting collaboration partners. With respect

to the knowledge exchange phenomenon in a real R&D network, our models suggest that

effective policies to obtain an optimized collaboration network would incentivize shorter

R&D alliances and higher knowledge exchange rates than observed in reality.

Our results have an impact spanning from complex systems design to management sci-

ence. Indeed, not only do we provide a unique methodology to systematically study link

formation and knowledge exchange in dynamically evolving collaboration networks, but

we also offer a procedure that allows to assess the performance of real systems and gives

an indication on how to optimize them.
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Kurzfassung auf Deutsch

Diese Dissertation untersucht die Entstehung und Entwicklung von Kollaborationsnetzw-

erken, sowie deren Performance. Ein besonderer Fokus wird auf jene Kollaborationsnet-

zwerke gelegt, in welchen die Linkerzeugung mit einem Wissensaustausch einhergeht.

Zur Ermittlung der mikroskopischen Regeln, welche die Entstehung und Auflösung von

Links zwischen Agenten bestimmen, führen wir zunächst eine empirische Analyse zweier

prominenter Beispiele von Kollaborationsnetzwerken durch, nämlich R&D Kollaboratio-

nen und Koautorennetzwerke. Die auf diese Weise ermittelten Regeln beinhalten sowohl

netzwerk-endogene wie auch -exogene Mechanismen. Als nächstes entwickeln wir agen-

tenbasierte Modelle, welche die zuvor identifizieren Regeln nutzen, um eine Reihe relevan-

ter, beobachteter Eigenschaften zu reproduzieren. Diese Modelle validieren wir anhand

empirischer Daten und zeigen so Gemeinsamkeiten und Unterschiede zwischen verschiede-

nen Wirtschaftssektoren sowie Forschungsbereichen in R&D und Koautorennetzwerken

auf. Hierdurch erhalten wir erstmals eine präzise Quantifizierung der relativen Gewich-

tung netzwerk-endogener und -exogener Mechanismen. Schliesslich nutzen wir ein weiteres

agentenbasiertes Modell um zu untersuchen, wie die mikroskopischen Regeln zur Erzeu-

gung von Links zwischen Agenten die kollektive Performance dieser Systeme beeinflussen.

Wir validieren dieses Modell mittels empirischer Daten zu R&D Kollaborationen und

Patenten und untersuchen wie optimal solch ein System in Bezug auf seine Performance

ist.

Bemerkenswerterweise ist unser Framework in der Lage eine grosse Zahl charakteristischer

Netzwerkmasse wie bspw. Knotengradverteilung, lokaler Clusterkoeffizient, Pfadlängen,

oder die Grösse verbundener Komponenten, sowie die Entstehung von Clustern zur repro-

duzieren. Darüber hinaus zeigen unsere Ergebnisse, dass in den meisten der von uns unter-

suchten Kollaborationsnetzwerke endogene gegenüber exogenen Mechanismen dominieren,

ein Resultat welches nicht nur die Bedeutung von Netzwerkstrukturen bei der Auswahl

von Kollaborationspartnern hervorhebt sondern sie auch quantifiziert. Hinsichtlich einer

Optimierung des Wissensaustauschs in echten R&D Netzwerken, legen unsere Modelle An-

reizstrukturen nahe welche, verglichen mit den tatsächlich beobachteten Systemen, kürzere

Allianzen mit einer höheren Rate des Wissensaustauschs fördern.

Unser Ansatz stellt eine neue Methode zur systematischen Untersuchung von Linkerzeu-

gung und Wissensaustausch in dynamischen Kollaborationsnetzwerken dar. Da wir diese

Methode mit einem Verfahren koppeln, welches es erlaubt, die Effizienz eines Systems zu

bewerten und zu optimieren, reicht die Bedeutung unserer Ergebnisse vom Design kom-

plexer Systeme bis hin zu den Managementwissenschaften.
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Sintesi in italiano

Questa tesi tratta della formazione, evoluzione e prestazioni di “reti di collaborazione”,

con particolare riferimento a quelle reti in cui ogni creazione di un legame collaborativo

comporta un flusso di conoscenza. Il nostro lavoro può essere concettualmente diviso in tre

fasi. In primo luogo, eseguiamo un’analisi empirica approfondita di due importanti esempi

di tali sistemi – reti di coautoraggio e reti di Ricerca e Sviluppo (R&S) – per determinare

le regole microscopiche che portano alla formazione di collaborazioni tra singoli agenti.

Tali regole comprendono meccanismi sia endogeni che esogeni rispetto alla rete stessa.

In secondo luogo, sviluppiamo una serie di “modelli ad agenti” che incorporano le regole

di interazione precedentemente identificate, e che sono in grado di riprodurre una serie

di caratteristiche empiriche. Tali modelli sono poi convalidati con dati reali, in modo

da evidenziare analogie e differenze tra settori e/o campi di ricerca, nelle reti di R&S e

di coautoraggio, ottenendo – per la prima volta – una stima precisa dei pesi relativi dei

meccanismi di rete endogeni ed esogeni. In terzo luogo, per mezzo di un altro modello

ad agenti, studiamo come le regole microscopiche per la formazione delle collaborazioni

influiscono sulla prestazione generata da questi sistemi. Questo modello sarà convalidato

con dati su alleanze di R&S e brevetti, e servirà ad analizzare le prestazioni di questo

sistema reale.

Sorprendentemente, i nostri modelli sono in grado di riprodurre un gran numero di misure

che caratterizzano la topologia delle reti analizzate, comprese le distribuzioni di grado,

di raggruppamento locale, di percorsi di rete e di dimensioni delle componenti connesse,

nonché la comparsa di comunità nella rete. Inoltre, troviamo che i meccanismi di rete

endogeni sono predominanti su quelli esogeni nella maggior parte delle reti di collabo-

razione analizzate, a sostegno dell’importanza delle strutture di rete esistenti per la se-

lezione di nuovi partner di collaborazione. Per quanto riguarda il fenomeno dello scambio

di conoscenza in una rete reale di R&S, i nostri modelli suggeriscono che delle politiche

mirate ad ottenere una rete ottimizzata dovrebbero incentivare alleanze di R&S più brevi

e velocità di scambio di conoscenza più elevate di quanto osservato nella realtà.

I nostri risultati hanno un impatto che va dalla progettazione di sistemi complessi fino

al management. Infatti, non solo forniamo una metodologia unica per studiare sistemati-

camente la formazione di collaborazioni e lo scambio di conoscenza in reti che evolvono

dinamicamente, ma offriamo anche una procedura che permette di valutare le prestazioni

di sistemi reali e dà al tempo stesso un’indicazione su come ottimizzarli.
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Summary

For Chapters 2 to 6, a detailed summary is presented on the first page.

Chapter 1: Introduction introduces the thesis, by explaining its rationales, briefly

reviewing the existing empirical and theoretical literature, and describing the used data

and methodology. We also list the precise research questions addressed by this dissertation.

Chapter 2: Stylized facts of R&D networks reports an exhaustive empirical anal-

ysis of R&D networks and tracks their evolution in a large number of industrial sectors

– including manufacturing, services and public research sectors – over a long time period

(1986-2009). We evaluate the temporal and sectoral robustness of many statistical prop-

erties of real R&D networks, by examining a complete set of indicators, to the best of our

knowledge larger than any previous empirical study. We also investigate the formation of

R&D alliances from a microscopic point of view, by means of an econometric model. We

use a novel approach, in which the observation unit is not the firm, but every potential

pair of firms, and the dependent variable is the formation of an alliance.

Chapter 3: Similarities among collaboration networks extends our study of net-

work trends and patterns on the domain of co-authorship networks in scientific disciplines.

We identify all the differences, but also the similarities, across collaboration networks in

the R&D and the co-authorship domains. We find that some features are indeed universal

and robust. In particular, the size of collaboration events, the agents’ activity (i.e. their

propensity to engage in a collaboration), and the presence of structural communities in

the network (that go beyond the agents’ sectoral or geographical positions).

Chapter 4: Modeling the formation of collaboration networks incorporates the

building blocks and microscopic rules identified in Chapters 2 and 3 into an agent-based

model including both network-endogenous and network-exogenous mechanisms for link

formation. Remarkably, by fitting only some macroscopic network properties, our model

is able to reproduce a number of microscopic measures characterizing the network topol-

ogy, including the distributions of degree, local clustering, path length and component

size, and the emergence of network clusters. By validating the model on both R&D and

co-authorship networks, we find that network-endogenous mechanisms are predominant

over the exogenous ones in most of the collaboration networks we investigate. There-

fore, we precisely quantify the importance of existing network structures for selecting new

collaboration partners in different domains.

Chapter 5: Modeling the exchange of knowledge in a collaboration network

investigates the phenomenon of knowledge exchange in a dynamic collaboration network,

by means of a second agent-based model. The model allows us to study the complex

interdependencies and mutual fedbacks between the network structure and the nodes’
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intrinsic characteristics (i.e. their knowledge basis). We define the performance of the

collaboration network as the distance travelled by all of its agents in a metric knowledge

space. The model parameters we investigate are the link rewing rate of the network and the

agents’ interaction radius. We find that, depending on the parameter values, the agents

tend to cluster around one or a few attractors in the knowledge space, whose position

is an emergent property of the system. And – more importantly – we find that there

exist optimal values for both the link rewiring rate and the agents’ interaction radius to

maximize the network performance.

Chapter 6: Towards a more general modeling framework combines the two agent-

based models developed in Chapters 4 and 5 into a unified agent-based model, that we

validate on empirical alliance and patent data for R&D networks. The underlying knowl-

edge space we consider in our real example is defined by IPC patent classes, allowing for a

precise quantification of every firm’s knowledge position. Such unified framework is able

to predict the topology of the emerging collaboration network and the effect that this has

on the firms’ patenting activities, as well as providing indications for an improved R&D

alliance network. Precisely, we find that the real R&D network does not maximize the

distance travelled by its agents in the underlying knowledge space. Effective policies to

obtain an optimized collaboration network – as suggested by our model – would incentivize

shorter R&D alliances and higher knowledge exchange rates than observed in reality.

Chapter 7: Discussion and conclusions lists the main findings of this thesis and the

impact they have in complex systems design and management science. We argue that the

main contributions of the thesis are: (i) a unique methodology to systematically study

link formation and knowledge exchange in dynamically evolving collaboration networks,

and (ii) a procedure that allows to assess the performance of real systems and gives an

indication on how to optimize them. Finally, we outline future research directions in the

field of optimal system design and systemic risk in collaboration networks.
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Chapter 1

Introduction

“Any existing structures and all the conditions of doing business are always

in a process of change. Every situation is being upset before it has had

time to work itself out. Economic progress, in a capitalist society, means

turmoil.”

Joseph Alois Schumpeter

Capitalism, Socialism and Democracy (1942)

The famous economist and political scientist Joseph Alois Schumpeter devoted only six

pages to the process of “creative destruction” in his book Capitalism, Socialism and

Democracy, in which he described capitalism as the “perennial gale of creative destruc-

tion”. However, it has been argued (Cox and Alm, 2008) that this concept has become

the basis for modern thinking on how economies evolve.

Indeed, we do believe that the creation of something new, be it a successful innovation,

a brilliant invention, or just a piece of knowledge, naturally involves a huge amount of

learning and uncertainty. Among the other words, Schumpeter (1942) uses the term “new

combinations” to indicate the driving forces leading to economic growth: new products,

new methods of production, new sources of supply, exploitation of new markets, new ways

to organize business. However, independently of its specific purpose, we argue that every

process of “new combination” exhibits an intrinsically dynamic and collaborative nature.

Such recombinant processes have been observed in many real systems, spanning from

social interactions (Garcia et al., 2015, 2014a) to online communities (Garcia et al., 2013),

from research and development activities (Ahuja, 2000b; Hagedoorn, 2002) to scientific

production (Börner et al., 2003; Sarigöl et al., 2014), from finance (Battiston et al., 2013)

to global trade (Schweitzer et al., 2009). The collaborative nature of these processes causes

the emergence of networks in the totality of the above mentioned systems, often exhibiting

a complex and time-evolving structure.
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Chapter 1. Introduction

The outcome of these systems is not simply given by the sum of all agents’ outcomes, but

depends on the set of their interactions, which – in extreme cases – can generate unintended

and unpredictable effects (think, for instance, of cascading failures in interbank networks,

Fig. 1.1). The structure of these systems is almost never engineered; on the contrary, it

emerges spontaneously from the consecutive interactions of a great number of agents. This

is why the understanding of the microscopic rules for link formation (and destruction) is

an unavoidable step to effectively intervene on their macroscopic outcome.

Figure 1.1: A free representation of an interbank network. Source: systemic risk as
emerging phenomenon (Burkholz, 2014).

1.1 The emergence of collaboration networks

Some examples of networked systems that have received a great deal of attention in aca-

demic research and the media are social networks, real and virtual, human and non-human

(Garcia et al., 2015, 2014b), infrastructural networks, i.e. power grids, transportation, the

Internet (Albert et al., 2004; Gonzalez et al., 2008; Pastor-Satorras and Vespignani, 2007)

and financial or global trade systems (Caldarelli et al., 2013; Schweitzer et al., 2009),

because their impact on our daily life is clearly visible and relatively easy to study in a

quantitative fashion.

However, we argue that there exist other networked systems that significantly contribute

2



1.1. The emergence of collaboration networks

to economic growth, whose formation and evolution is not fully understood yet, probably

because both their short-term and long-term effects are difficult to quantify. We refer

to collaboration networks emerging in economic systems and in scientific research, aimed

at the creation of new knowledge. The present dissertation wants to fill this gap, by

studying the structure of such collaboration networks, the microscopic rules leading to link

formation and dissolution between individual agents, and how they affect the aggregated

outcome generated by these systems. In addition, we want to investigate whether it is

possible to optimize real systems with respect to such outcome.

When we use the terms “collaboration networks”, we refer to those networks in which

every event of link formation involves a certain flow of knowledge. Precisely, we will be

focusing in this dissertation on how existing network structures affect the establishment of

new collaborations and the joint production of new pieces of knowledge – such as scientific

papers or patents – and not on the subsequent steps of invention (technical feasibility) or

innovation (economic success).

1.1.1 Performance and systemic risk

Financial or social systems are not the only ones exhibiting a high degree of connectedness

among agents. As we show later in the present dissertation, collaboration networks are

also characterized by significantly high connectedness, often showing the emergence of a

unique, giant network component (see Fig. 1.2 for a real example). This means not only

that the outcomes of all agents may exhibit complex interdependencies, but also that a

possible failure affecting one agent may be propagated and amplified through the network

– for instance, in the case reported in Fig. 1.2, various counterparty risks might spread to

several industrial sectors.

Moreover, the majority of such systems exhibit a dynamical structure, being their links

continuously formed, terminated or rewired – in Fig. 1.3, we report an example of dynamic

collaboration network, where a strongly interconnected core co-evolves together with a

sparse and volatile periphery. In order words, collaboration networks show at the same time

a certain degree of robustness and adaptation to change. A deep investigation of both the

link formation mechanisms and the way they affect knowledge flows through the network

is crucial to design efficient collaboration networks and minimize their vulnerability.

Recent works in economics (Battiston et al., 2012; Kaushik and Battiston, 2013) have

shown that being densely connected is not always beneficial for a system: certain networks

have proven to be “too interconnected to be stable”. In the same line, other works in

temporal network theory (Pfitzner et al., 2013; Scholtes et al., 2014) have proven that the

connectedness properties and the temporal order of the links heavily affect the network’s

performance, in terms of diffusion efficiency or other dynamical processes.

3
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Figure 1.2: Visual representation of the global R&D network obtained from the Thom-
son Reuters SDC alliance dataset. Every node represents a firm and every link an R&D
alliance. We depict the 30 core firms and their respective circles of influence.

Like every other system exhibiting high interconnectedness, we argue that also collabora-

tion networks are exposed to risks deriving from cascading processes or consecutive per-

formance drops spreading on the network (Vespignani Alessandro, 2010), that we indicate

as “systemic risk”. In particular, dynamical collaboration networks involving measurable

knowledge flows through their links – such as inter-firm R&D networks or co-authorship

networks – are especially susceptible to this problem.

Precisely, we believe that systemic risk can potentially materialize in two ways. The first

way is that the network grows with a particular topology that does not result in an efficient

knowledge spreading, because it is either too sparse or too dense – this is directly related

to the presence of structural holes in the network (see Burt, 1992; Kleinberg et al., 2008;

Vega-Redondo and Goyal, 2007, for more examples). The second way is that – even though

the network allows optimal knowledge flows in a given period of time – it is not resilient to

shocks, which can result in a sudden drop of performance – or a total network extinction

– if some of the external conditions change. A remarkable example is represented by the

collapse of an entire online social network, that has been studied in Garcia et al. (2013),
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1.1. The emergence of collaboration networks

or the collapse of apps, websites or other software projects,1 studied in Ribeiro (2014).

We want to stress that such a risk is not exogenous to the system, but it endogenously

emerges as a consequence of the system structure and functioning. Differently from a

risk represented by a single disruptive event to a company (such as an earthquake or a

financial collapse), that can be relatively easily quantified and monetized, systemic risk is

endogenously present in the system, and exhibits complex dependencies not only on the

agents’ features, but also their interactions.

Given that collaboration networks in most cases cannot be designed with a top-down

approach, we highlight the importance to understand how a collaboration network forms

and evolves from a microscopic point of view. This way, through a bottom-up approach,

collaboration networks can be improved and steered towards configurations that are not

only more efficient in spreading knowledge, but also more resilient to shocks.

1.1.2 Complex structure

In order to characterize our time-evolving collaboration networks, we use the tool of com-

plex networks. We argue that, despite the variety of actors taking part in such processes,

their treatment can universally be abstracted to the study of networks in which links be-

tween agents represent their collaborations. This set of relationships enables the agents to

coordinate their efforts and create new knowledge or explore new knowledge trajectories.

Like many other instances of socio-economic networks (Barabasi, 2005; Barabasi and Al-

bert, 1999; Pastor-Satorras et al., 2001; Powell et al., 2005), we argue that all collaboration

networks are characterized by three key factors:

Agents are heterogeneous. Collaborating agents are diverse, both with respect to their

nature (organizational types span from multinational firms to single scientists) and to their

knowledge (each actor is endowed with a unique knowledge base).

Diversity fosters interaction. Agents tend to collaborate because their knowledge or

skills are complementary. Provided that some pre-conditions for the interaction exist, the

diversity among players represents one of the most important incentives to collaboration.

Networks are self-organized. Knowledge-based networks are typically not designed

but emerge spontaneously. Agents maximize their utility when forming and dissolving

relationships. They are, in turn, affected in many ways by their position in the network.

This creates a mutual feedback between the actors and the network structure, resulting in

path-dependence and co-evolution.

We intend to investigate the formation of such networks, quantifying the effects of two

different aspects: previous network structures (that we also refer to as network-endogenous

1Information about dead projects is available at http://techcrunch.com/tag/deadpool/
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Chapter 1. Introduction

Figure 1.3: Evolution of the computer software R&D network, obtained from the
Thomson Reuters SDC alliance dataset. The emergence of a giant connected component
is clearly visible from this representation. After the mid-nineties, the collapse of such
component is associated with the growth of a sparse and weakly connected peripheral
component.

mechanisms) and other agent-specific factors (that we also refer to as network-exogenous

mechanisms). Differently from previous studies, here we do not investigate the forma-

tion of spatial clusters of firms and scientists, or the optimization of intra-organizational

knowledge production, or the knowledge transfer from one system to another.

This thesis will investigate the formation and the dissolution of collaborations in several

domains, attempting to quantify the microscopic rules leading to the macroscopic features

that we observe in a number of real cases, spanning from peculiar network topologies to the

emergence of temporal patterns. Next, we will quantify the dependence of some network

performance indicators on a set of microscopic network parameters, thus paving the way

to the design of optimal collaboration networks.

1.1.3 Two prominent examples: R&D and co-authorship net-

works

Following the identification of the microscopic interaction rules, based on our systematic

empirical observations, we will develop a set of agent-based models that are able to repro-

duce the dynamics, the structure and the outcome of the observed collaboration networks.

The validation of the models, together with the fine tuning of the relevant parameters,

will give us insights into the optimality of the analyzed empirical systems, while providing

at the same time indications on how to improve them.

We will thoroughly analyze two prominent examples of real collaboration domains, namely

inter-organizational R&D networks and co-authorship networks in science. This choice

has been made mainly for two reasons: the impact that such systems have on human

development (Gersbach et al., 2013), and the availability of extensive data, that allow for a

quantitative and rigorous analysis. Based on theoretical arguments such as Schumpeter’s

idea of innovation as a recombination process, or the resource-based view of the firm,
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1.1. The emergence of collaboration networks

companies can be considered as the fundamental units aimed at creating innovation in

an economic system (Nonaka and Takeuchi, 1995). On the other hand, basic scientific

research – as testified by its unprecedented growth in the last decades (Liu et al., 2005)

– drives most of the human development, fueling our technological progress (Salter and

Martin, 2001).

R&D collaboration networks. The domain that we study first (and most extensively)

in this dissertation is represented by inter-firm Research and Development (R&D) alliances.

A considerable amount of literature has been developed specifically about collaborating

firms. Besides, companies-related data sources, such as databases on strategic alliances

and joint ventures, offer the possibility to construct large, often longitudinal networks,

allowing extensive empirical studies. This is exactly the focus of Chapter 2 of the present

dissertation.

The 1980s and 1990s witnessed an unprecedented growth of R&D alliances (Hagedoorn,

2002). This has been investigated by two different streams of empirical literature.2 One

body of contributions studies the salient features of empirically observed collaboration

networks (see e.g. Ahuja, 2000a; Fleming et al., 2007; Hanaki et al., 2010; Powell et al.,

1996, 2005; Roijakkers and Hagedoorn, 2006). These studies have mainly found that col-

laboration networks tend to be small worlds characterized by short path lengths and high

clustering (Watts and Strogatz, 1998). In addition, they tend to be highly heterogeneous

and centralized, although there exist some differences across industries (Rosenkopf and

Schilling, 2007).

A second body of work studies the relation between network features and firm performance

(Cowan and Jonard, 2004; Letterie et al., 2008), both at company and aggregate level.

One still open debate is whether dense interconnections are more conducive to knowledge

diffusion than weak bridging ties between separate communities (Granovetter, 1985, 1983).

Indeed, clusters of densely connected firms foster collaboration efforts by generating trust,

punishment of opportunistic behaviors, and common practices (Ahuja, 2000b; Coleman,

1988; Walker et al., 1997). Conversely, by creating a structural hole in the network, firms

have access to different sources of knowledge spillovers, economizing on the costs of direct

collaborations (Burt, 1992; Rowley et al., 2000). Other works (Gulati, 1995b; Gulati and

Gargiulo, 1999; Rosenkopf and Padula, 2008) pointed out the relation between a firm’s

position in the network and its knowledge base. It has been found that two players should

not be too similar nor too different in their knowledge bases in order to engage in a

collaboration (Cohen and Levinthal, 1990, 1989; Lazer and Friedman, 2007).

In particular, we now briefly describe two illustrative examples from the empirical litera-

2See Cohen (1995), Powell and Grodal (2006), Walker (2005), Ebers (1997) and Veugelers (October
1998) for a more extensive overview.
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ture. In the first one (Rosenkopf and Schilling, 2007), the comparison of alliance networks

across industries highlights how technology relates to network structures. The alliance

network for 32 industrial sectors has been analyzed in terms of size, connectivity, cen-

tralization, small-world properties and other network-related measures. As we will also

show in the continuation of the present thesis, the networks exhibit different structures

across industries, mainly determined by their respective technological features. Techno-

logical dynamism and separability of innovation are positively related to the share of firms

participating in alliances (thus influencing the size of alliance network) and to the average

number of alliances formed by each firm (thus influencing the average degree). More-

over, concentration of architectural control is positively related to the asymmetry in the

number of alliances (thus influencing the dispersion of the degree distribution) and to the

appearance of small world properties in the alliance network (high clustering and short

path lengths).

The second work (Powell et al., 2005) studies the evolution over time of the alliance

network in the commercial field of the life science industry. Using panel data on bio-

pharmaceutical alliances, the factors that drive alliance formation have been investigated.

It has been found that the network structure is determined by both past alliance activity

and intrinsic characteristics of the agents. Four mechanisms of link creation, used by

different agents in different periods, have been identified: (a) accumulative advantage: the

most connected agents receive a disproportionate share of new links; (b) homophily : new

partners are chosen on the basis of their similarity to previous partners; (c) follow-the-

trend : agents show a herd-like behavior; (d) multi-connectivity : agents choose partners

that connect to one another through multiple independent paths.

This dissertation will combine the two approaches described in the above illustrative ex-

amples. We will, as a first step, identify the microscopic rules leading to alliance formation,

by means of an econometric model and a set of complex network tools. Then, we will in-

corporate them into an agent-based model to reproduce the emergence of the macroscopic

network structures observed in real R&D networks.

Co-authorship networks. The second domain of collaboration networks that we exam-

ine is represented by co-authorship networks in science, i.e. networks of scientific authors

whose links constitute co-authored papers. Price (1965) was one of the first scholars

suggesting to use the scientific method to study science itself. Since then, research in

bibliometrics and scientometrics has developed tools to analyze more and more extensive

publication datasets. A great number of works focus on identifying networks or clusters

of authors, papers, or references, providing “maps” of science (e.g. Boyack et al., 2005;

Leydesdorff, 1987; McCain, 1991). One prominent example of this stream of literature is

Newman (2004b), who has compared the co-authorship networks in three different science

fields: biomedical research, physics and mathematics. All the fields proved to be similar, in
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terms of broad degree distributions and assortativity coefficient, but different with respect

to their mean degree or clustering coefficient.

Alternative methods based on co-word analysis were later developed to identify semantic

themes (Callon et al., 1983). Recent progress in complex networks, as well as visualization

techniques, have recently lead to advanced representations of knowledge domains (Börner

et al., 2003). Moreover, advances in computing capabilities have facilitated the analysis

of large-scale datasets; for instance, Bollen et al. (2009) used clickstream data to provide

a high-resolution and up-to-date view of scientific activity, correcting the underrepresen-

tation of social sciences and humanities that is commonly found in citation data.

Furthermore, a second literature stream deals with models reproducing the growth of col-

laboration network in science (e.g. Banks and Carley, 1996; Snijders, 2001). In particular,

Börner et al. (2004) introduce a model called TARL (for topics, aging, and recursive link-

ing) that grows at the same time co-authorship and paper citation networks. The model

incorporates a partitioning of authors and papers into topics, a bias for authors to cite

recent papers, and a tendency for authors to cite papers cited by papers that they have

read. Given its scope, the present thesis will contribute especially to the latter stream of

literature, by investigating the formation mechanism of collaborations in science, rather

than to the characterization and mapping of research fields.

1.2 Contribution of the present study

The dissertation is structured in seven Chapters. The current Chapter introduces the

thesis, by explaining its rationales, briefly reporting the empirical and theoretical back-

ground, and describing the used data and methodology. An extended empirical study

follows: Chapter 2 reports a thorough analysis of R&D networks, in several industrial

sectors, and includes an econometric model investigating the microscopic rules for alliance

formation. In Chapter 3, we extend the analysis to a set of co-authorship networks in

scientific disciplines, and identify all the similarities across domains, which will constitute

the building blocks for an agent-based model, thus concluding the empirical part of the

thesis.

Chapter 4 develops an agent-based model that is able to reproduce the topology of different

observed collaboration networks; the model is validated against real data, on both R&D

and co-authorship networks. In Chapter 5, we explore the mechanisms of knowledge

exchange in a dynamic network by means of a second agent-based model, identifying a

theoretical optimal prescription to maximize the aggregate agents’ knowledge exploration.

Chapter 6 combines the two agent-based models into a unified agent-based model, that we

validate on empirical alliance and patent data for R&D networks; such unified framework

is able to predict the topology of the emerging collaboration network and the effect that

9
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this has on the firms’ patenting activities, as well as providing indications for an efficient,

improved R&D alliance network. Finally, Chapter 7 concludes and gives an overview of

the open questions left by the present study and the future research directions.

1.2.1 Research Questions

As we have already mentioned, the present thesis is divided in two main parts, an empirical

one and a modeling one. None of the two parts, or none of the thesis chapters, alone, are

able to answer specific research questions, but only the combined empirical and modeling

effort allows us to address the following relevant questions:

• RQ1. What are the individual rules for link formation in R&D networks? Are we

able to validate them empirically by means of an econometric model?

• RQ2. To what extent is the formation of R&D collaborations driven by the agents’

position in the R&D network? And to what extent is it driven by other, network-

unrelated factors?

• RQ3. Can we extend to co-authorship networks in science the questions about

R&D networks, provided that we consider authors as the collaborating agents and

co-authored papers as links of the network?

• RQ4. We expect the presence of a different incentive scheme. How does this change

the individual rules and, consequently, the structure and the dynamics of the corre-

sponding collaboration network?

• RQ5. Are we able to develop an agent-based model using the interaction rules

derived through our empirical study, that is able to reproduce the dynamics and the

structure of the observed collaboration networks?

• RQ6. Building upon this agent-based model and tuning one or more of its parame-

ters, are we able to find an optimal collaboration dynamics – i.e. maximizing some

aggregate indicator of knowledge production?

The extensive data collection and processing – carried out in Chapters 2 and 3 – will allow

us to quantify the effect of technological position and social embeddedness of companies

and scientific authors on the formation of collaborations, thus addressing RQ1, RQ2 and

RQ3. The individuation of the microscopic interaction rules (in Chapter 3) and their

implementation into an agent-based model (in Chapter 4) allow us to answer RQ2, RQ4

and RQ5.
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The development of the knowledge exchange agent-based model (Chapter 5) complements

the answer to RQ5, giving at the same time a preliminary answer to RQ6. Finally, the val-

idation and the fine tuning of the parameters in our general modeling framework (Chapter

6) allows us to fully address RQ6.

For the sake of completeness, it has to be mentioned that we have investigated one addi-

tional research question, namely the possibility to identify common behaviors – in terms of

network centrality evolution – for the most successful agents, i.e. those having the highest

knowledge production. We have decided not to include the subsequent results in this the-

sis, because this question, being centered on the behavior of single agents, lies outside the

broader scope of the dissertation, which is the investigation of the formation and evolution

of collaboration networks as a whole. However, our investigation has generated a paper

including an empirical analysis and a simple agent-based model that is able to explain the

agents’ centrality evolution in a real R&D network. The results are available in Garas

et al. (2014).

1.2.2 Data

This thesis will make use of four different datasets, conveniently disambiguated and

merged. The first dataset is the SDC Platinum alliance database, provided by Thom-

son Reuters.3 This dataset reports all publicly announced R&D partnerships, from 1984

to 2009, between several kinds of economic actors (including manufacturing companies,

investors, banks and universities). All the data have been handled and processed through

a PostgreSQL data server. A total of 14,829 alliances are listed in the SDC dataset, with

their beginning date and a short description of the alliance purpose. Every company is as-

sociated with its official name, a short business description and a SIC (Standard Industrial

Classification) code, allowing us to assign each firm to the right industrial sector.

The second data source that we use to quantify companies’ knowledge production is the

Patent Citations Data by NBER (the U.S.A. National Bureau of Economic Research).4

The dataset contains detailed information on about 3 million patents granted in the U.S.A.

between 1974 and 2000. Every patent is associated with one or more assignees and with an

IPC (International Patent Classification) class. Companies are associated with a unique

identifier, and a relatively big part of them are also matched to the Compustat dataset,

containing financial information about all firms traded in the U.S. stock market. A signif-

icant amount of work will be devoted to merge the NBER patent dataset with the SDC

alliance dataset.

The third dataset is a list of all papers and citations within the American Physical Society

3http://thomsonreuters.com/sdc-platinum/
4http://www.nber.org/patents/
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Chapter 1. Introduction

(APS) domain,5 including all papers’ title, authors, affiliation, research field, and so on.

The covered journals are Physical Review Letters, the Reviews of Modern Physics, and

all the Physical Review journals, for the period 1983-2010. The fourth and last dataset

is the Microsoft Academic Search (MSAS) dataset,6 that we employ to obtain disam-

biguated information about all authors’ first and last name, author’s address and e-mail

address, institution, department, city. More details about all datasets will be given in the

continuation of the thesis.

All our data are gathered and organized in PostgreSQL databases.7 The analysis of the

databases, as well as regression models and plots, are done by means of the R software for

statistical computing.8 Agent-based models are developed in the C and Python program-

ming languages. The visualization of the networks is done through the i-graph package

for R (Csardi and Nepusz, 2006).

1.2.3 Methods

The general approach that we adopt throughout the thesis is data driven modeling. This

means that an extended empirical analysis constitutes the starting point of our study.

This analysis allows us to identify a set of regularities and similarities across collaboration

networks, that will be used as building blocks for the subsequent theoretical models.

Next, we incorporate the identified blocks as microscopic rules of several agent-based

models, that – through computer simulations – are aimed at reproducing the observed

network topology and other features of real collaboration networks. We argue that the

use of agent-based models is the most appropriate approach to perform this task, in that

it allows to abstract the constituents of many systems (and their properties) into self-

sufficient agents and to impose rules of interaction among them (Schweitzer, 2007, Chap.

1).

Moreover, the use of agent-based models reflects the conceptual approach of complex

systems: it is only through the interaction of many individual elements that the emergent

properties of such systems can be understood. In particular, we will focus on two emergent

properties: the resulting network topology and some indicator of aggregate knowledge

production.

As a final step – and in line with our data driven modeling approach – we will validate

our models against empirical data and fine tune the values of the most relevant model

parameters. It should be noted that the goal we intend to achieve with our study is

not an accurate prediction of the system outcomes (unlike weather forecasting or other

5http://www.aps.org/
6http://academic.research.microsoft.com/
7http://www.postgresql.org/
8http://www.r-project.org/
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1.2. Contribution of the present study

engineering applications). This means that we will not encode the real system into our

agent-based models by including as much detail as possible. We will rather try to identify

the minimum set of agent attributes and interaction rules that can reproduce a certain

emergent behavior, including as much detail as necessary. Therefore, based on empirical

findings, we start from the simplest feasible set of rules, and compare the emerging outcome

of the model against available data. We then add complexity step-by-step, until the desired

level of detail is reached or the selected macroscopic effect is successfully reproduced.

Finally, an added value of this approach is the possibility to compare the optimality of the

real systems with the simulated ones, in terms of some appropriate performance indicators.

A complete exploration of the parameter space can give us a useful indication on how real

system can be improved in sub-optimal cases.

13





Chapter 2

Stylized facts of R&D networks

Summary

In this Chapter we carry out an exhaustive empirical analysis of R&D net-
works. Drawing on a large database of publicly announced R&D alliances, we
track the evolution of R&D networks in a large number of industrial sectors –
including manufacturing, services and public research sectors – over a 25-year
time period (1986-2009). Our main goal is to evaluate the temporal and/or
sectoral robustness of many statistical properties of real R&D networks. We
examine a complete set of indicators, larger than any previous empirical study,
to the best of our knowledge, thus providing a complete description of R&D
networks. We find that most network properties are invariant across sectors. In
addition, they do not change when varying the scale of aggregation (pooled or
sectoral) at which the network is observed. This represents a first step towards
the identification of universal patterns in collaboration networks. Moreover,
for the specific case of R&D networks, we find that most indicators are charac-
terized by a rise-and-fall dynamics, with a peak in the mid-nineties. Finally, we
investigate the formation of R&D alliances from a microscopic point of view,
by means of an econometric model. We use a novel approach, in which the
observation unit is not the firm, but every potential pair of firms, and the de-
pendent variable is the formation of an alliance. We find that previous network
structures, along with potential network structure changes, determine the al-
liance formation as much as the network-unrelated variables, i.e. firm country,
sector and technological knowledge basis. However, a model including both
network-related and -unrelated variables has the highest possible goodness of
fit in explaining the formation of R&D alliances.

Based on M. V. Tomasello, M. Napoletano, A. Garas, and F. Schweitzer, “The Rise and Fall of R&D
Networks”, arXiv:1304.3623 (2013). Submitted to Industrial and Corporate Change, current state: under
revision. M.V.T. contributed to designing the research questions, produced all the statistical analyses and
the plots, and wrote most of the manuscript. The section containing the econometric model, not included
in the original manuscript, was specifically designed and written by M.V.T. for the present dissertation.
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Chapter 2. Stylized facts of R&D networks

2.1 Theoretical and empirical background

The increasing importance of R&D collaborations for industrial innovation has originated

both empirical and theoretical research on R&D networks. he empirical works have tried to

shed light on the structural properties of R&D networks, by showing that R&D networks

are typically sparse and characterized by heavily asymmetric degree distributions (e.g.

Hagedoorn, 2002; Hanaki et al., 2010; Powell et al., 2005; Rosenkopf and Schilling, 2007).

Furthermore, R&D networks display “small world” properties (e.g. Fleming et al., 2007;

Fleming and Marx, 2006).

The theoretical studies have shown that R&D collaborations allow innovation either via

resource sharing (Goyal and Joshi, 2003; Goyal and Moraga-Gonzalez, 2001; Westbrock,

2010) or via the recombination of firm’s knowledge stock with those of its partners (Cowan

and Jonard, 2004; König et al., 2011, 2012). One key prediction of these theoretical models

is that – under non-negligible costs of collaboration – R&D networks should be organized

as core-periphery architectures, i.e. they should display a core of densely connected firms,

in turn linked with a periphery of firms having few alliances among them. Nevertheless,

to the best of our knowledge, no empirical study has tried so far to confirm or deny the

presence of core-periphery architectures in R&D networks, nor study the evolution of other

network indicators on a variety of industrial sectors.

The analysis that we develop in the current Chapter contributes to the foregoing empirical

and theoretical literature along several dimensions.

First, we analyze the R&D networks in a large number of manufacturing and service sec-

tors. After analyzing the pooled R&D network, i.e. the network containing all alliances

independently of the sectors to which the partners belong, we study a series of R&D

networks for several industrial sectors at a 3-digit SIC level. Via this disaggregated anal-

ysis, we are able to check whether the network properties that have been analyzed by the

current literature for sectors like computers (e.g. Hanaki et al., 2010) or pharmaceuticals

(e.g. Powell et al., 2005) are robust across different sectors of activity. In addition, by

comparing the properties at the pooled and at the sectoral levels, we are able to check for

the presence of universal properties of R&D networks that hold irrespectively of the scale

of aggregation at which they are observed.

Second, we perform a longitudinal analysis of empirical R&D networks. In particular, we

consider the network dynamics in the period from 1986 to 2009. This procedure allows

us to check whether network properties are robust over time, or if instead they exhibit

different trends in different time-periods.

Third, we investigate a broad set of network properties. We start our analysis by studying

the basic network measures that have so far been considered in the empirical literature

(size, degree heterogeneity, small world property).
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2.2. Data and methodology

Fourth, we study the formation of R&D collaborations through a novel econometric ap-

proach. In our study, the observation unit is not a single firm, but every potential pair

of firms in the network. Our dependent variable is the formation of a link. The indepen-

dent variables include i. firm structural characteristics (that is, country, industrial sector

and technological knowledge basis), ii. current network centrality and other embedded-

ness measures, iii. potential change in network centrality if the considered link is actually

formed.

2.2 Data and methodology

In this Section, we present the dataset upon which we base the empirical analyses of

the current chapter. Together with the description of the data, we provide a detailed

explanation of the methodology that we employ to build an R&D network and to compute

the relevant network measures, coefficients and distributions. This methodology will be

used in most of the following chapters of the present dissertation.

We define an R&D network as a representation of the research and development alliances

occurring between firms in one or more industrial sectors in a given period of time. Such

network consists of a set of nodes and links connecting pairs of nodes. In our repre-

sentation, each node of the network is a firm and every link represents a R&D alliance

between two firms. By R&D alliance, we refer to an event of partnership between two

firms, that can span from formal joint ventures to more informal research agreements,

specifically aimed at research and development purposes. To detect such events, we use

the SDC Platinum database, provided by Thomson Reuters, that reports all publicly an-

nounced alliances, from 1984 to 2009, between several kinds of economic actors (including

manufacturing firms, investors, banks and universities). We then select all the alliances

characterized by the “R&D” flag; after applying this filter, a total of 14,829 alliances are

listed in the dataset.

Information in the SDC dataset is gathered only from announcements in public sources,

such as press releases or journal articles. Nevertheless, despite the bias that could be

introduced by such a collection procedure, Schilling (2009) shows that the SDC Thomson

dataset provides a consistent picture with respect to alternative databases (e.g. CORE and

MERIT-CATI) in terms of alliance activity over time, geographical location of companies

and industry composition.

Because the SDC Platinum dataset does not have a unique identifier for each firm, all the

associations between alliances and firms (i.e. the construction of the network itself) are

based only on the firm names reported in the dataset. Thus, it could happen that two or

more entries are listed with different names, because they appear in two distinct alliances,

even though they correspond to the same firm. For this reason, we check all firm names
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and control for all legal extensions (e.g. “ltd”, “inc”, etc.) and other recurrent keywords

(e.g. “bio”, “tech”, “pharma”, “lab”, etc.) that could affect the matching between entries

referring to the same firm. We decide to keep as separated entities the subsidiaries of the

same firm located in different countries. The raw dataset contains a total of 16313 firms,

which are reduced to 14561 after running such an extensive standardization procedure.

In our network representation, we draw a link connecting two nodes every time an alliance

between the two corresponding firms is announced in the dataset. An alliance is associated

with an undirected link, as we do not have any information about the initiator of the al-

liance. When an alliance involves more than two firms (consortium), all the involved firms

are connected in pairs, resulting into a fully connected clique. Following this procedure,

the 14,829 alliance events listed in the dataset result in a total of 21,572 links. Similarly to

Rosenkopf and Schilling (2007), the R&D network we consider in our study is unipartite,

as we only have one set of actors (“the firms”), whose elements may be connected – or not

– by publicly announced alliances.1

Multiple links between the same nodes are in principle allowed (two firms can have more

than one alliance on different projects). Nevertheless, as we aim at studying the connec-

tions between firms, and not the number of alliances a firm is involved in, we discard this

information and use unweighted links in our network representation. For this reason, we

define the degree of a node as the number of other nodes to which it is linked, i.e. the

number of partners that a firm has – not the number of alliances. Furthermore, a firm

appears in the R&D network only if it is involved in at least one alliance. Our study is

focused exclusively on the embeddedness of firms into an alliance network. For this reason,

isolated nodes are not part of our network representation.

Both the links and the nodes of the R&D network are characterized by an entry/exit dy-

namics. Alliances between firms have a finite duration (see Deeds and Hill, 1999; Phelps,

2003). This causes some firms to disappear from the network, after they no longer par-

ticipate in any alliance. Likewise, many new firms that were not listed in any previous

alliance may enter the network at the beginning of a new year. Our longitudinal study

clearly requires precise temporal information about the formation and the deletion of al-

liances. The SDC Platinum dataset contains the beginning date of every alliance, but

there is no information about any of the ending dates (firms do usually not organize press

releases to announce the end of an alliance). We are thus forced to make some assumptions

about the alliance durations. We start by drawing the duration of every alliance from a

normal distribution with mean value from 1 to 5 years and standard deviation from 1 to

5 years, and we find that all our results remain qualitatively unchanged by changing the

1Our work differs from previous empirical studies (e.g. Cantner and Graf, 2006; Hanaki et al., 2010;
Lissoni et al., 2013) which construct the network through the association of firms with patents and/or
inventors. Those studies use patent data to build the network and associate elements in the set “firms”
to the elements in the set “patents”. This way, the network they obtain is bipartite.
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mean value and the standard deviation within these ranges. More precisely, the variation

of the standard deviation has nearly no influence on the patterns exhibited by of all mea-

sures we compute on the networks. The variation of the mean alliance duration changes

the absolute values of the network indicators, but it does not affect their time-evolution

and peak positions. Given the strong robustness of the R&D network to the variation

of alliance lengths, we take a conservative approach and assume a fixed 3-year length for

every partnership, consistently with previous empirical work (e.g. Deeds and Hill, 1999;

Phelps, 2003; Rosenkopf and Schilling, 2007). More precisely, we link two nodes when an

alliance between the corresponding firms occurs and we delete this link 3 years after its

formation. In this way, we are able to build 26 snapshots of the R&D network – one for

every year – from 1986 to 2009. From now on we call the network containing all companies,

irrespective of their industrial sector, the pooled R&D network.

Every firm listed in the SDC Platinum dataset is associated with its SIC (Standard In-

dustrial Classification), a US-government code system for classifying industrial sectors.

This allows us to build the sectoral R&D networks for the several sectors that we identify

in the dataset. A sectoral R&D network centered around a given sector contains only

alliances in which at least one of the partners has a three-digit SIC code matching the

selected sector (see also Rosenkopf and Schilling, 2007, for a similar approach). The rules

for link deletion are the same as in the pooled R&D network. More precisely, we select

for our study the 30 largest industrial sectors, in terms of number of firms engaged in

alliances in 1995 (the year in which the pooled R&D network reaches its maximum size).

This list includes manufacturing and service sectors. It has to be noticed that the latter

includes also sectors like “laboratories and testing companies” and “universities”. Table

2.1 provides the list of the different sectors we consider in our study.

2.3 Key network measures and trends across sectors

In the present Section, we provide a detailed empirical characterization of both the pooled

R&D network and the sectoral R&D networks, by computing a set of network indicators

along the whole observation period. The results of our analysis are grouped into five sub-

sections: basic network statistics, heterogeneity in alliance behavior, assortativity, small

world and communities, core-periphery structures.

2.3.1 Basic network statistics

We start our analysis by presenting a set of fundamental network indicators, such as

size and density, as well as visual representations of R&D networks. Fig. 2.1 shows six
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Chapter 2. Stylized facts of R&D networks

snapshots of the pooled R&D network. The plots are produced using the igraph library2

for R, and the networks are displayed using the Fruchterman-Reingold algorithm (cf.

Fruchterman and Reingold, 1991). This is a force-based algorithm for network visualization

which positions the nodes of a graph in a two-dimensional space so that all the edges are of

similar length and there are as few crossing edges as possible. The result is that the most

interconnected nodes are displayed close to each other in the two-dimensional plot. The

ten largest industrial sectors are depicted with different colors. The figure shows that two

clusters always dominate the pooled R&D network: a cluster centered on pharmaceutical

companies and a cluster centered on ICT -related companies.

1989 1993 1997

2001 2005

Pharmaceuticals

Computer Software

R&D, Lab and Testing

Electronic Components

Computer Hardware

Medical Supplies

Communications Equipment

Investment Companies

Telephone Communications

Universities

Figure 2.1: Pooled R&D network snapshots in 1989, 1993, 1997, 2001 and 2005. We
plot – in different colors – only the ten largest sectors, in order to ease visualization.

Fig. 2.1 denotes the presence of different phases in the evolution of the R&D network.

More precisely, the plots suggest the presence of a significant network growth until 1997,

and a reversal of this trend in the last periods of our sample. To shed more light on this

phenomenon, we report in Table 2.1 the network size, in terms of number of firms taking

part in the R&D network – i.e. companies involved in at least one alliance. The observation

2The igraph library is freely available at http://igraph.sourceforge.net/.
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period 1986-2009 is divided into six sub-periods of 4 years each and we average the network

size within each sub-period. Table 2.1 confirms the presence of a rise-and-fall dynamics in

the pooled network. More precisely, the number of companies involved in R&D alliances

increases to a peak in the mid-nineties and then shrinks again, both at the pooled and

the sectoral level (see Table 2.1). In each sector, the number of firms involved in R&D

alliances has a peak in the years 1994-1997. Interestingly, only the Pharmaceutical sector,

besides the peak in the period 1994-1997, has an additional peak of slightly larger size in

the period 2006-2009. The presence of a peak in the period 1994-1997 is a characteristic

of many further network measures considered in this study and leads us to define that

period as the “golden age” of R&D networks.

1986-1989 1990-1993 1994-1997 1998-2001 2002-2005 2006-2009

Pooled Network 280 2515 4918 2626 2219 1829

Manufacturing Sectors

Pharmaceuticals (283) 77 645 935 682 825 949

Computer Hardware (357) 51 385 744 202 92 29

Electronic Components (367) 54 328 581 253 222 165

Communications Equipment (366) 17 207 475 181 113 60

Medical Supplies (384) 10 164 280 122 119 123

Laboratory Apparatus (382) 10 139 243 116 94 87

Motor Vehicles (371) 6 108 190 97 85 78

Aircrafts and parts (372) 8 83 136 60 40 26

Inorganic Chemicals (281) 15 108 152 50 45 31

Household Audio-Video (365) 9 110 164 90 65 30

Plastics (282) 11 97 121 44 36 18

Electrical Machinery NEC (369) 2 54 96 26 24 37

Special Machinery (355) 2 33 82 34 17 11

Crude Oil and Gas (131) 3 42 72 62 35 27

Naut./Aeronaut. Navigation (381) 1 49 82 21 16 12

Organic Chemicals (286) 5 44 60 18 23 18

Service Sectors

Computer Software (737) 69 560 1488 549 284 122

R&D, Lab and Testing (873) 26 477 848 534 596 500

Universities (822) 3 192 374 166 152 83

Telephone Communications (481) 12 184 350 132 82 22

Investment Companies (679) 14 138 298 232 207 125

Professional Equipment Wholesale (504) 4 64 142 26 8 8

Engineer.,Architec.,Survey (871) 2 74 129 62 26 16

Radio and TV Broadcasting (483) 2 26 88 22 7 4

Electric Services (491) NaN 50 78 38 26 15

Electrical Goods Wholesale (506) NaN 26 84 19 10 8

Cable and TV Services (484) NaN 18 78 8 6 3

Motion Picture Production (781) NaN 15 91 14 4 1

Business Services (738) 1 15 66 37 30 5

Management,Consulting,PR (874) 1 28 96 61 64 28

Table 2.1: Network size of the pooled and the sectoral R&D networks (SIC codes are
in brackets). The values are averages within each sub-period. Note: missing values refer
to sectors with not enough observations.

We show in Fig. 2.2 another visual example of this universal rise-and-fall trend for seven
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Chapter 2. Stylized facts of R&D networks

representative industrial sectors. Our plots nicely depict the network snapshots in the

years 1989, 1993, 1997, 2001, 2005 and 2009 for the computer software, pharmaceuticals,

R&D laboratory and testing, computer hardware, electronic components, communications

equipment and universities R&D networks.
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Figure 2.2: Snapshots in 1989, 1993, 1997, 2001, 2005 and 2009 for the seven main
sectoral R&D networks. The color legend corresponds to the one reported in Fig. 2.1;
firms not belonging to any of the main industrial sectors are depicted in gray.

A deeper investigation shows that the growth in size of the R&D network in the mid-

nineties corresponds to a decrease in its density (defined as the number of existing links

divided by the number of all possible links in the network). This is shown in Fig. 2.3,
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2.3. Key network measures and trends across sectors

where the density of the pooled R&D network, (and its mid-nineties decline), is compared

to the network size (and its mid-nineties peak). This means that the expansion of the

R&D network was not generated by an increase of the alliances among the firms that were

already part of the network. Instead, it was mainly the result of new alliances created

by entrant firms. After the “golden age”, the shrinking of the network is associated with

a decrease in the number of nodes. This fall in the number of firms participating into

alliances has however no effect on the density of the network, which remains constant

until the end of the observation period (cf. Fig. 2.3).
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Figure 2.3: Time-evolution of size (solid line, left axis) and density (dashed line, right
axis) of the pooled R&D network.

Next, we compute the fraction of nodes belonging to the largest connected component of

the network. A connected component is defined as a set of nodes which are connected

to each other by at least one path (i.e. a sequence of links). We refer to the largest

connected component as the giant component of the network. The giant component size

to the overall network size ratio (or giant component fraction) is a rough indicator of the

network connectedness. Our results are reported in Table 2.2. This measure has been

computed for every year from 1986 to 2009 and then averaged within six sub-periods of

4 years each. Similarly to the network size, the giant component fraction displays a non-

monotonic trend at the pooled level, reaching a peak in the mid-nineties and then shrinking

again. The emergence of a giant component in the network is of particular interest, as

different theoretical works (e.g. Goyal and Joshi, 2003; König et al., 2012) have stressed

the importance of the relation between high network connectedness and network efficiency.

We also find that the emergence of such non-monotonic dynamics in the giant component

is very robust to sectoral disaggregation. Indeed, we observe it in almost all the sub-

networks representing the different industrial sectors (see Table 2.2). More precisely, 19
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Chapter 2. Stylized facts of R&D networks

out of the 30 sectoral R&D networks show a giant component peak either in the 1990-

1993 or in the 1994-1997 period. The sectors that do not have a peak show a more volatile

evolution of their giant component. Among these, only 4 are manufacturing industries

(Inorganic Chemicals, Household Audio-Video, Special Machinery, Organic Chemicals),

while the other sectors are related to services or sales.

Furthermore, Fig. 2.4 shows the time-evolution of the number of all connected components

of the network and of their average size.3 Both indicators have a peak in the years around

1995 (i.e. the ones corresponding to the 1994-1997 sub-period). This is indicative of the

tendency of firms to form more (and larger) connected components until 1995. Afterwards,

a fragmentation process takes place. The average size of network components starts to

decrease; the number of the components remains stable for two more years, but eventually

declines as well (cf. Fig. 2.4). As a result, the large R&D network of the “golden age”

period 1994-1997, dominated by a giant component, is replaced by a network with less

(and smaller) components. The same results hold for sectoral R&D networks. Fig. 2.1

visualizes this dynamics: the pooled R&D network is characterized by the presence of

a giant component that expands until 1997 and subsequently leaves space to a growing

periphery of disconnected dyads (pairs of allied firms).
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Figure 2.4: Time-evolution of the number of connected components (solid line, left
axis) and average size of connected components (dashed line, right axis) in the pooled
R&D network.

The above analysis reveals the existence of patterns that are invariant to the scale of

aggregation or the sector where they are observed. Namely, both the pooled and sectoral

3 The distribution of the size components is extremely right skewed and fat-tailed. This is due to the
fact that one or few large components co-exist with many disconnected pairs of allied firms. Even though
the arithmetic mean is not entirely meaningful or predictive for heavy-tailed distributions, we still report
it not only because it is fully computable (we have finite size networks), but also because it gives an idea
about the evolution of the component sizes over the period we study. Same remarks apply to the analysis
of the average degree that we discuss in Section 2.3.2.
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2.3. Key network measures and trends across sectors

1986-1989 1990-1993 1994-1997 1998-2001 2002-2005 2006-2009

Pooled Network 0.10 0.53 0.53 0.33 0.26 0.20

Manufacturing Sectors

Pharmaceuticals (283) 0.08 0.58 0.68 0.49 0.36 0.32

Computer Hardware (357) 0.27 0.59 0.67 0.51 0.28 0.13

Electronic Components (367) 0.15 0.53 0.61 0.49 0.38 0.13

Communications Equipment (366) 0.18 0.42 0.55 0.25 0.25 0.15

Medical Supplies (384) 0.21 0.04 0.05 0.05 0.06 0.05

Laboratory Apparatus (382) 0.26 0.15 0.13 0.08 0.08 0.07

Motor Vehicles (371) 0.79 0.52 0.39 0.15 0.21 0.10

Aircrafts and parts (372) 0.65 0.47 0.38 0.23 0.20 0.16

Inorganic Chemicals (281) 0.30 0.26 0.17 0.15 0.12 0.29

Household Audio-Video (365) 0.61 0.57 0.61 0.63 0.60 0.28

Plastics (282) 0.23 0.25 0.20 0.23 0.15 0.19

Electrical Machinery NEC (369) 1.00 0.36 0.22 0.20 0.15 0.11

Special Machinery (355) 0.88 0.25 0.13 0.19 0.27 0.26

Crude Oil and Gas (131) 0.67 0.15 0.14 0.10 0.11 0.15

Naut./Aeronaut. Navigation (381) 1.00 0.38 0.26 0.21 0.22 0.24

Organic Chemicals (286) 0.73 0.13 0.17 0.25 0.13 0.22

Service sectors

Computer Software (737) 0.33 0.54 0.54 0.23 0.11 0.06

R&D, Lab and Testing (873) 0.13 0.19 0.27 0.11 0.10 0.07

Telephone Communications (481) 0.43 0.61 0.58 0.25 0.26 0.28

Universities (822) 0.90 0.17 0.25 0.10 0.08 0.05

Investment Companies (679) 0.21 0.36 0.27 0.23 0.28 0.10

Professional Equipment Wholesale (504) 0.69 0.13 0.16 0.23 0.37 0.28

Engineer.,Architec.,Survey (871) 1.00 0.12 0.15 0.11 0.12 0.20

Motion Picture Production (781) NaN 0.39 0.24 0.22 0.62 0.50

Management,Consulting,PR (874) 1.00 0.23 0.07 0.09 0.09 0.11

Radio and TV Broadcasting (483) 1.00 0.40 0.17 0.16 0.42 0.61

Cable and TV Services (484) NaN 0.35 0.16 0.31 0.53 0.75

Business Services (738) 1.00 0.48 0.08 0.11 0.14 0.65

Electrical Goods Wholesale (506) NaN 0.29 0.12 0.15 0.25 0.34

Electric Services (491) NaN 0.35 0.11 0.15 0.24 0.21

Table 2.2: Fraction of the giant component of the pooled and the sectoral R&D networks
(SIC codes are in brackets). The values are averages within each sub-periods. Note:
missing values refer to sectors with not enough observations.

R&D networks experience a robust growth in both size and connectedness until 1997. In

particular, the years between 1994 and 1997 (the “golden age” of R&D networks), witness

not only a higher number of alliances, but also the emergence of a significantly large giant

component. This robust growth is then replaced by a decline phase, characterized by both

a reduction in the number of alliances and the breaking-up of the network into smaller

components. In the next section, we will go into more detail on how these alliances are

organized, by studying the degree distributions of the pooled and sectoral R&D networks.
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Chapter 2. Stylized facts of R&D networks

2.3.2 Heterogeneity in alliance behavior

A large part of literature has analyzed the properties of the degree distributions in R&D

networks. Empirical studies have shown that degree distributions in R&D networks tend

to be highly skewed. Moreover, some studies find exponential distributions (Riccaboni

and Pammolli, 2002), while others find power-law distributions (Powell et al., 2005). The

presence of a power-law distribution would indicate the existence of an underlying mul-

tiplicative growth process (Reed, 2001; Simon, 1955). In the context of R&D networks

this means that firms which have many collaborations already attract more new partners

than firms with only few collaborations. This idea underlies the “preferential attachment”

model by Barabasi and Albert (1999), which predicts the emergence of a power-law degree

distribution. However, this model assumes that all firms (even the new entrants) know

how many collaborations every other firm in the network has. This may become unreal-

istic, especially in large networks or situations in which this information is not publicly

available. More realistic models assume that firms have only local information about the

network. The network formation model introduced by König et al. (2014) assumes that

firms search for the most central partner in their local neighborhood. Their model gener-

ates exponential degree distributions with power-law tails. In the model of Jackson and

Rogers (2007), agents also form links locally, which can result in power-law degree distri-

butions as well as exponential degree distributions, depending on various parameters. We

extend the existing discussion about the degree distributions in R&D networks by study-

ing their evolution over time and comparing the results between different sectors. Given

the small size of many of our networks, we did not test or validate any functional form,

but we rather measured the statistical properties of the degree distributions, in order to

assess their main features and get insights into the underlying network formation process.

As already mentioned in Section 2.2, we define the degree as the number of partners of

a firm, and not the number of alliances. For this reason, we count multiple alliances

between the same two firms as one, and we count all the firms participating in the same

consortia as distinct partners. Furthermore, like in Section 2.3.1, the whole observation

period is divided into six sub-periods lasting 4 years. All the measures we present are

computed by aggregating firm degree data relative to the same sub-period. Fig. 2.5 shows

the degree distributions of the pooled R&D network in the six analyzed sub-periods.

More precisely, given each degree distribution, we report its complementary cumulative

distribution function P (x), defined as the fraction of nodes having degree greater than or

equal to x:

P (x) =

∫ ∞
x

p(x′)dx′. (2.1)

where p(x′) is the probability density function, defining the fraction of nodes in the network

with degree x. The complementary cumulative distribution function is more robust than

the probability density function against fluctuations due to finite sample sizes (particularly
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Figure 2.5: Complementary cumulative degree distributions of the pooled R&D network
in six sub-periods. Note: the insets in the top right corner show the average network size
in each of the sub-periods.

in the tail). We find that the degree distribution of the pooled R&D network is very broad

and skewed, in all periods. Moreover, the shape of the degree distribution is independent

of the network size. For instance, the degree distributions of the pooled R&D network

in the “golden age” 1994-1997 (maximum degree ∼ 200) has a very similar shape to that

of the early period 1986-1989 (maximum degree ∼ 20). In addition, most of the sectoral

R&D networks (not shown here) exhibit this kind of degree distribution, during the whole

observation period.

Table 2.3 shows the first four moments of the degree distribution of the pooled network in

each sub-period. In all periods, the degree distribution displays high variance associated

with high right-skewness and excess kurtosis. In addition, the p-values of the Kolmogorov-

Smirnov test show that the degree distributions of the pooled network are extremely far

from the Normal benchmark. Moreover, Table 2.3 shows that all the four moments of

the degree distribution increase in the first years of the sample, reaching a peak either in

the 1990-1993 or in the 1994-1997 period, and then decrease again. The mean degree has

a value of 1.51 partners per firm in the early period 1986-1989; it then exhibits a peak

value in 1990-1993 (2.52 partners per firm), which remains almost unchanged in 1994-1997

(2.51 partners per firm), showing that firms have on average more alliance partners in the
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“golden age” of alliance formation. The average number of partners per firm eventually

decreases again, reaching a value of 1.49 in the late period 2006-2009.

As we discussed above, the degree distribution in the pooled R&D network is highly

dispersed, as shown by standard deviation values that are always comparable or even

larger than the mean values. This holds especially for the 1994-1997 period, when the

standard deviation has a peak at 4.98, while the mean value is 2.51 partners per company.

Same considerations apply to the evolution of the skewness and kurtosis coefficients over

time. In particular, the very high values of the kurtosis coefficient (especially in the period

1994-1997) are indicative of heavy tails in the R&D networks degree distributions, which

in turn imply the presence in the networks of “hubs” concentrating a high number of

alliances.

1986-1989 1990-1993 1994-1997 1998-2001 2002-2005 2006-2009

Mean 1.51 2.52 2.51 1.87 1.70 1.49

SD 1.22 4.30 4.98 2.77 2.11 1.45

Skewness 4.90 9.35 11.28 9.26 10.56 7.92

Kurtosis 47.30 158.40 206.69 133.70 200.25 104.84

KS test p-Value < 10−15 < 10−15 < 10−15 < 10−15 < 10−15 < 10−15

Table 2.3: Degree distribution statistics and p-values of Kolmogorov-Smirnov (KS) test
for the pooled R&D network.

The degree distributions of the sectoral R&D networks display patterns that are similar

to those of the pooled R&D network.4 In particular, all sectoral degree distributions are

characterized by high variance associated with significant skewness and kurtosis in all

sub-periods. We report in Table 2.4 the values of the average degree for the pooled and

the sectoral R&D networks in the six sub-periods, clearly confirming such a cross-sector

similarity. In all sectoral networks, firms have on average more collaborators during the

“golden age” of alliance activity (1994-1997). The only two exceptions are represented by

two manufacturing industries, motor vehicles (having a peak in 1986-1989) and organic

chemicals (that has a first peak in 1986-1989 and a second one in 1994-1997).

The previous analysis indicates the presence of heavy tails in both the pooled and sectoral

degree distributions. In order to get an estimate of the “heaviness” of those tails from a

non-parametric point of view, we compute the Hill Estimator (Hill, 1975), a tool commonly

used to study the tails of economic data. If n is the number of observations (in our case,

the number of nodes in the R&D network) and k is the number of tail observations (k ≤ n),

the inverse of the Hill estimator (HE) is defined as:

ĥ−1 = k−1

k∑
i=1

[log(xi)− log(xmin)] , (2.2)

4These results are not shown here, but are discussed in Chapters 3 and 4.
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1986-1989 1990-1993 1994-1997 1998-2001 2002-2005 2006-2009

Pooled Network 1.51 2.52 2.51 1.87 1.70 1.49

Manufacturing Sectors

Pharmaceuticals (283) 1.22 2.09 2.22 1.82 1.57 1.55

Computer Hardware (357) 1.50 2.10 2.45 2.30 1.55 1.09

Electronic Components (367) 1.32 2.18 2.38 2.15 1.81 1.44

Communications Equipment (366) 1.10 1.82 2.03 1.57 1.48 1.34

Medical Supplies (384) 1.00 1.26 1.31 1.21 1.20 1.16

Laboratory Apparatus (382) 1.00 1.41 1.36 1.24 1.20 1.19

Motor Vehicles (371) 2.31 1.89 1.78 1.40 1.49 1.29

Aircrafts and parts (372) 2.00 2.25 2.00 1.68 1.41 1.40

Inorganic Chemicals (281) 1.28 1.48 1.53 1.23 1.17 1.27

Household Audio-Video (365) 1.44 2.11 2.61 2.32 2.20 1.58

Plastics (282) 1.07 1.54 1.55 1.46 1.29 1.11

Electrical Machinery NEC (369) 1.00 1.45 1.52 1.26 1.11 1.10

Special Machinery (355) 1.00 1.34 1.37 1.24 1.21 1.07

Crude Oil and Gas (131) 1.09 1.70 1.68 1.51 1.28 1.11

Naut./Aeronaut. Navigation (381) 1.33 1.49 1.49 1.23 1.13 1.09

Organic Chemicals (286) 1.26 1.17 1.26 1.14 1.09 1.12

Service Sectors

Computer Software (737) 1.70 2.16 2.21 1.52 1.27 1.13

R&D, Lab and Testing (873) 1.08 1.68 1.81 1.40 1.43 1.27

Telephone Communications (481) 1.19 2.84 2.53 1.42 1.57 1.28

Universities (822) 1.27 1.66 1.76 1.51 1.35 1.11

Investment Companies (679) 1.04 1.74 1.62 1.53 1.63 1.35

Professional Equipment Wholesale (504) 1.22 1.24 1.42 1.22 1.09 1.00

Engineer.,Architec.,Survey (871) 1.00 1.36 1.40 1.17 1.07 1.09

Motion Picture Production (781) NaN 1.38 1.36 1.02 1.00 1.00

Management,Consulting,PR (874) 1.00 1.20 1.20 1.19 1.16 1.06

Radio and TV Broadcasting (483) 1.33 1.69 1.31 1.15 1.11 1.11

Cable and TV Services (484) NaN 1.34 1.51 1.03 1.17 1.00

Business Services (738) 1.00 1.17 1.22 1.15 1.16 1.05

Electrical Goods Wholesale (506) NaN 1.35 1.34 1.06 1.05 1.07

Electric Services (491) NaN 1.57 1.38 1.22 1.22 1.25

Table 2.4: Average degree (number of partners) of the pooled and the sectoral R&D
networks (SIC codes are in brackets). Note: missing values refer to sectors with not enough
observations.

where xmin represents the beginning of the tail and xi, i = 1 . . . k are the tail observations,

i.e. the degree values such that xi ≥ xmin. The smaller the HE value, the “heavier” the

tail of the degree distribution is. In particular, the degree distributions of most biologi-

cal, social and economic systems display values of the HE between 2 and 4 (see Clauset

et al., 2009). A value of the HE lower than 2 indicates an extremely heavy-tailed distri-

bution (“super heavy-tailedness”). At the other extreme, a value higher than 4 is indica-

tive of degree distributions whose fat-tail property is not very pronounced (“sub heavy-

tailedness”). Finally, the theoretical HE value predicted by the preferential-attachment

model of Barabasi and Albert (1999) is 3.

Table 2.5 reports the values of the Hill estimator for both the pooled and the sectoral

R&D networks in all the time periods. Let us start with the pooled network. The table
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shows that the HE first decreases, reaching a minimum in the golden-age period 1994-1997

and then increases again. This indicates that the degree of tail-heaviness undergoes a rise-

and-fall dynamics similar to the other network measures discussed so far. Moreover, the

table shows that in all sub-periods the HE ranges between 2 and 4. This rules out both

super and sub heavy-tailedness. However, in all sub-periods but the first and the last one

the values of the HE is significantly below 3, and the minimum is achieved in the golden

age period 1994-1997 (2.34). This indicates that in those periods the degree distribution

of the pooled R&D network cannot be predicted by the preferential-attachment model. In

particular, our results show that the tails of the degree distribution of the pooled R&D

network are fatter than what will be predicted by that model.

The values of the HE computed on the sectoral R&D networks reveal a rise-and-fall pattern

similar to the one detected in the pooled network (see Table 2.5). In particular, most

sectors display fatter tails in the periods of higher alliance activity. Moreover, HE values

of most manufacturing sectors are comparable to those of the pooled network. In contrast,

HE values are in general higher in service sectors. This indicates that the concentration

of alliances among few hubs is less marked in this type of sectors.

2.3.3 Degree assortativity

Assortativity is a network measure that identifies correlations between the centrality of

a node and the centrality of its neighbors. Assortativity can be computed by using any

measure of node centrality (see e.g. Borgatti, 2005, for a survey of centrality measures).

However, in this study we use degree correlation, or average nearest-neighbor connectivity

(Newman, 2002; Pastor-Satorras et al., 2001) as assortativity measure. A network is

assortative if it is characterized by a positive correlation across the degrees of linked

nodes. This implies that nodes tend to be connected to nodes with similar degree. At

the other extreme, dissassortative networks have negative node degree correlation, i.e.

nodes tend to be connected to nodes with dissimilar degree. Newman (2003) found that

technological networks, such as the Internet, are disassortative while social networks, such

as the network of scientific co-authorships, are assortative. However, R&D networks can

be assortative or disassortative, depending on the underlying topology of the network. For

instance, Ramasco et al. (2004) develop models wherein agents establish links with most

central actors in the network, and show that such a mechanism gives rise to disassortative

networks. However, König et al. (2010) show that the same mechanism of search for high

centrality can give rise to assortative networks if agents face limitations in the number of

collaborations they are able to maintain.

To investigate assortativity-disassortativity in our R&D networks, we use the assortativity

mixing coefficient r proposed by Newman (2002). This quantity, as described by Eq. 2.3,

is the Pearson correlation coefficient of the degrees at both ends of all links in the network:
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1986-1989 1990-1993 1994-1997 1998-2001 2002-2005 2006-2009

Pooled Network 3.04 2.31 2.34 2.61 2.78 3.05

Manufacturing Sectors

Pharmaceuticals (283) 5.19 2.91 2.45 2.58 2.89 3.02

Computer Hardware (357) 2.70 2.37 2.22 2.75 2.88 4.59

Electronic Components (367) 3.36 2.43 2.43 2.25 2.59 3.57

Communications Equipment (366) NaN 2.66 2.50 2.43 2.71 2.65

Medical Supplies (384) NaN 3.71 3.25 4.50 3.58 3.95

Laboratory Apparatus (382) NaN 2.69 2.73 3.70 3.22 4.04

Motor Vehicles (371) 3.69 2.18 2.46 2.87 3.72 3.98

Aircrafts and parts (372) 5.07 2.24 2.47 3.77 3.43 3.06

Inorganic Chemicals (281) 3.07 2.31 2.50 3.23 3.71 2.35

Household Audio-Video (365) 3.49 2.48 2.10 2.04 2.09 2.89

Plastics (282) 3.48 3.79 2.34 2.22 3.50 4.36

Electrical Machinery NEC (369) NaN 3.04 2.89 3.61 4.38 3.29

Special Machinery (355) NaN 2.89 3.35 3.82 4.44 NaN

Crude Oil and Gas (131) NaN 3.39 4.08 4.16 6.22 3.59

Naut./Aeronaut. Navigation (381) NaN 2.53 2.45 4.19 4.10 NaN

Organic Chemicals (286) 3.08 3.86 4.88 4.58 NaN 4.00

Service Sectors

Computer Software (737) 2.71 2.41 2.30 2.70 3.31 4.24

R&D, Lab and Testing (873) NaN 2.77 2.69 3.65 3.23 3.60

Telephone Communications (481) 4.63 2.81 2.69 2.94 3.07 3.25

Universities (822) NaN 2.96 2.72 3.14 3.10 6.01

Investment Companies (679) NaN 2.86 2.85 2.79 2.85 3.09

Professional Equipment Wholesale (504) NaN 4.09 3.05 2.60 NaN NaN

Engineer.,Architec.,Survey (871) NaN 2.74 2.58 3.14 5.33 NaN

Motion Picture Production (781) NaN 3.24 3.24 NaN NaN NaN

Management,Consulting,PR (874) NaN 2.91 3.11 3.38 4.43 NaN

Radio and TV Broadcasting (483) NaN 3.49 3.48 5.17 NaN NaN

Cable and TV Services (484) NaN 4.08 3.23 NaN 4.10 NaN

Business Services (738) NaN 4.59 3.59 4.01 3.59 NaN

Electrical Goods Wholesale (506) NaN 2.50 2.44 NaN NaN NaN

Electric Services (491) NaN 2.97 3.81 4.01 3.71 NaN

Table 2.5: Hill estimator (HE) for degree distributions of the pooled and the sectoral
R&D networks (SIC codes are in brackets). Note: missing values refer to sectors with not
enough observations.

r =
4M−1

∑
i jiki − [M−1

∑
i (ji + ki)]

2

2M−1
∑

i (j
2
i + k2

i )− [M−1
∑

i (ji + ki)]2
, (2.3)

where ji, ki are the degrees of the firms at the ends of the i-th link, with i = 1, ...,M .

The coefficient r ranges between −1 for a totally disassortative network to 1 for a totally

assortative network; a network in which links are formed randomly would exhibit r = 0.

We compute the assortativity mixing coefficient r on both the pooled and the sectoral

R&D sub-networks. We follow the same procedure as in the previous section. The whole

observation period is again divided into six sub-periods of 4 years each and all the ob-

servations of every firm’s degree are taken together within each sub-period. The degree

correlation coefficients are then computed for each sub-period. The results are reported
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in Table 2.6.

1986-1989 1990-1993 1994-1997 1998-2001 2002-2005 2006-2009

Pooled Network 0.167 0.110 0.119 0.195 0.170 0.035

Manufacturing Sectors

Pharmaceuticals (283) 0.005 0.172 0.119 -0.049 -0.047 -0.043

Computer Hardware (357) -0.188 -0.179 -0.192 -0.133 -0.103 -0.145

Electronic Components (367) -0.174 -0.151 -0.194 -0.094 0.023 0.267

Communications Equipment (366) -0.233 -0.149 -0.147 -0.143 -0.077 -0.312

Medical Supplies (384) NaN -0.165 -0.155 0.106 -0.184 -0.108

Laboratory Apparatus (382) NaN -0.199 -0.134 -0.153 -0.159 0.018

Motor Vehicles (371) -0.174 -0.309 -0.099 -0.071 -0.023 0.078

Aircrafts and parts (372) -0.132 0.054 -0.182 0.035 0.019 0.804

Inorganic Chemicals (281) -0.445 -0.228 -0.243 -0.188 -0.146 -0.239

Household Audio-Video (365) -0.467 -0.368 -0.306 -0.329 -0.287 -0.342

Plastics (282) -0.105 -0.249 -0.351 -0.437 -0.265 -0.151

Electrical Machinery NEC (369) NaN -0.250 -0.184 -0.283 -0.032 -0.134

Special Machinery (355) NaN -0.206 -0.223 -0.153 -0.214 -0.143

Crude Oil and Gas (131) NaN 0.489 -0.017 0.383 0.255 -0.160

Naut./Aeronaut. Navigation (381) NaN -0.297 -0.318 -0.333 -0.217 -0.190

Organic Chemicals (286) -0.458 -0.242 -0.206 -0.191 -0.190 -0.170

Service Sectors

Computer Software (737) -0.103 -0.074 -0.067 -0.029 -0.002 -0.105

R&D, Lab and Testing (873) -0.024 -0.032 0.011 0.132 0.185 0.025

Telephone Communications (481) -0.273 -0.178 -0.097 -0.035 -0.036 -0.279

Universities (822) NaN -0.133 -0.102 0.026 0.152 0.078

Investment Companies (679) -0.057 -0.210 -0.193 -0.219 -0.187 -0.182

Professional Equipment Wholesale (504) NaN -0.128 -0.066 -0.168 -0.200 NaN

Engineer.,Architec.,Survey (871) NaN -0.275 -0.208 -0.130 -0.116 -0.207

Motion Picture Production (781) NaN -0.154 -0.081 -0.037 NaN NaN

Management,Consulting,PR (874) NaN -0.288 -0.200 -0.221 -0.177 -0.135

Radio and TV Broadcasting (483) NaN -0.537 -0.173 -0.266 -0.250 -0.250

Cable and TV Services (484) NaN 0.006 -0.101 -0.063 -0.287 NaN

Business Services (738) NaN -0.296 -0.247 0.382 0.087 -0.100

Electrical Goods Wholesale (506) NaN NaN -0.305 -0.139 -0.100 -0.143

Electric Services (491) NaN -0.007 -0.235 -0.127 -0.107 0.664

Table 2.6: Assortativity mixing coefficient of the pooled and the sectoral R&D net-
works (SIC codes are in brackets). Note: missing values refer to sectors with not enough
observations.

The pooled R&D network is assortative, as indicated by the low but positive assortativity

mixing coefficient during the whole observation period (see Table 2.6). This means that, on

average, high-centrality (low-centrality) firms tend to connect to other high-centrality (low-

centrality) firms. Moreover, and differently from the network indicators studied in Sections

2.3.1 and 2.3.2, the assortativity coefficient does not reveal any rise-and-fall dynamics over

time.

In contrast to the pooled R&D network, the sectoral R&D networks are disassortative:

for most sectors and in most of the analyzed sub-periods, the assortativity coefficient

is negative. For instance, when considering the 1990-1993 and the 1994-1997 periods,

only 4 sectors out of 30 exhibit a non-negative assortativity coefficient (Pharmaceuticals,
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Figure 2.6: Local degree correlations (mean neighbors’ degree VS degree) in the pooled
R&D network. The error bars represent the standard error of the mean. Note: on the
top-right corner of each plot we report the corresponding value of the assortativity mixing
coefficient in the sub-period under analysis.

R&D-Lab-Testing, Aircrafts and Parts, Cable and TV Services). This indicates that in

a sectoral R&D network, i.e. centered around a given industry, low-degree firms increase

their tendency to connect to high-degree firms, and vice-versa.

Thus, R&D networks seem to have features of both technological and social networks, as

they display both assortativity and disassortativity depending on the scale at which they

are studied. To shed more light on the determinants of this phenomenon, we study the

“local degree correlations” in the pooled R&D network. More precisely, Fig. 2.6 shows the

average neighbors’ degree as a function of firms’ degree, for the pooled R&D network, and

for each of the six sub-periods considered in our analysis.

The plots show that the relation between average neighbors degree and node degree is

strongly non linear in all the considered sub-periods. More precisely, node degree predicts

quite well average degree of partners until high-degree nodes are taken into account. Then,

a sharp decay occurs. This indicates that – when considering the pooled R&D network –

firms with low and intermediate degree levels tend to connect with firms having similar

degree, whilst high-degree firms display negative degree correlation. Moreover, the position
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of the maximum of these curves on the x -axis (i.e. the firm’s degree) varies during the

observation period and is positively correlated to the network size. Such a tipping point

in the firm’s degree is equal to 5 in the early period 1986-1989 and in the late sub-period

2006-2009, and it ranges between 10 and 20 in the other sub-periods. Interestingly, we

find that the inverted U-shaped pattern of the local degree correlation curve holds for the

sectoral R&D networks as well. The sharp decay in the local correlation curve is stronger

in the sectoral R&D networks than in the pooled one. The above findings indicate that

the transition from disassortativity to assortativity is the result of a composition effect

due to the presence of a non-linear relationship between the number of alliances of a firm

and the one of its partners. In the pooled network sectoral hubs are poorly connected

among them (as indicated by the low average degree of their partners). In contrast, firms

occupying low and intermediate positions in the sectoral degree distributions tend to form

alliances with firms having similar degree in other sectors. This does not occur within

sectors, where low- and intermediate-degree firms form alliances mainly with the sector

hubs.

2.3.4 Small worlds and communities

Similarly to degree heterogeneity (cf. Section 2.3.2) the presence of small worlds in R&D

networks has been analyzed by a large amount of theoretical and empirical works (see e.g.

Cowan and Jonard, 2004, 2009; Fleming et al., 2007; Gulati et al., 2012; Uzzi et al., 2007).

A network is a small world if it is characterized by two key features: high local clustering

and low average path length (Watts and Strogatz, 1998). Local clustering measures the

extent to which the neighbors of a node are in their turn connected among themselves. It

is defined as the number of existing links between the neighbors of a focal node, divided

by the number of all possible links between these neighbors; the measure is subsequently

averaged over all nodes in the network. Average path length is defined as the average of all

shortest distances, i.e. the lowest number of links that must be traversed to connect every

pair of nodes in the network. In our R&D network representation, the first measure shows

the extent to which a company’s partners tend to be connected among themselves, while

the second measure quantifies how long the average alliance chain from a firm to any other

firm in the network is. Small world networks exhibit high clustering and short average

path length, combining the qualities of both regular networks (typically characterized by

high clustering and high average path length) and random networks (characterized by low

clustering and low average path length). Previous empirical works have pointed out that

the R&D network structure may follow a rise-and-fall dynamics. More specifically, Gulati

et al. (2012) show that in the computer industry the excessive formation of ties can lead

to the formation of a small world and then to its own decline.

Small world properties in a network are often associated with the presence of commu-
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nity structures (Newman, 2004a), reflecting the tendency of nodes to divide into groups

or modules. In a modular network, dense connections and high clustering are observed

within each group, with only a few links connecting the different groups (Newman, 2004b).

In inter-firm networks, dense groups are shown to facilitate information exchange among

similar firms and support trust and cooperative behavior, while bridging ties connecting

different groups favor information recombination between distant positions in the knowl-

edge space (e.g. Granovetter, 1973, 1983; Tiwana, 2008).

In this section we analyze both the presence of small worlds and community structures in

R&D networks. According to Watts and Strogatz (1998), the small world properties of a

network have to be evaluated using a corresponding random network as the baseline. If

the examined network is both large and sparse, i.e. N � 〈k〉, where N is the network size

and 〈k〉 is the average degree, the basic requirement for small world is satisfied. Under

this assumption, the values of clustering coefficient C and average path length L for the

baseline random network will tend to: CR = 〈k〉 /N and LR = ln(N)/ ln(〈k〉). The small

world quotient QSW we use for our analysis is defined as:

QSW =
(C/CR)

(L/LR)
. (2.4)

In our study, the condition of sparse network is always fulfilled for the pooled and the

sectoral R&D networks (the average degrees are always smaller than 3, and much smaller

than the corresponding network sizes, as reported in Table 2.4). Some of the sectoral R&D

networks have relatively small sizes in the first (1986-1989) and in the last (2006-2009)

observation periods (as can be seen from Table 2.1), but in these cases they exhibit an

even smaller average degree 〈k〉, still validating the assumption of sparse networks. When

computing the observed to random ratios, a small world network will show C/CR � 1

and L/LR ' 1, which is the case for all the R&D networks we analyze. The results of our

computations are listed in Table 2.7. Once again, results are presented for six different

sub-periods.

The small world quotient is computed separately for every year during the whole observa-

tion period, in both the pooled and the sectoral R&D networks, and then averaged within

six sub-periods lasting 4 years each.5 The evolution of this quotient over time reveals the

presence of a rise-and-fall dynamics of the small world properties, in both the pooled and

the sectoral R&D networks. The small world quotient rises to a peak in the “golden age”

period and then decreases again. Moreover, this feature is common across sectors, gener-

alizing the results of the work by Gulati et al. (2012), that was limited to the computer

industry. With the exception of 6 sectors out of 30 (Medical Supplies, Universities, Air-

crafts and Parts, Business Services, Crude Oil and Gas, Electric Services), the small world

5We do not aggregate the observations inside every time period, because the small world quotient is
a global network measure, and not an ego-network measure centered around single nodes.
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1986-1989 1990-1993 1994-1997 1998-2001 2002-2005 2006-2009

Pooled Network 1.410 85.814 154.560 57.085 28.640 5.596

Manufacturing Sectors

Pharmaceuticals (283) 0.000 23.434 34.030 14.241 5.468 2.628

Computer Hardware (357) 0.129 4.757 16.864 6.397 0.635 0.000

Electronic Components (367) 0.000 7.082 12.414 6.691 5.450 2.290

Communications Equipment (366) 0.000 2.278 5.545 1.283 1.688 0.000

Medical Supplies (384) NaN 0.000 0.368 0.000 0.000 0.000

Laboratory Apparatus (382) NaN 0.976 0.534 0.000 0.000 0.933

Motor Vehicles (371) 1.740 2.924 4.134 0.669 1.863 0.840

Aircrafts and parts (372) 1.313 4.319 4.021 1.748 1.323 1.738

Inorganic Chemicals (281) 0.000 0.410 0.000 0.000 0.000 0.000

Household Audio-Video (365) 0.000 1.746 5.316 3.475 1.924 0.000

Plastics (282) 0.000 0.380 0.080 0.000 0.000 0.000

Electrical Machinery NEC (369) NaN 0.000 0.000 0.000 0.000 0.000

Special Machinery (355) NaN 0.000 0.000 0.000 0.000 0.000

Crude Oil and Gas (131) 0.000 2.004 0.775 1.269 2.002 0.000

Naut./Aeronaut. Navigation (381) 0.000 0.000 0.000 0.000 0.000 0.000

Organic Chemicals (286) 0.000 0.000 0.000 0.000 0.000 0.000

Service Sectors

Computer Software (737) 0.769 13.584 33.514 5.242 0.669 0.000

R&D, Lab and Testing (873) 0.000 4.155 12.404 0.864 1.668 0.636

Telephone Communications (481) 0.000 7.521 10.110 1.448 1.222 0.000

Universities (822) 0.000 1.456 4.489 0.863 2.135 0.594

Investment Companies (679) 0.000 0.884 0.452 0.126 0.400 0.576

Professional Equipment Wholesale (504) 0.000 0.594 1.131 0.000 0.000 NaN

Engineer.,Architec.,Survey (871) NaN 0.450 0.000 0.000 0.000 0.000

Motion Picture Production (781) NaN 0.000 0.000 0.000 NaN NaN

Management,Consulting,PR (874) NaN 0.000 0.000 0.000 0.000 0.000

Radio and TV Broadcasting (483) 0.000 0.000 0.000 0.000 0.000 0.000

Cable and TV Services (484) NaN 0.320 1.454 0.000 0.000 NaN

Business Services (738) NaN 0.000 0.000 0.778 0.389 0.000

Electrical Goods Wholesale (506) NaN 0.000 0.000 0.000 0.000 0.000

Electric Services (491) NaN 0.429 0.000 0.000 0.594 2.377

Table 2.7: Small world quotient of the pooled and the sectoral R&D networks (SIC
codes are in brackets), for the giant component. The values are averages within each
sub-period. Note: missing values refer to sectors with not enough observations.

quotient has a peak either in the 1990-1993 or in the 1994-1997 period. It should also be

noticed that five industrial sectors (Motion Picture Production, Management-Consulting-

P.R., Electrical Goods Wholesale, Nautical/Aeronautical Navigation, Organic Chemicals)

display constant zero values for their small world quotients, meaning that there is no ob-

served clustering in the corresponding networks. The sectors that deviate the most from

the non-monotonic small world dynamics are mostly service sectors, which indeed tend to

create more inter-sectoral alliances, rather than forming their own intra-sectoral network.

We now want to assess whether such emergence of small world properties in R&D networks

is associated with the presence of modular structures. The standard approach to quantify

this phenomenon, described by Newman (2004a), is to perform a partition of the network

into communities, i.e. assigning a label to every node, in order to maximize the so called
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modularity coefficient. Such indicator of modularity is maximum if the chosen network

partition perfectly reflects the positioning of links in the network, with all links occurring

within communities and no links occurring between different communities. We do not

intend to test several partitions to maximize the modularity coefficient of the network. We

rather assume that a community corresponds to an industrial sector. Next, we partition

the pooled R&D network by assigning every firm to its sector. Finally, we study the

time evolution of the modularity coefficient in the pooled R&D network, computed by

considering the sectors as communities. This way, we are able to evaluate the extent to

which alliances are concentrated among firms belonging to the same sector. We call the

modularity coefficient QM and define the relative connectivity cij between two industrial

sectors i and j as follows:

cij = eij/aij, (2.5)

where eij is the fraction of links in the network connecting any firm belonging to sector i

to any firm belonging to sector j. The quantities eij (and consequently aij and cij) can be

thought of as elements of a symmetric n×n matrix, where n is the number of sectors into

which the R&D network is partitioned.6 The row (or column) sums ai =
∑

j eij represent

the fraction of links (alliances) involving at least one company in sector i. We then define

aij = aiaj as the expected fraction of links connecting firms in sector i to firms in sector

j in a benchmark network having the same density and sector populations as the real

network, but where alliances occur randomly between firms, independently of the sector

they belong to. This way, cij is the ratio between the observed and the expected fraction

of alliances connecting a firm in sector i to a firm in sector j. Values of cij greater than

1 suggest that the alliance probability between a firm in sector i and a firm in sector j is

higher than one would expect with a random partner choice. On the contrary, when cij
is smaller than 1, a firm in sector i forms alliances with firms in sector j with a smaller

probability than a random partner choice.

We compute all cij values for the 18 largest industrial sectors analyzed in this Chapter.

However, given that the study of intra- and inter-sectoral connectivities is not the main

focus of our analysis, we report these results in Appendix A. Next, following Newman

(2004a), we define the modularity coefficient QM as:

QM =
∑
i

(eii − a2
ii)/(1−

∑
i

a2
ii), (2.6)

where the index i spans all industrial sectors in the R&D network. The coefficient QM

is equal to 1 in case of a perfect modular network, where alliances occur only intra-

community and never inter-community. Likewise, QM is equal to −1 for a perfect anti-

modular network, having only inter-community links, without any intra-community links.

6To make sure that every alliance is counted once in the matrix eij , every link connecting sectors i
and j is split in half between the elements eij and eji.
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QM is equal to zero for a network where links are formed at random. The time evolution

of the modularity coefficient QM of the pooled R&D network is reported in Table 2.8.

1986-1989 1990-1993 1994-1997 1998-2001 2002-2005 2006-2009

Pooled Network 0.237 0.220 0.228 0.220 0.218 0.277

Table 2.8: Modularity coefficients of the pooled R&D network. The values are averages
within each sub-period.

The coefficient QM ranges between 0.21 and 0.28, indicating the presence of a moderate

modularity if compared to other examples of real networks (see Newman and Girvan, 2004).

Furthermore, the modularity coefficient exhibits only small changes over the observation

period and does not have a peak in accordance with the peak of the small world quotient.

The rise-and-fall of the small world structure detected above is thus not associated to any

rise-and-fall in the modular structure of the network.

To conclude, our results generalize the previous findings of Gulati et al. (2012). The rise-

and-fall of small worlds is not a feature limited to few industries, but it is instead a general

feature of sectoral R&D networks. Moreover, this property emerges also when alliances

are considered independently of the sector to which the firms belong to. However, small

worlds are not associated with the presence of a strong community division of the network

when industrial sectors are used as communities. The emergence of small worlds might

thus have other reasons, which will be further investigated in the next section.

2.3.5 Core-Periphery architectures

Core-periphery networks are dominated by one group of highly inter-connected nodes (the

core of the network), that have few connections to secondary nodes (the periphery of the

network). In addition, the peripheral nodes are strongly connected to the core nodes, but

poorly inter-connected between each other. Borgatti (2005) points out that such kind

of networks are efficient because they can spread information quickly. A generalization

of the concept of core-periphery architecture is the one of nested networks. A network

is nested if the neighbors of a node with degree m are contained in the neighborhoods

of all nodes with degree m′ > m. The difference with core-periphery networks is that

graphs with a nested neighborhood structure can feature not only two groups (the core

and the periphery), but several densely connected groups of nodes, with increasing degree.

In addition, each group is connected to the group of higher degree nodes. König et al.

(2012) show that efficient R&D networks (i.e. networks maximizing industry profits) have

a nested architecture, when marginal costs of collaborations are high. Interestingly, both

core-periphery and nested networks can exhibit short path length and high clustering
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features that are typical for small worlds. In our case, given the absence of correlation

between the emergence of small worlds and modular architectures in the R&D networks,

the formation of core-periphery architectures could be the true reason for the emergence

of small world properties reported in Section 2.3.4.

To quantify the presence of core-periphery architectures in our R&D networks we employ a

slightly modified version of the core-periphery coefficient Ccp suggested by Holme (2005).7

More precisely, we define the core-periphery coefficient Ccp of a network G as follows:

Ccp =
cc [Gcore] /cc [G]

cc [Gcore
R ] /cc [GR]

, (2.7)

where cc[·] indicates the closeness centrality of a network8 and Gcore is a subgraph9 of

the network G that maximizes this value of closeness centrality. The ratio between the

closeness centrality of Gcore and the closeness centrality of G is then divided by the mean

value of the same measure mean value computed on 500 random networks of the same

size and density as the network G. The values of the core-periphery coefficients Ccp for

the pooled and the sectoral R&D networks are shown in Table 2.9. Values are reported

– as usual – for the different 6 sub-periods. We do not pool the observations inside each

of the 6 selected sub-periods, but we compute the value of the core-periphery coefficient

separately for every year and then average over the duration of every sub-period.10

We clearly observe a rise-and-fall dynamics for the core-periphery coefficient, in both the

pooled and the sectoral R&D networks, with a peak positioned either in the 1990-1993

or in the 1994-1997 period. The presence of core-periphery structures in the “golden

age” is a common characteristic across all industrial sectors. One notable exception is the

Pharmaceutical sector, whose core-periphery coefficient has a peak in the period 2002-2005.

In addition, four small industrial sectors (Management-Consulting-PR, Business Services,

Electrical Goods Wholesale and Organic Chemicals) exhibit core-periphery coefficients

that are not peaked neither in 1990-1993 nor in the 1994-1997 periods.

The above results confirm that – both at pooled and sectoral level – the small world

properties detected in Section 2.3.4 are correlated to the presence of strongly centralized

7The difference is that we do not calculate the core-periphery coefficient only on the largest connected
component of the network, but we take into account the whole network.

8The closeness centrality of a network is defined as the inverse of the sum of all shortest paths between
any pair of nodes in the network. The idea behind this measure is to quantify how connected a network
is. See Sabidussi (1966) for a more rigorous definition.

9There are many ways to divide a network G into subgraphs and then select the subgraph Gcore

with the maximal closeness centrality. Usually, one uses the computationally cheapest algorithm, which
is a k−core decomposition of the network. Gcore is then assumed to be the k-shell of the network with
maximal closeness centrality. For the sake of brevity, we do not provide here any description of the k−core
decomposition procedure, See Sabidussi (1966) for a detailed explanation, and Garas et al. (2012) for an
extension to weighted networks.

10Similarly to the small world quotient, the core-periphery coefficient is not an ego-, but a global
network measure (see Section 2.3.4).
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1986-1989 1990-1993 1994-1997 1998-2001 2002-2005 2006-2009

Pooled Network 8.37 23.53 28.51 20.13 18.46 16.34

Manufacturing Sectors

Pharmaceuticals (283) 0.97 11.41 7.59 12.69 12.88 3.81

Computer Hardware (357) 0.80 5.04 12.38 8.43 2.33 0.12

Electronic Components (367) 1.20 7.17 11.63 6.87 4.39 2.49

Communications Equipment (366) 0.19 3.13 11.05 4.11 2.30 0.77

Medical Supplies (384) 0.30 0.86 3.25 0.98 1.67 1.93

Laboratory Apparatus (382) 0.34 3.95 3.62 2.57 0.04 2.27

Motor Vehicles (371) 0.69 3.25 8.48 2.20 0.91 0.36

Aircrafts and parts (372) 1.87 5.75 9.12 3.18 1.01 1.88

Inorganic Chemicals (281) 0.17 3.60 1.89 0.06 0.07 0.09

Household Audio-Video (365) 0.50 2.98 10.12 5.43 2.96 1.95

Plastics (282) 0.28 2.37 3.80 0.07 0.08 0.16

Electrical Machinery NEC (369) 1.00 2.12 4.24 0.10 0.14 0.09

Special Machinery (355) 0.89 0.93 1.60 0.08 0.24 0.28

Crude Oil and Gas (131) 0.65 3.45 4.20 2.59 1.03 0.11

Naut./Aeronaut. Navigation (381) 1.00 0.78 1.20 0.14 0.19 0.24

Organic Chemicals (286) 0.63 0.11 0.06 0.15 0.13 0.16

Service Sectors

Computer Software (737) 4.62 8.48 16.38 4.34 5.44 0.03

R&D, Lab and Testing (873) 0.16 4.01 11.36 10.69 5.47 0.49

Telephone Communications (481) 0.39 10.85 14.21 3.12 0.96 0.70

Universities (822) 0.81 0.95 8.47 2.35 1.93 2.35

Investment Companies (679) 0.26 5.75 7.84 7.68 4.91 2.33

Professional Equipment Wholesale (504) 0.58 1.94 2.75 0.15 0.38 0.35

Engineer.,Architec.,Survey (871) 1.00 3.12 2.85 0.05 0.15 0.19

Motion Picture Production (781) NaN 0.78 1.45 0.30 0.66 0.55

Management,Consulting,PR (874) 1.00 0.19 0.03 0.05 0.05 0.12

Radio and TV Broadcasting (483) 1.00 2.40 2.62 0.13 0.45 0.64

Cable and TV Services (484) NaN 0.81 4.43 0.36 0.48 0.78

Business Services (738) 1.00 0.46 0.04 1.25 0.72 0.67

Electrical Goods Wholesale (506) NaN 0.23 0.04 0.18 0.29 0.38

Electric Services (491) NaN 3.51 1.37 1.42 1.37 2.27

Table 2.9: Core-periphery coefficients of the pooled and the sectoral R&D networks (SIC
codes are in brackets). The values are averages within each sub-period. Note: missing
values refer to sectors with not enough observations.

(core-periphery) architectures. Across sectors, firms show the tendency to organize their

R&D collaborations in a core of densely connected companies and a periphery of companies

that are linked to the core, but only weakly interconnected among themselves.

Next, we study whether the presence of core-periphery is related to the presence of a more

general type of centralized architecture, i.e. nested architectures. In this way we also

provide a test to some of the key predictions of the recent theoretical literature on R&D

networks. There are several measures quantifying the extent to which a given network’s

neighborhood structure is nested. In this study, we use the measure generated by an

algorithm called BINMATNEST 11. For every analyzed network, the algorithm returns a

11The BINMATNEST algorithm, proposed by Rodriguez-Girones and Santamaria (2006), uses the
unweighted adjacency matrix of the network to compute its nestedness score. The algorithm rearranges
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1986-1989 1990-1993 1994-1997 1998-2001 2002-2005 2006-2009

Pooled Network 0.977 0.997 0.999 0.997 0.996 0.996

Manufacturing Sectors

Pharmaceuticals (283) 0.960 0.989 0.996 0.994 0.995 0.996

Computer Hardware (357) 0.960 0.992 0.995 0.984 0.950 0.940

Electronic Components (367) 0.981 0.984 0.993 0.984 0.969 0.926

Communications Equipment (366) 0.943 0.962 0.990 0.973 0.944 0.962

Medical Supplies (384) 0.998 0.944 0.963 0.954 0.946 0.947

Laboratory Apparatus (382) 0.961 0.943 0.965 0.930 0.951 0.924

Motor Vehicles (371) 0.938 0.961 0.964 0.950 0.962 0.946

Aircrafts and parts (372) 0.945 0.942 0.969 0.973 0.953 0.974

Inorganic Chemicals (281) 0.930 0.978 0.951 0.951 0.943 0.977

Household Audio-Video (365) 0.951 0.945 0.981 0.964 0.957 0.963

Plastics (282) 0.977 0.940 0.966 0.951 0.975 0.949

Electrical Machinery NEC (369) 0.939 0.947 0.950 0.962 0.961 0.987

Special Machinery (355) NaN 0.927 0.940 0.984 0.931 0.953

Crude Oil and Gas (131) 0.939 0.922 0.950 0.945 0.960 0.936

Naut./Aeronaut. Navigation (381) 0.939 0.938 0.948 0.936 0.982 0.998

Organic Chemicals (286) 0.956 0.938 0.961 0.922 0.939 0.956

Service Sectors

Computer Software (737) 0.981 0.992 0.997 0.985 0.950 0.946

R&D, Lab and Testing (873) 0.961 0.969 0.992 0.986 0.986 0.975

Telephone Communications (481) 0.945 0.954 0.981 0.950 0.947 0.976

Universities (822) 0.961 0.971 0.973 0.952 0.948 0.958

Investment Companies (679) 0.956 0.973 0.979 0.961 0.962 0.940

Professional Equipment Wholesale (504) 0.911 0.930 0.930 0.952 0.921 0.998

Engineer.,Architec.,Survey (871) NaN 0.924 0.917 0.962 0.957 0.998

Motion Picture Production (781) NaN 0.935 0.925 0.923 0.937 NaN

Management,Consulting,PR (874) NaN 0.932 0.933 0.954 0.959 0.939

Radio and TV Broadcasting (483) 0.939 0.941 0.969 0.942 0.967 0.958

Cable and TV Services (484) NaN 0.930 0.925 0.975 0.973 NaN

Business Services (738) 0.901 0.926 0.952 0.954 0.972 0.998

Electrical Goods Wholesale (506) NaN 0.951 0.940 0.953 0.935 0.998

Electric Services (491) 0.956 0.918 0.969 0.977 0.957 0.939

Table 2.10: Nestedness coefficients of the pooled and the sectoral R&D networks (SIC
codes are in brackets). The values are averaged in six sub-periods. Note: missing values
refer to sectors with not enough observations.

nestedness score Tn, ranging from 0 (for a totally nested network) to 100 (for a completely

random, non-nested network). In order to have a benchmark, the algorithm also builds

and analyzes 500 random networks having the same size and density as the considered net-

work. Instead of directly using the value generated by the algorithm, we use a normalized

the adjacency matrix in such a way that all the “ones” (existing links) are concentrated in the top-left side
of the matrix, and the “zeroes” (missing links) in the bottom-right side. It then computes the optimal
theoretical isocline separating the “ones” from the “zeroes” and counts the number of holes in these regions
of the matrix – i.e. how many “zeroes” are in the region of the “ones”, and vice-versa. The number of
such holes is proportional to the nestedness score computed by the algorithm: the more holes, the higher
the nestedness score of the network. Note: the lower this score, the more nested the network is (and
vice-versa).
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nestedness coefficient C ′n, defined as:

C ′n =
100− Tn

100
, (2.8)

where Tn is the nestedness score generated by the BINMATNEST algorithm. Our nor-

malized nestedness coefficient C ′n spans thus from 0, for a for a totally non-nested network,

to 1, for a totally nested network. We calculate the coefficients C ′n throughout the whole

observation period, for the pooled and the sectoral R&D networks, and average the results

within six sub-periods lasting 4 years each. Results are shown in Table 2.10.

The values of the nestedness coefficients C ′n we report are extremely close to 1, during

the whole observation period, both for the pooled and the sectoral R&D networks. This

is surprising, if we compare such values with other studies of nestedness in real networks

(e.g. Bascompte et al., 2003). All the values found in our R&D networks are significantly

different from the average values of the random networks used as benchmark in the BIN-

MATNEST algorithm. Moreover, the nestedness coefficient has a peak during the “golden

age” for the pooled R&D network, as well as 9 out of 16 manufacturing sectors and 6 out

of 14 service sectors. These results confirm not only that the pooled and the sectoral R&D

networks are significantly nested throughout all the observation period, but also that their

nestedness tends to increase during the “golden age”, in correspondence to the emergence

of the small world properties.
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2.4 An econometric approach to understand the for-

mation of links

In this section, we investigate the formation of R&D alliances from a microscopic point

of view. Differently from the previous section, where the observation unit was an en-

tire (pooled or sectoral) network, now we focus our attention on individual firms. More

precisely, we evaluate firms’ structural and network features to understand whether and

how these features can explain the formation of R&D alliances. Instead of studying the

macroscopic properties of a network that is the result of R&D alliance formation, we now

study how the formation of every single alliance (i.e. every single link in the network) is

influenced by a series of firm characteristics.

However, unlike most of the existing studies (e.g. Ahuja, 2000a,b; Powell et al., 1996), we

include among the predictors a set of variables that are dependent not only on the firms

under examination, but also on the network topology – e.g. the firms’ centralities in the

network itself.

As our attention is focused on alliance formation, our observation unit is not an individual

firm, but a dyad of firms, considered in a given year, irrespectively of whether an alliance

actually exists between them. The dependent variable is exactly the formation of an

alliance in that given year between the two firms of the dyad: it is a binary variable,

equal to 1 if the alliance is formed, equal to 0 otherwise. The independent variables

are a set of structural features and network indicators of the two firms, combined in

an appropriate fashion. More specifically, we divide such variables into three groups:

(a) structural features, (b) network features and (c) potential centrality change, that we

describe below in detail.

2.4.1 Model independent variables

Variable group A: structural features. This group contains variables depending on

the individual firms or their previous history of alliances, but not on the remaining R&D

network as a whole. We have at first two binary variables: belonging of the companies to

the same nation (1 if yes, 0 if not) and belonging of the companies to the same industrial

sector (1 if yes, 0 if not), evaluated – as we have previously done – by considering their

SIC code at a 3-digit level. We then have the number of previous alliances in the dyad,

an integer number starting from 0. The last variable in this group is instead a real

value, expressing the technological distance between the two companies at the moment of

the observation. Such a variable has been extensively used in many studies, to evaluate

its effect on alliance formation, or inversely to estimate the effect of alliance formation on

firm technological positions. We define a firm’s technological position as a D−dimensional
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vector whose components are the share of patents that the firm has in D selected patent

classes. The so called technological distance is then the euclidean distances between the

two points identified by the coordinates described above in that D−dimensional space.

In order to evaluate this measure, we use the NBER dataset, listing patent applications

in the US patent office classified through the IPC (International Patent Classification)

scheme. We select a 1-digit classification level, thus obtaining a total of 8 patent classes.

For each time period, we consider all the patents for which the firms applied in the previous

five years; if even just one of the firms in a dyad has not applied for any patent in that

time window, this will originate a missing observation (this occurs for roughly 60% of

our observed dyads). For more details concerning the calculation of this measure, refer

to Section 6.2.2; for more details on the concept of a metric D−dimensional knowledge

space, see Chapters 5 and 6.

Variable group B: network features. This group includes variables describing the

position of the two firms in the R&D network. All these variables are related to the focal

firms in the dyad, but depend – directly or indirectly – on all the other alliances in the

network. In addition, such variables are computed in the year preceding the studied period:

for instance, when studying the link formation in 1995, the measures are computed on the

R&D network snapshot in 1994. The first of the network variables is the inverse shortest

path length between the two firms in the dyad. The shortest path length is defined as the

number of links in the network that have to be traversed in order to connect the two firms.

This is an integer number ranging from 1 (if the firms are already connected) to infinite

(if the firms are isolated or belong to disconnected components). Therefore, the inverse

path length is always unequivocally defined and ranges from 0 (for disconnected firms)

to 1 (directly connected firms). The second and the third variables are, respectively, the

arithmetic mean of the two firms’ network centrality, and the difference between the two

firms’ network centrality in absolute value.

We have tested four different measures of network centrality, namely degree, closeness,

betweenness and eigenvector centrality. All of them are highly correlated, as we show

in Table 2.12, therefore we decide to employ only one of these four predictors in our

analysis. We found that the closeness centrality has the highest predictive power, in terms

of Akaike Information Criterion (AIC)12. Hence, we will only use this measure, leaving the

other centrality measures out of our model. Obviously, using any centrality instead of the

closeness would not affect the following results, given their high correlations.

12The AIC (Bozdogan, 1987) does not evaluate a model by testing a null hypothesis. Instead, it
estimates the goodness of fit of the model and penalizes its complexity. As such, AIC is one of the most
used tools for model selection.
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Variable group C: potential centrality change. This last group includes variables

describing the possible change in a set of network centrality indicators, if the considered

dyad forms a link. Among other purposes, this set of variables allows us to test some

existing strategic R&D network formation models, in which links are typically formed

in order to maximize one (or more) centrality measures. Obviously, we compute such a

change in centrality for each dyad irrespective of whether the link is actually formed. We

use the network snapshot in the previous year as baseline, and then re-compute all of

the centrality measures under examination by adding only that hypothetical link in the

network. This way, we can test whether the links that contribute the most to the increase

of a given centrality measure are actually formed.

The first variable we use is the average change in closeness centrality of the two firms if

the link is formed. That is, we compute the closeness centrality of both firms in the year

preceding our observation, and then the same measure for both firms assuming that they

form an alliance. The two changes in value for both firm centralities are then averaged.13

The next variables are directly related to two existing theoretical models. First, we use

the change in the eigenvalue of the network connected component to which the firms

belong if a given link is formed. This does not have to be confused with the eigenvector

centrality, which is a node-centered centrality measure. Here we use instead an aggregate

network property, namely the largest eigenvalue of the adjacency matrix of the connected

component to which each of the firms of the dyad belongs. We then compute the same

measure after an hypothetical link between the two considered firms is formed. The two

changes for the eigenvalues of both companies are then averaged.14 Finally, we use a

variable expressing the change of the average harmonic path length of the entire R&D

network if a given link is formed. The average harmonic path length is defined as the

harmonic mean of all shortest path lengths between all pairs of nodes in the network

(considering also disconnected nodes, whose inverse path length is equal to 0). Again,

we compute this measure before and after an hypothetical link between the two firms is

formed, and the change in value represents our variable.15

Control variables. In our regression we use dummy variables for the year in which the

dyad is observed – meaning that we use a time-fixed effect model. As we have previously

shown, there exists a strong universal trend characterized by a peak of alliance formation

in the mid-nineties. We do not want to explain with this model the causes of such rise-

13We use the closeness centrality for the same reasons discussed in the previous paragraph (variable
group B). The same considerations apply here: any centrality measure could be used without affecting
the results.

14The use of this variable is inspired by the model in König et al. (2012), where the nodes form links
maximizing the eigenvalue of the adjacency matrix of the connected component to which they belong. See
König et al. (2012) for more details.

15Such a variable is inspired by the work of Jackson and Wolinsky (1996), where nodes form links to
maximize the number of direct and indirect paths connecting them to the other nodes in the network.
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and-fall trend. We rather want to understand how the variation of structural and network

variables across our firm sample, within each year, can explain the dependent variable,

i.e. the formation of a link.

In addition, we control for the number of new alliances formed in total by the dyad –

besides the two focal firms themselves – in the observed year. We expect a negative

coefficient for this predictor, given that alliances are costly to establish and maintain, as

pointed out by several works (Goyal and Joshi, 2003; Goyal and Moraga-Gonzalez, 2001;

König et al., 2012). Therefore, the number of new established alliances in any year should

be negatively correlated with the formation of one additional alliance. The nomenclature

and the meaning of all the variables that we use in our econometric model are reported in

Table 2.11.

Type Meaning

Dependent variable

LINK binary formation of a link between the two considered firms in the considered
year

Controls

newlinks positive integer number of alliances already established by the considered firms in the
considered year with other partners

year binary dummy variables for the years

Group A

same sic binary 1 if the considered firms have the same SIC code

same nation binary 1 if the considered firms are registered in the same nation (source:
SDC alliance dataset)

past alliances positive integer number of alliances established between the considered firms in all
previous years

tech distance positive real technological distance between the two considered firms in the previ-
ous year (measured through patents)

Group B

inverse shortest pl positive real inverse of the network path length connecting the two considered firms

closeness arithm mean positive real arithmetic mean of the closeness centralities of the two considered
firms

closeness difference positive real difference (in absolute value) of the closeness centralities of the two
considered firms

Group C

delta closeness real change in the closeness centralities of the two firms (arithmetic mean)
if they were to establish an alliance

delta eigenvalue real change in the eigenvalue of the network connected component to which
the firms belong (arithmetic mean) if they were to establish an alliance

delta harmonic aspl real change in the harmonic average path length of the network if the two
firms were to establish an alliance

Table 2.11: Nomenclature, type and meaning of all the variables we use in our econo-
metric model.

2.4.2 Results for pooled and sectoral R&D networks

We build seven large panel datasets containing all the above described dyadic variables,

for the pooled R&D network and six representative sectoral R&D networks. We start our

analysis in 1990 (to avoid missing observations in the early period) and end it in 2009,

using a 1-year time window to evaluate the formation of links and all the dyadic measures.
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It should be noted that such a procedure generates an enormous amount of data: for each

panel, we have T ·N(N−1) observations, where T is the length (in years) of the considered

time period and N is the number of studied firms. For the sake of computational ease and

completeness of data, we restrict our pool to the firms with a significant alliance history,

i.e. all firms that have been involved in at least 10 alliance events during the observation

period 1990-2009. Yet, all of our panels contain more than 100,000 observation points,

even after removing missing observations.

Before proceeding with the actual regression, we show a correlation matrix for all the

model variables in Table 2.12, including also the centrality measures we have eventually

decided to exclude from our model. This correlation matrix is related to the pooled R&D

network, but the sectoral R&D networks panels provide qualitatively unchanged results.

We find that the firm structural features are weakly correlated with both the network

variables and the centrality change variables, meaning that the network structure can po-

tentially add a real predictive power to the model, and is not a simple consequence of some

static firm attributes, such as their nationality or technological position. Furthermore, we

find that the inverse shortest path length between two firms (the first network feature)

is significantly correlated with all of the remaining network measures, and with some of

the centrality change measures. In other words, the network distance between two firms

carries already information about the network centralities of these firms, as well as the

potential gain in centrality if the firms would form an alliance – and our regressions will

confirm the strength of this predictor for alliance formation.

Finally, as already anticipated, we can observe that most of the network measures are

highly correlated among them, meaning that they carry the same information. We find

that the closeness centrality mean and difference, besides being the predictors yielding the

best AIC score, are those that actually show the lowest correlation with all the remaining

network measures. This constitutes one additional reason to use them in our regression.

Finally, we perform seven model regressions on each of the seven panel data sets. Because

of the binary nature of our dependent variable, we employ binomial regressions. We choose

a complementary log-log link function, which is well suited to very small probability events,

such as the formation of an alliance. Indeed, as we already pointed out in Section 2.3.1,

the density of any R&D network is very small (ranging between 0.1% and 1%). This is

reflected in our panel data sets, which exhibit only 0.16% of successes for the dependent

variable (i.e. formation of a link).

The seven models employ, respectively, the structural variables only (model A), the net-

work variables only (model B), the centrality change variables only (model C), then all

possible combinations of two variable groups (models AB, AC and BC), ending with a

model including all the three variable groups (model ABC). We present the results for the

pooled R&D network panel data set in Table 2.13.
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LINK 1.00

tech distance -0.04 1.00

same sic 0.03 -0.26 1.00

same nation 0.01 0.01 0.03 1.00

inverse shortest pl 0.08 -0.12 0.06 0.05 1.00

past alliances 0.00 -0.01 0.00 0.00 0.07 1.00

degree arithm mean 0.08 -0.08 -0.01 0.01 0.59 0.05 1.00

betweenness arithm mean 0.07 -0.06 0.03 0.02 0.40 0.04 0.70 1.00

closeness arithm mean 0.03 -0.05 0.02 0.01 0.63 0.06 0.52 0.33 1.00

eigenvectors arithm mean 0.05 -0.07 -0.05 -0.01 0.39 0.03 0.77 0.41 0.31 1.00

degree difference 0.04 -0.06 -0.02 -0.00 0.33 0.03 0.89 0.64 0.36 0.73 1.00

betweenness difference 0.05 -0.05 0.03 0.01 0.32 0.04 0.64 0.96 0.28 0.38 0.64 1.00

closeness difference -0.01 -0.00 0.00 -0.05 -0.30 -0.03 0.01 -0.01 0.22 0.05 0.15 0.03 1.00

eigenvectors difference 0.02 -0.05 -0.06 -0.02 0.26 0.03 0.70 0.38 0.27 0.95 0.75 0.36 0.10 1.00

newlinks 0.16 -0.06 -0.02 -0.00 0.27 0.02 0.46 0.39 0.23 0.31 0.42 0.37 0.01 0.28 1.00

delta degree -0.10 0.07 -0.05 -0.02 -0.47 -0.01 -0.19 -0.14 -0.08 -0.16 -0.08 -0.10 0.05 -0.05 -0.09 1.00

delta betweenness -0.00 0.08 -0.05 0.02 0.23 0.06 0.36 0.31 0.28 0.20 0.23 0.24 -0.09 0.23 0.17 0.02 1.00

delta closeness -0.02 0.05 -0.02 -0.04 -0.48 -0.05 -0.26 -0.17 -0.21 -0.13 -0.12 -0.13 0.55 -0.08 -0.13 0.07 -0.22 1.00

delta eigenvectors 0.03 -0.05 -0.02 -0.02 0.14 0.01 0.29 0.14 0.17 0.60 0.28 0.13 0.11 0.61 0.12 -0.08 0.07 0.01 1.00

delta eigenvalue -0.01 0.01 -0.01 -0.04 -0.37 -0.03 -0.02 -0.01 -0.10 0.02 0.14 0.04 0.60 0.06 -0.01 0.05 -0.10 0.33 -0.01 1.00

delta harmonic aspl -0.01 0.04 -0.01 0.02 -0.16 -0.03 -0.24 -0.13 -0.38 -0.17 -0.20 -0.12 -0.23 -0.17 -0.12 0.02 -0.22 0.40 -0.16 -0.17 1.00

Table 2.12: Pearson correlation coefficients for all pairs of variables used in our econo-
metric model (plus the three additional centrality measures that we have eventually dis-
carded, i.e. degree, betweenness and eigenvector centralities).

By comparing the AIC scores, we find that all seven models exhibit similar goodness

of fit. However, the variable group A (structural firm features) has a slightly higher

predictive power than the group B (network firm features), which in its turn has a higher

predictive power than the group C (centrality change variables). It should be noted that

the structural variables alone (model A) perform better than the network variables and the

centrality change variables combined (model BC). Nevertheless, the model exhibiting the

best AIC score is the complete model ABC, including all of the three variable groups. This

means that the alliance formation is optimally explained by a combination of structural

and network firm variables; however, firm structural variables alone have a slightly better

explanatory power than network variables alone.

We find that most predictors in all three groups are significant; their effect is stable in sign

and magnitude across all models. In particular, the effect of the binary variables “same

nation” and “same SIC” is positive – as expected, geographical and sectoral proximities

positively affect alliance formation. Likewise, the technological distance has a negative

effect on alliance formation, showing that firms with closer patenting activities are more

likely to establish new alliances. The variable “new links”, contrary to what we expected,

shows a positive effect on the dependent variable, meaning that firm dyads that have
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Model A B C AB AC BC ABC

(Intercept) −5.638∗∗∗ −7.094∗∗∗ −4.931∗∗∗ −6.023∗∗∗ −4.535∗∗∗ −5.613∗∗∗ −4.867∗∗∗

(0.122) (0.126) (0.175) (0.137) (0.185) (0.225) (0.236)

newlinks 0.214∗∗∗ 0.190∗∗∗ 0.227∗∗∗ 0.189∗∗∗ 0.211∗∗∗ 0.191∗∗∗ 0.190∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

same nation 0.594∗∗∗ 0.534∗∗∗ 0.594∗∗∗ 0.536∗∗∗

(0.039) (0.040) (0.039) (0.040)

same sic 1.044∗∗∗ 0.968∗∗∗ 1.035∗∗∗ 0.961∗∗∗

(0.045) (0.045) (0.045) (0.045)

past alliances 0.138 −0.009 0.097 −0.011

(0.096) (0.118) (0.103) (0.119)

tech distance −2.656∗∗∗ −2.279∗∗∗ −2.599∗∗∗ −2.276∗∗∗

(0.078) (0.080) (0.078) (0.080)

inverse shortest pl 3.232∗∗∗ 2.118∗∗∗ 3.249∗∗∗ 2.159∗∗∗

(0.083) (0.089) (0.083) (0.089)

closeness arithm mean 0.151 0.610 −3.431∗∗∗ −2.781∗∗

(0.728) (0.739) (0.894) (0.926)

closeness difference 4.028∗∗∗ 3.282∗∗∗ 5.227∗∗∗ 4.120∗∗∗

(0.431) (0.435) (0.801) (0.791)

delta closeness −9.069∗∗∗ −4.835∗∗∗ −6.703∗∗∗ −4.710∗∗∗

(0.822) (0.799) (1.053) (1.053)

delta eigenvalue 0.059∗∗∗ 0.024· 0.059∗∗∗ 0.036∗∗

(0.012) (0.012) (0.013) (0.013)

delta harmonic aspl −0.097 −0.330∗∗∗ −0.263∗∗ −0.380∗∗∗

(0.094) (0.088) (0.100) (0.099)

AIC 29105.534 30527.208 31783.977 28468.056 29000.683 30474.512 28433.889

BIC 29415.006 30824.301 32081.070 28814.665 29347.291 30808.741 28817.633

Log Likelihood -14527.767 -15239.604 -15867.989 -14206.028 -14472.341 -15210.256 -14185.944

Deviance 29055.534 30479.208 31735.977 28412.056 28944.683 30420.512 28371.889

Num. obs. 1756561 1756561 1756561 1756561 1756561 1756561 1756561
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, ·p < 0.1

Table 2.13: Results of the regressions for our econometric model on the pooled R&D
network. The coefficients with p-value smaller than 0.01 are reported in bold character.

formed more alliances in a given year (excluding the dyad itself) are more likely to partner

with each other as well and close the dyad. In other words, our data do not show limi-

tation effects in the number of alliances that firms are able to establish in a given year.

Interestingly, the number of past alliances is never significant for the formation of a new

alliance between two firms.

As for the network variables, we find that the inverse shortest path length in a dyad always

has a strong positive effect on alliance formation. This means that the establishment of a

new alliance is more likely between firms that are linked by a path in the network (including

the case in which they already have an alliance). The mean closeness centrality of the

dyad is significant only when considered together with the centrality change measures,

and its sign is negative, meaning that dyads with an overall low closeness centrality are

more likely to form a new alliance. The closeness difference of the dyad is instead always

significant, with a positive sign, meaning that dyads with a larger closeness centrality

disparity are more likely to form a new alliance. A firm dyad with low centrality mean
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and high centrality absolute difference corresponds to a dyad where one of the firms has

low centrality and the other one has high centrality; therefore, firms with a larger centrality

disparity contribute more to alliance formation.

The centrality change measures are surprisingly stable and significant, especially if we

consider them together with the firm network variables. The closeness centrality change

is always significant and – interestingly – has a negative effect on the alliance formation,

meaning that the links causing a larger mean increase in the partners’ centralities are

actually less likely to be formed. On the contrary, the last two variables, expressing the

change in aggregate network centralities – as opposed to individual firm centralities –

show an overall positive effect on the dependent variable. In particular, the change in the

eigenvalue of the firms’ connected component adjacency matrix always exhibits a positive

coefficient, with a p−value not greater than 10%, meaning that the links providing the

highest increase in this eigenvalue are the most likely to be formed. Likewise, the change

in the harmonic average path length of the R&D network is significant when considered

together with the other firm structural and/or network features, and exhibits a negative

coefficient, meaning that links causing a higher decrease in the average path length of the

whole R&D network are more likely to be formed.

The fact that link creation is favored when it increases aggregate network cohesiveness

measures, instead of individual node centralities, is a surprising finding. However, it is

not enough to infer that firms intentionally form alliances that increase their centrality

the least, preferring some aggregate network benefit; it just means that the complex in-

terdependencies between the firm strategy and the network growth give rise to this kind

of pattern in the data. Indeed, we believe that firms do form alliances trying to increase

their own utility, which clearly does not depend solely on network indicators. Only an

agent based model can give us better insights and reproduce an environment where firms

strive to maximize their individual utility and yet the resulting link formation leads to an

increase of the aggregated network cohesiveness.

We then present in Table 2.14 a summary of the results for the pooled R&D network,

together with the seven representative sectors we have selected. For all columns, the

coefficients are related to the complete model ABC, i.e. the one including all of the three

variable groups. The complete results for the other model variants on these seven sectoral

R&D networks are reported in Appendix A.

We find that most of our selected predictors exhibit a robust behavior across sectors.

More precisely, the following variables display significant and stable coefficients in all

panels: “new links” (positive effect), “same SIC” (positive effect), “technological distance”

(negative effect) and “inverse shortest path length” (positive effect). The variable “same

nation” is always significant and with a positive effect on the alliance formation, with the

only exception of the Medical Supplies sector (where it does not have a significant effect).

The variable “past alliances”, similarly to the pooled R&D network, is generally not
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Sector (SIC code) Pooled 737 367 357 366 283 873 384

(Intercept) −4.867∗∗∗ −4.647∗∗∗ −4.852∗∗∗ −4.588∗∗∗ −4.636∗∗∗ −4.467∗∗∗ −4.537∗∗∗ −2.634∗

(0.236) (0.234) (0.288) (0.234) (0.281) (0.341) (0.410) (1.289)

newlinks 0.190∗∗∗ 0.175∗∗∗ 0.212∗∗∗ 0.199∗∗∗ 0.237∗∗∗ 0.481∗∗∗ 0.307∗∗∗ 0.941∗∗∗

(0.003) (0.004) (0.005) (0.004) (0.006) (0.010) (0.009) (0.077)

same nation 0.536∗∗∗ 0.496∗∗∗ 0.761∗∗∗ 0.648∗∗∗ 0.695∗∗∗ 0.169∗ 0.206∗∗ −0.004

(0.040) (0.056) (0.055) (0.056) (0.059) (0.068) (0.067) (0.250)

same sic 0.961∗∗∗ 0.349∗∗∗ 0.348∗∗∗ 0.329∗∗∗ 0.448∗∗∗ 0.454∗∗∗ 0.700∗∗∗ 0.752∗∗

(0.045) (0.067) (0.068) (0.067) (0.075) (0.079) (0.076) (0.282)

past alliances −0.011 −0.241∗ −0.020 0.116∗∗ −0.157∗ 0.128 0.060 0.222

(0.119) (0.112) (0.064) (0.037) (0.070) (0.101) (0.088) (0.249)

tech distance −2.276∗∗∗ −1.630∗∗∗ −1.234∗∗∗ −1.298∗∗∗ −1.077∗∗∗ −2.095∗∗∗ −2.576∗∗∗ −2.721∗∗∗

(0.080) (0.106) (0.120) (0.110) (0.122) (0.139) (0.139) (0.543)

inverse shortest pl 2.159∗∗∗ 1.833∗∗∗ 1.523∗∗∗ 1.569∗∗∗ 1.315∗∗∗ 2.218∗∗∗ 1.721∗∗∗ 2.089∗∗∗

(0.089) (0.120) (0.125) (0.127) (0.133) (0.146) (0.137) (0.393)

closeness arithm mean −2.781∗∗ 0.149 0.333∗∗ −0.042 0.203∗∗ −0.674∗∗∗ 0.326 −0.031

(0.926) (0.122) (0.123) (0.099) (0.073) (0.179) (0.321) (0.027)

closeness difference 4.120∗∗∗ 0.439∗∗ −0.157 0.246· −0.130 0.549∗∗∗ 0.002 0.032

(0.791) (0.170) (0.146) (0.130) (0.105) (0.162) (0.198) (0.021)

delta closeness −4.710∗∗∗ −0.847∗∗∗ −0.332· −0.733∗∗∗ −0.329∗∗ −0.435∗ −0.098 −0.099∗

(1.053) (0.240) (0.181) (0.189) (0.125) (0.204) (0.234) (0.045)

delta eigenvalue 0.036∗∗ 0.109∗∗∗ 0.102∗∗∗ 0.105∗∗∗ 0.132∗∗∗ 0.036 0.063∗ −0.088

(0.013) (0.016) (0.019) (0.022) (0.019) (0.022) (0.025) (0.102)

delta harmonic aspl −0.380∗∗∗ −1.047∗∗∗ −0.813∗∗∗ −1.170∗∗∗ −0.747∗∗∗ −0.200∗ −0.139 −0.051

(0.099) (0.239) (0.164) (0.220) (0.179) (0.095) (0.095) (0.234)

AIC 28433.889 11900.390 11304.548 11184.447 9061.810 8935.185 9344.910 605.090

BIC 28817.633 12219.859 11619.243 11497.831 9361.489 9265.528 9673.273 832.585

Log Likelihood -14185.944 -5919.195 -5621.274 -5561.223 -4499.905 -4436.593 -4641.455 -271.545

Deviance 28371.889 11838.390 11242.548 11122.447 8999.810 8873.185 9282.910 543.090

Num. obs. 1756561 220896 189365 181529 116668 313709 294304 11368
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, ·p < 0.1

Table 2.14: Results of the regressions of our complete econometric model (ABC, in-
cluding all variables) on the pooled and the seven main sectoral R&D networks, namely
Pharmaceuticals (SIC code 283), Computer Hardware (SIC code 357), Communications
Equipment (SIC code 366), Electronic Components (SIC code 367), Medical Supplies (SIC
code 384), Computer Software (SIC code 737) and R&D, Laboratory and Testing (SIC
code 873). The coefficients with p-value smaller than 0.01 are reported in bold character.

significant, except in the Computer Software sector (negative effect), the Communications

Equipment sector (negative effect) and the Computer Hardware sector (positive effect).

The network centrality variables (i.e. closeness mean and absolute difference) show a

large variance across sectors and they do not seem to have a significant effect on alliance

formation in the sectoral R&D networks. On the contrary, the centrality change measures

show a fairly robust behavior across sectors, and replicate the trend that we have observed

in the pooled R&D network. Namely, the change in individual firm centralities is either

negatively affecting the alliance formation or not significant; the change in the eigenvalue

of the firms’ connected component is either positively affecting the alliance formation or

not significant; and the change in the harmonic average path length of the network is

either negatively affecting the alliance formation or not significant.
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In conclusion, while the network variables (group B) exhibit a large sectoral variance, the

structural firm variables (group A) and the centrality change variables (group C) are fairly

robust across sectors and reveal a set of tendencies that can be summarized as follows. In

R&D networks, alliances are more likely to be established if:

• the partners belong to the same country and industrial sector, and they have a small

technological distance;

• the partners have already engaged in many alliances with other distinct firms;

• the partners are already – directly or indirectly – connected by a path in the R&D

network;

• the partners have a low mean centrality and a high centrality difference, i.e. one

of the two has a high centrality and the other one has a low centrality in the R&D

network (this feature is significant in the pooled R&D network, but not robust across

sectors);

• the formation of the considered link leads to a small increase in the individual firm

centralities, but a large increase in a set of aggregate network centrality indicators.

2.5 Discussion

Four main implications arise from the evidence discussed in the present chapter. First, our

results provide strong support to the claim that several properties of R&D networks are

robust across several manufacturing and service sectors. These properties are invariant

across different scales of aggregation as well. In other words, they are the same if one

considers the R&D alliances irrespectively of the sectors to which the firms belong (pooled

network), or if one considers only alliances centered on a sector (sectoral networks). These

properties do not only relate to basic network characteristics like size, density, degree

distributions. They also involve more complex features such as the presence of small worlds

and core-periphery architectures, and the microscopic rules determining the formation

of the alliances themselves. For instance, alliance preferences between firms with small

geographical, sectoral, technological and network distances are stable and robust across

sectors. From an empirical perspective, our results thus generalize previous findings in the

literature, that were limited to the analysis of few sectors. From a theoretical perspective,

the fact that many properties of the network hold irrespectively of the sector and of the

scale of aggregation opens up the fascinating possibility that the same universal mechanism

can be responsible for the emergence of those features.

In this respect, our results also show that such a mechanism is probably different and more

sophisticated than the preferential attachment described by Barabasi and Albert (1999).
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2.5. Discussion

This is because the characteristics of the degree distribution observed in our R&D networks

(cf. Section 2.3.2) can be hardly reconciled with the predictions of that model. Never-

theless, our results also show that not all properties of the network are invariant across

different scales of aggregation. Sectoral networks are disassortative, i.e. characterized

by a negative correlation across node degrees, whereas the pooled network is assortative.

This transition from disassortative to assortative networks is a fresh new stylized fact that

should be taken into account in the theoretical explanations of R&D networks. It is impor-

tant to remark that the contrast between disassortative and assortative networks has been

so far stressed in relation to networks belonging to different domains (e.g. technological

vs. social networks, cf. Newman, 2003). Our results suggest instead that the same type

of network (network of R&D alliances) can be disassortative or assortative depending on

the scale at which it is observed (i.e. taking into account the sectoral characteristics of

the partners or not). This instability of degree-degree correlations in R&D networks is

reflected in our findings at the microscopic level. While in the pooled R&D network the

firms contributing the most to the alliance formation exhibit a strong centrality disparity,

in sectoral R&D networks this tendency disappears to be replaced by sectoral specific

behaviors.

Second, the result that both the pooled and sectoral networks are organized into core-

periphery architectures – nested structures in particular – militates in favor of the pre-

dictions of the recent theoretical literature on R&D networks (e.g. Goyal and Joshi, 2003;

Westbrock, 2010), and more precisely of the knowledge-recombination model of König

et al. (2012). In this model, the efficient network structure is shown to critically depend

on the marginal cost of R&D collaborations. In case of relatively costly partnerships, the

resulting efficient R&D network exhibits a strongly nested neighborhood structure, as we

observe empirically. Moreover, the presence of core-periphery architectures is also able to

explain two network properties that received a lot of attention in the literature, namely

the emergence of fat-tailed degree distributions and of small worlds. These properties are

indeed the result of the organization of the R&D networks into core-periphery structures

and cannot be instead related to other types of network characteristics (e.g. the presence

of communities for small worlds, as we show in Section 2.3.4).

These findings are further supported by our econometric approach, which shows – in-

terestingly – that alliances are more likely to be observed if they maximize the change

in some aggregate network measures, i.e. the eigenvalue of the connected component to

which the firms belong (König et al., 2012) or the harmonic average path length of the

network (Jackson and Wolinsky, 1996), and not the increase of the single firm centralities.

The network topology resulting from this behavior, again, is compatible with the observed

nested architectures. Most likely, this does not mean that firms are not concerned with

the improvement of their own network centrality when establishing new alliances. We

argue instead that firms do try to maximize their expected return, but this may depend
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on both network-related and network-unrelated factors. The complex interdependencies

between firm decisions and the actual alliance formation give rise to a network growth pro-

cess where the newly formed links tend to maximize some aggregate network indicators

rather than individual firm centralities. The result is the observed coefficient sign in our

econometric model. Similarly, the data do not show any evidence of another theoretical

aspect, i.e. costly R&D alliances: firm dyads engaged in other distinct alliances are more

likely to form an alliance themselves, thus not showing any limitation effect in the number

of newly established R&D alliances. Again, this might be an effect of the complex interde-

pendencies above mentioned; only the use of an agent based model – that we investigate

in the next chapters – will be able to give us further insights.

Third, previous network structures, along with potential network structure changes, matter

in the alliance formation, as testified by the shape of the degree distribution in R&D

network, as well as by our econometric approach. Even though the network-unrelated

variables alone have a slightly better predictive power than network-related variables alone,

we have shown that a model including both types of variables has the highest possible

goodness of fit when explaining the formation of R&D alliances. In addition, the analysis

of the predictor coefficients allows us to identify an additional set of invariant and sectoral-

robust features at the microscopic level. Namely, alliances are more likely to be established

if the potential partners belong to the same country and sector, and exhibit a small

technological distance; if they have already engaged in many alliances with other distinct

firms; if they are already – directly or indirectly – connected by a path in the R&D

network; if the formation of the considered link leads to a small increase in the individual

firm centralities, but a large increase in a set of aggregate network centrality indicators,

as already discussed.

Fourth, our evidence indicates that the last three decades have witnessed a rise and fall

of R&D networks. The foregoing rise-and-fall dynamics was previously emphasized in

relation to the presence of small worlds in the computer industry (Gulati et al., 2012). We

show that it is instead a general property of the R&D network dynamics (both sectoral and

pooled ones). In addition, it concerns even more complex network properties (presence of

core-periphery and nested architectures).16 Our results also show that the rise and fall of

R&D networks was mainly driven by the entry and exit of firms participating into alliances

rather than by the more or less intense activity of the incumbents (see Section 2.3.1).

Moreover, during the growing phase, R&D alliances gave rise to network components of

large size displaying the complex features discussed above. In the descending phase, the

number of firms participating into alliances plummeted and the networks broke up into

several components of small size.

Overall, the above facts suggest that theoretical explanations of the dynamics of the net-

16Indeed, the only exception to this general dynamics is represented by the assortativity (resp. disas-
sortativity for sectors), that does not display any particular pattern over time.
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work should account for a significant role of the entry/exit of firms. In addition, they

should be able to explain the ability of the network to self-organize into components hav-

ing complex characteristics and the eventual breaking-up of them. Finally, as it is argued

in Gulati et al. (2012), the rise and fall of R&D networks could be the sheer outcome of

the knowledge recombination process associated with alliances embedded into a network.

Indeed, the possibility of knowledge recombination fuels the growth of the network, either

by combining heterogeneous knowledge bases (e.g. Cowan and Jonard, 2004; Gulati et al.,

2012) or by granting access to multiple paths through which knowledge can reach the

firm (König et al., 2011). The same process of knowledge recombination may however set

the the premises for the subsequent breaking-up of the network. This is because recom-

bination brings homogeneity into knowledge bases, consequently reducing the incentive

for knowledge exchange and thus for alliance formation (Cowan and Jonard, 2004; Gulati

et al., 2012). Likewise, in a large network, the number of additional paths to which a

firm gets access with an alliance is higher if the alliance is created with a firm which is

already part of its component (i.e. if the potential partner is already indirectly connected

to the firm). This finding is in perfect agreement with our econometric model, which

shows that firms already connected – directly or indirectly – by a path in the network are

more likely to form an alliance. In a situation where alliances are costly, this reduces the

incentives to maintain bridging ties, thus contributing to the fragmentation of the network

into many clusters which are sparsely connected among themselves (see König et al., 2011,

for a model generating a similar dynamics). However, a more detailed explanation of the

observed rise and fall trend is beyond the scope of the present dissertation. In the next

chapters, we will expand the empirical analysis to other collaboration networks in the do-

main of co-authorship in scientific disciplines. Furthermore, inspired by the findings of our

econometric model, we will focus our investigation on the microscopic rules for alliance

formation. By developing an agent-based model, we aim at reproducing the emerging

topology of the observed collaboration networks and obtaining further insights into the

microscopic mechanisms originating such topology, eventually unveiling the complex in-

terdependencies and the mutual feedbacks between network structures and individual firm

decisions.
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Chapter 3

Similarities among collaboration

networks

Summary

Following the empirical findings on R&D networks, in this Chapter we extend
our study of trends and patterns on the domain of co-authorship networks in
scientific disciplines. Precisely, we select and thoroughly analyze a subset of
six representative co-authorship networks obtained from the American Phys-
ical Society (APS) databases, spanning from gravitation to interdisciplinary
physics (that is, the field including network theory itself). We find that, differ-
ently from R&D networks, co-authorship networks do not exhibit any rise-and-
fall trend. On the contrary, they exhibit a rise-only trend for most indicators,
given the unprecedented expansion that has characterized this domain in the
last decades. Some remaining indicators show instead non-constant, fluctuat-
ing trends over time, in contrast with most properties of the R&D networks.
However, co-authorship networks do show many similarities with R&D net-
works, both structural and temporal. Our analysis is focused exactly on these
universal and robust features. In particular, i. the size of collaboration events
(i.e. firms per alliance or authors per paper), ii. the agents’ activity (i.e. their
propensity to engage in a collaboration) and iii. structural communities in
the network (beyond the agents’ sectoral or geographical positions). Our final
goal is to obtain the building blocks for a model capable of reproducing the
formation and evolution of different collaboration networks.

Based on M. V. Tomasello, N. Perra, C. J. Tessone, M. Karsai, F. Schweitzer, “The Role of Endoge-
nous and Exogenous Mechanisms in the Formation of R&D Networks”, Scientific Reports, 4, 5679 (2014).
Only the empirical part of the article is included in the present Chapter. M.V.T. contributed to designing
the research questions, produced all the statistical analyses and the plots, and gave the major input in
writing the manuscript. The analysis of co-authorship networks, not included in the original article, was
specifically designed and written by M.V.T. for the present dissertation.
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3.1 A brief characterization of co-authorship networks

In this Section we describe the methodology used to build the second family of collabora-

tion networks that we examine in the present dissertation, namely co-authorship networks

in scientific disciplines. A co-authorship network is a network whose nodes represent sci-

entific authors, and links represent the papers that they have authored together. The

unprecedented, exponential growth characterizing scientific production has also spurred

the collection of high volumes of data, often organized in publicly available datasets. A

considerable part of the efforts in this kind of research is devoted to the handling of such

data and the disambiguation of their entries, as we explain below.

3.1.1 Data and methodology

We use two data sources to construct our co-authorship networks, the American Physical

Society (APS) dataset and the Microsoft Academic Search (MSAS) dataset. While the

first dataset provides detailed information on papers’ abstracts, keywords, received dates,

published dates and unique digital identifiers, the second one contains clean and disam-

biguated information about authors’ names and affiliations. Obviously, merging the two

sources of information is a necessary procedure to build a co-authorship network.

The datasets The American Physical Society (APS) provides two types of datasets.

The first one is a comma-separated value (CSV) table containing all citations within the

APS journals, namely, Physical Review Letters, the Reviews of Modern Physics, and all

the Physical Review journals, for the period from 1983 to 2010. Each row in the table

consists of a pair of Digital Object Identifiers (DOIs) of the citing and the cited papers.

A Digital Object Identifier (DOI) is a character string used to identify any electronic

document, namely papers published in scientific journals. The DOI is fixed and stable for

the entire lifetime of the document, making it a more suitable identifier than the document

URL or other kinds of standard identifiers (such as the ISBN). However, as we are not

interested in any citation network, we disregard the information about citing and cited

papers.

The information we need is contained in the second type of data provided by APS, that is

bibliographic meta-data of the papers published in all APS journals. The data is provided

in XML format, separately for each journal. Each row contains information about a

single paper, including its DOI, journal, title, authors with their affiliations, submission,

reviewing, publishing and/or printing dates and PACS codes. The Physics and Astronomy

Classification Scheme (PACS) has been developed by the American Institute of Physics

specifically for the purpose of classifying scientific papers. PACS codes have a hierarchical

structure and are written in the form nn.ab.cd, where nn denotes the research field, ab
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3.1. A brief characterization of co-authorship networks

denotes the subfield and cd denotes the sub-subfield.

The APS data have been processed and the relevant fields stored into a relational database.

For the scope of the present study, we keep only the information regarding the paper DOI,

printing date, author names, and the first two digits of the PACS numbers, defining the

macro research field.

One limitation of the APS dataset is that the authors are identified by strings, often times

including inconsistent fields – such as the author’s first name initial instead of the full

name, missing special characters, or other common spelling mistakes. For this reason, we

match the papers in the APS dataset with the MSAS database, where not only the papers,

but also the authors are given unique identifiers. Indeed, differently from the APS data,

the MSAS data are already fairly well disambiguated with respect to author’s first and

last names, e-mail address, institution, department and city.

Given that the present study is focused solely on the topological and structural properties

of the resulting co-authorship networks, we keep only the authors’ unique identifiers, and

discard all the information regarding their affiliation and geographical location. Finally,

we keep only the entries for which the paper DOI and the remaining available fields are

completely matched between the APS and the MSAS datasets. Furthermore, in order to

reduce the huge amount of data available and make it compatible with the validation of

our models, we select a subset of six relevant PACS numbers, as explained below. By

following such procedure, we obtain a total of around 73,000 papers distributed among

around 95,000 unique authors.

Construction of the network In order to build a co-authorship network, we assume

that every unique author constitutes a node. Then, similarly to the R&D networks (see

Chapter 2), we draw a link connecting two nodes every time that a co-authored paper

appears in the dataset. From now on, we refer to both R&D alliances or a co-authored

papers as collaboration events.

Similarly to R&D alliances, a paper is associated with an undirected link, as we do not

have any information about the initiator of the scientific collaboration. When a paper

is written by more than two authors, all the involved nodes are connected in pairs, thus

resulting into a fully connected clique. Following this procedure, the 73,000 papers listed

in the dataset result in a total of around 300,000 links in our network representation.

One main difference with the R&D networks is that the authors are not associated with any

classification or membership attribute. On the contrary, the classification in co-authorship

networks is assigned to the links of the network, i.e. the papers. Indeed, a single paper

can be unequivocally assigned to a category (in our case, a PACS number), while a single

author can change his/her research subject during his/her career, thus making such a

categorization impossible. For this reason, here we build the co-authorship networks in
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Chapter 3. Similarities among collaboration networks

different fields not by selecting the relevant group of nodes, but the relevant group of links,

i.e. the papers assigned to a given PACS number.

In order to obtain co-authorship networks that are comparable in size and density with

the previously studied sectoral R&D networks, we select the following six representative

PACS numbers: 03 (quantum mechanics, field theories and special relativity), 04 (general

relativity and gravitation), 42 (optics), 72 (electronic transport in condensed matter), 74

(superconductivity) and 89 (other areas of applied and interdisciplinary physics, that is

the field includes network theory itself).

Finally, differently from Chapter 2, we do not consider here any pooled co-authorship

network, including all papers in all selected research fields. We follow this approach be-

cause of two reasons: i. unlike the pooled R&D network, the overlap between the different

research fields is very small, thus giving rise to a network composed of weakly intercon-

nected clusters; ii. the resulting pooled co-authorship network would be computationally

difficult to analyze and be used to test the models that we develop in the continuation of

the present thesis. We argue that the study of the field specific co-authorship networks

already provides statistically significant results and the addition of a pooled network does

not improve nor change our results.

3.1.2 Main findings and trends across disciplines

Similarly to Chapter 2, we present here a set of fundamental network indicators, for the

computation of which we assume that every link is terminated 3 years after its formation.

Indeed, a collaboration established through a scientific paper is intrinsically impossible to

have a predetermined duration, thus forcing us to make such an assumption. However,

similarly to R&D networks, our results are robust to the length of such duration. In any

case – as we explain below – we will shift the focus to other relevant network quantities,

that are more robust and stable over time and across domains, thus allowing a meaningful

modeling and understanding of different collaboration networks.

Network size and density. We present in Fig. 3.1 a visual representation of the six

co-authorship networks that we have selected, plotting all network snapshots in the years

1989, 1993, 1997, 2001, 2005 and 2009. All networks are displayed using the Fruchterman-

Reingold algorithm (see Chapter 2 for more details).

The plots suggest that all research fields have experienced a network growth, without

displaying the rise-and-fall trend typical of R&D networks. The growth in network size

is always associated with the decrease in network density, similarly to R&D networks, as

we show in Fig. 3.2, meaning that the addition of new nodes is the driving force for the

network growth.
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Quantum mechanics, field
 theories and special relativity
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Figure 3.1: Network snapshots in 1989, 1993, 1997, 2001, 2005 and 2009 for the six
representative co-authorship networks that we have selected for the present study. All
network layouts are computed using the Fruchterman-Reingold algorithm.

We find that all networks display a monotonous increasing trend for their size, with small

field-related differences – for instance, the superconductivity field experiences a sort of

saturation after 1995, while the applied and interdisciplinary physics field experiences an

exponential growth after the year 2000. All fields seem to exhibit a small decrease in

network size in the year 2009. Differently from R&D networks, where the rise-and-fall

trend has been proven to be real and consistently recorded by the data (Schilling, 2009),

here we argue that such final decrease is simply due to incomplete data towards the end

of the observation period. The increasing trend in all fields of scientific production is a

well known and documented phenomenon, and the datasets employed here were probably

not consolidated yet at the moment of their usage.
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Figure 3.2: Time-evolution of size (solid blue line, right axis) and density (dashed red
line, left axis) for our six representative co-authorship networks.

Giant component and degree heterogeneity. Similarly to the R&D networks, the

growth of co-authorship networks is associated with the emergence of a giant component, as

we report in Fig. 3.3. The only notable exception is represented by the field of applied and

interdisciplinary physics, where the increase in size has resulted in a bigger fragmentation

of the network and a decrease in the size of the main network component. In all other

fields, although showing some fluctuation over time, the giant components have sizes

ranging from 30% to 55% of the entire network.

However, differently from R&D networks, such growth is not associated with an increasing

inequality of the node degrees in the network, as we show in Fig. 3.3. The quantity we
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Figure 3.3: Time-evolution of the giant component fraction (solid blue line, right
axis) and the degree distribution’s Hill Estimator (dashed red line, left axis) for our six
representative co-authorship networks.

plot is the Hill Estimator (HE) of the different degree distributions. The smaller its

value, the more heterogeneous and right-skewed the corresponding degree distribution is

(see Chapter 2 for more details). For a comparison, a network generated by a simple

preferential attachment mechanism would display a degree distribution with HE equal to

3. We find that all research fields have degree distributions with stable HE after 1985,

around values compatible with the preferential attachment mechanism.

Remarkably, the co-authorship network in the general relativity and gravitation field ex-

hibits a HE that stabilizes around 2, signaling a heavy right tail in its degree distribution.
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This fact can be explained by the larger and larger number of authors that is typically

involved in the writing of scientific papers in this field. All other research fields show small

fluctuations over time in their degree distributions’ HE. In many cases, these fluctuations

bring the values of HE slightly above 3, meaning that the corresponding degree distri-

butions are narrower than the one generated by a preferential attachment mechanism –

differently from most of the sectoral R&D networks.
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Figure 3.4: Time-evolution of the number of network components (solid blue line, right
axis) and the average component size (dashed red line, left axis) for our six representative
co-authorship networks.
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Network components. In order to have a more detailed picture of the network struc-

ture, we study the evolution of the number of disconnected components and the average

component size in every collaboration network. Our results are reported in Fig. 3.4. We

find that the number of network components scales with the network size, meaning that the

growth we have observed is associated with the addition of more and more disconnected

components. Again, the co-authorship network in superconductivity exhibits a sort of sat-

uration effect after 1995, and the co-authorship network in applied and interdisciplinary

physics exhibits an exponential growth after 2000.

However, the average components size increases over time as well for every co-authorship

network, meaning that such networks are overall more and more connected – consistently

with the emergence of giant components. Yet again, the network in the superconductivity

field exhibits a sort of saturation after 1990, combined with a negative fluctuation around

year 1995, and the network in applied and interdisciplinary physics exhibits only a small

increase in the average component size – consistently with the lack of a giant component

in this research field.

Degree assortativity and small world properties. Finally, we study the evolution

of two characteristic network indicators, the assortativity mixing coefficient – measuring

the degree-degree correlations in the network – and the small world quotient – measuring

the extent to which the network has a lower average path length and a higher clustering

coefficient than a corresponding randomly generated network. For more details on these

coefficients, see Chapter 2. Our results for both indicators are reported in Fig. 3.5.

We find that the assortativity mixing coefficient is always positive for every collaboration

network, which then exhibit the typical features of social networks (Newman, 2003). This

means that, in co-authorship networks, nodes with small degrees tend to be connected

with other small-degree nodes, while nodes with high degrees tend to be connected with

other high-degree nodes. In particular, we find that the assortativity mixing coefficient

is always greater than 0.2 for all co-authorship networks in all time periods, sometimes

reaching peaks as high as 1; however, such degree-degree correlations do not display any

regular trend as a function of time. Such finding constitutes a remarkable difference with

the sectoral R&D networks, which instead exhibit the negative degree-degree correlations

typical of technological networks (see Chapter 2).

The small world quotient does not exhibit any particular trend as a function of time.

We find that all curves show considerable fluctuations during all time periods; however,

towards the end of our observation period, they stabilize around values between 200 and

800. This means that – similarly to most of the R&D networks (see Chapter 2) – all

co-authorship networks exhibit significant small world properties, i.e. overall low average

path lengths and high clustering coefficients.
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Figure 3.5: Time-evolution of the mixing assortativity coefficient (solid blue line, right
axis) and the small-world quotient (dashed red line, left axis) for our six representative
co-authorship networks.

3.2 Robust network features across domains

The analysis of R&D networks and co-authorship networks has shown us some controversial

findings. On the one hand, R&D networks display rise-and-fall trends for most indicators,

displaying a “golden age”, mainly characterized by larger size, smaller density, more and

larger network components, an increased degree heterogeneity across nodes, and small

world architectures. The only indicator showing heavy fluctuations is the assortativity

coefficient (i.e. degree-degree correlations) in the networks.
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On the other hand, co-authorship networks are characterized by generally rising trends in

terms of size, component number and average component size, associated with decreasing

trends for the network density, and non-constant, remarkably fluctuating trends for degree

heterogeneity across nodes, assortativity and small world properties.

Such differences prevent us from arguing that every time a collaboration network evolves –

both in the domain of R&D alliances and writing of scientific papers – such growth results

in the same macroscopic structures. Instead, being those structures the result of some

specific microscopic mechanisms of link formation, we can conclude that such mechanisms

must differ from network to network.

Building blocks for an agent-based model. One of the aims of the present dis-

sertation is to develop an agent-based model including the minimum possible number of

microscopic rules, that is able to reproduce the topology of real collaboration networks.

This means that we still need to search for a minimal set of features, patterns or rules

that are robust across domains, and that can be therefore used as building blocks of our

agent-based model. Our aim is then to reproduce all the observed sector-related or field-

related differences in real collaboration networks, by tuning some of the parameters of

such model.

The network features that we have studied and reported so far, rather than being a starting

point, will be instead used to validate such model and fine-tune its parameters in the

different collaboration networks, in both the R&D and the co-authorship domains. Such

procedure will be explained in detail in Chapter 4.

In the remainder of the present Chapter, we study a different set of features on real

collaboration networks. Such features are more elementary and primitive than the ones

previously studied, thus representing more suitable basic blocks for our future agent-based

model.

3.2.1 Size of collaboration events

The first basic, universal feature under our examination is the size of collaboration events in

collaboration networks. With respect to the pooled R&D network, we find that the SDC

alliance dataset exhibits a right-skewed distribution of number of partners per alliance

event. Most of the collaborations (93%) are stipulated between two partners, but some

alliances – the so-called consortia – involve three or more partners. The distribution of the

number of firms per alliance event, that we show in Fig. 3.6, spans one order of magnitude.

In Fig. 3.7 we report such distribution for the six largest industrial sectors, showing that

this feature holds for all sectoral R&D networks, with only small differences in the tails of

the respective distributions.
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Figure 3.6: Distribution of the number of partners per alliance, as measured from the
SDC alliance dataset.
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Figure 3.7: Distribution of the number of partners per alliance for the six largest
industrial sectors, as measured from the SDC dataset.

The typical right-skewed distribution of agents per collaboration event holds also for all

the co-authorship networks that we analyze. Our results are reported in Fig. 3.8. It

should be noted that, obviously, many papers are written by only one author; however,
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we exclude such events from our collaboration network representation – including such

authors would generate isolate nodes. Therefore, the counts start from 2 in all of our

plots.
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Figure 3.8: Distribution of the number of authors per paper for our six representative
co-authorship networks, as measured from the APS-MSAS datasets.

Differently from the R&D networks, the co-authorship networks exhibit a larger degree

of variability among fields. First of all, the typical number of authors per paper strongly

depends on the field. To give an example, the field of applied and interdisciplinary physics

is characterized by significantly fewer authors per paper (at most 10) than the field of

general relativity and gravitation (whose right tail reaches 55 authors per paper). In

particular, we find that the distribution in this last field is characterized by a bimodal

behavior, with a bump in counts around 50 – this is due to the publishing activity in

the gravitation subfield, which typically requires such large number of authors to conduct

a single experiment. However, also the other research fields (with the only exception of

applied and interdisciplinary physics) exhibit distributions with heavy right tails.
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In addition, such distributions seem to have an exponential or stretched exponential form,

rather than the typical power law trend of the R&D networks. However, our scope is

not to study the origin of these distributions, nor determine their functional form, nor

reproduce them. They rather constitute a starting point of our future agent-based model,

that will instead reproduce other and more sophisticated network features. Therefore, we

just record these distributions in order to feed such empirical inputs to the model.

3.2.2 Agents’ activity

Another distinctive measure we introduce and analyze in this study is the agents’ activity

distribution (Perra et al., 2012). Developed in the field of temporal networks (Holme and

Saramäki, 2012), the activity has already been studied on various datasets, such as online

microblogging, actor/movie networks and co-authorship networks as well. However, to the

best of our knowledge, no previous work has measured this quantity on a set of real firms

involved in R&D alliances by using empirical data. This certainly represents a logical

consequence of such recent developments in temporal networks.

We define the empirical activity a∆t
i,t of an agent i at time t, over a time window ∆t, as the

number of collaboration events e∆t
i,t involving the agent i in the time window ∆t ending

at time t, divided by the total number of collaboration events E∆t
t involving any agent in

the network during the same time period:

a∆t
i,t =

e∆t
i,t

E∆t
t

. (3.1)
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Figure 3.9: Complementary cumulative distribution function (CCDF) of the empirical
firm activities in the pooled R&D network, measured on the SDC dataset with 4 different
time windows ∆t of 1, 5, 10 and 26 years. When the time window is shorter than 26
years (the entire dataset observation period), we compute the activity by shifting the time
window in 1-year increments and then we average the results.

The activity expresses the probability that an agent takes part in an arbitrary collaboration

event occurring in a given time window. We test four time window lengths ∆t equal to 1,
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5, 10 and 26 years for both the SDC alliance dataset and the APS-MSAS co-authorship

dataset. We find that all agent activity distributions are virtually independent of the

chosen ∆t. We report our findings for the pooled R&D network in Fig. 3.9. In this

and the totality of next plots, we make use of the complementary cumulative distribution

function (CCDF), similarly to the approach adopted in Chapter 2, because it is more

stable and gives better visual representations compared to the simple probability density

function.
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Figure 3.10: Complementary cumulative distribution function (CCDF) of the empirical
firm activities in the pooled R&D network, measured on the SDC dataset with 6 different
time windows ∆t of 1, 2, 3, 5, 10 and 26 years. When the time window is shorter than 26
years, we shift such time window along the observation period and show the corresponding
activity CCDF.

We find that the firm activity distributions are right skewed and dispersed over several

orders of magnitude, as in many other social and technological systems (Barabasi, 2005;

Barabasi and Albert, 1999; Pastor-Satorras et al., 2001). Contrary to most of the R&D

network indicators, that display strong variability and dependence on time (see Chapter

2), the activity is a stable attribute that can be assigned to firms and effectively estimate

their propensity to engage in new alliances. Indeed, empirical firm activities are robust

also with respect to the time t at which they are measured: shifting the time window – of
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any length ∆t – along the 26 years reported in the dataset does not affect the results, as

we show in Fig. 3.10 for the pooled R&D network.
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Figure 3.11: Complementary cumulative distribution function (CCDF) of the empirical
firm activities, measured for the six largest industrial sectors in the SDC dataset.

In addition, we find that the activity distribution is robust to the sectoral classification

of the firms. In Fig. 3.11 we show the empirical firm activity distributions (computed on

four different time windows) for the nine largest sectoral R&D networks.

The activity distributions for the authors in our six representative co-authorship networks

are reported in Fig. 3.12. We find that the trend of all distributions is robust with respect

to both the time window and the research field, similarly to R&D networks. We use the

same time window lengths and the same observation period as the R&D networks, to allow

for a straightforward comparison.

In order to prove the robustness of the empirical activity in co-authorship networks to

the time t at which it is measured, we report in Fig. 3.13 the effects of shifting the time

window – of any length ∆t – along the 26 years of observation. For the sake of clarity

and brevity, we analyze here only one representative co-authorship network – the one in

applied and interdisciplinary physics – and four different time windows – of length 1, 5,

10 and 26 years. Similarly to R&D networks, and to the other co-authorship networks,

shifting the time window does not affect the shape of the activity distributions.

To sum up, we find that agents in collaboration networks are endowed with an activity,

an attribute measuring their propensity to engage in a collaboration. The distributions
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Figure 3.12: Complementary cumulative distribution function (CCDF) of the empirical
author activities, measured for the six selected co-authorship networks in the APS-MSAS
datasets.

of such agent activities in R&D and co-authorship networks is right skewed and dispersed

over several orders of magnitude, as in many other social and technological systems.

We also find that the agent activities are very stable across domains and over time, thus

making them perfect candidates for stable agent attributes, representing their propensity

to engage in a collaboration event. Similarly to the distribution of number of agents

per collaboration, we record also these distributions as empirical inputs for our future

agent-based model.
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Figure 3.13: Complementary cumulative distribution function (CCDF) of the empir-
ical author activities in the applied and interdisciplinary physics co-authorship network,
measured on the APS-MSAS datasets with 4 different time windows ∆t of 1, 5, 10 and 26
years. When the time window is shorter than 26 years, we shift such time window along
the observation period and show the corresponding activity CCDF.
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3.2.3 Communities and labels

Finally, we turn our attention to the modular properties of collaboration networks. It has

been acknowledged that networks, in many different domains, are organized in modules or

clusters, characterized by groups of tightly connected nodes (Fortunato, 2010; Newman and

Girvan, 2004). We find that both R&D and co-authorship networks are not an exception

(see Chapter 3).

In R&D networks, interestingly, the formation of such clusters is not totally explained

by factors like the firms’ industrial sectors or their geographical distribution (Rosenkopf

and Padula, 2008). Our previous analyses (see Chapter 2) have also shown that the link

formation is explained as well by the belonging to the same country and sector as previous

network structures. Indeed, firms belonging to different sectors and located in different

countries can populate the same network cluster. However, clusters in R&D networks

have never been theoretically defined; they have been only empirically detected by means

of simple K-means algorithms and used to obtain rough indications about the inter-firm

alliance activity (Rosenkopf and Padula, 2008).

Here, we perform a community detection on the pooled R&D network by employing a

widely used algorithm (Infomap) and report our findings in Fig. 3.14. The Infomap

algorithm detects structural clusters based on the probability flow of random walks in the

network (Rosvall and Bergstrom, 2008). We detect the presence of approximately 3,500

clusters in the network, whose size distribution appears to be dispersed and right skewed,

displaying a maximum cluster size of about 200 firms and a minimum cluster size of 2.

In Fig. 3.14 we also provide a representation of the pooled R&D network; for the sake of

visualization, we consider only the 30 largest firm clusters and depict them by grouping

the corresponding nodes in 30 distinct regions of the plot area. It should be noted that

such visual representation strongly differs from the one that we have provided in Fig. 2.1.

First, here we do not depict sectors with different colors, because we are interested only

in the structural network clusters. Second, the pooled R&D network we represent here is

cumulative, i.e. it includes all alliances reported in the dataset, without assuming their

termination after three years. This choice is consistent with the microscopic rules that we

will set for our agent based model. Even though such model will be aimed at reproducing

cumulative structures and patterns, other dynamical and temporal microscopic indicators

will be tested, thus not affecting the validity of our predictions. More explanations and

details will follow in Chapter 4.

Finally, we compute the modularity score Q of the pooled R&D network, to quantify the

goodness of such division of the network in clusters. Such coefficient (Newman, 2010) is

defined such that Q = 1 in case of a perfectly modular network, where links are formed

only within the same cluster. Likewise, Q = −1 for a perfectly anti-modular network,

where links connect only nodes belonging to distinct clusters, and Q = 0 for a network
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Figure 3.14: (a) Visual representation of the empirical R&D network (we use the
Fruchterman-Reingold layout (Fruchterman and Reingold, 1991)), considering only the
30 largest clusters detected by the Infomap algorithm. Distinct clusters are represented
by grouping nodes in distinct regions of the plot area. The highest degree nodes are also
highlighted: some big companies in several industrial sectors, together with their respective
clusters, are clearly visible in the plot. (b) Size distribution of the network clusters.

where links are formed at random. For more details on the Q coefficient, see Chapter 2.

For the pooled R&D network, we observe a value of 0.679, remarkably high not only if

compared to other examples of real networks (Newman, 2004a), but also if compared to

the Q values that we have obtained in Chapter 2, where an industrial sectoral division has

been used. This means that the belonging of firms to different sectors does not reproduce

the topological network clusters that we detect.

Next, we apply the same exact procedure to a set of representative sectoral R&D networks,

as well as co-authorship networks. We report all basic statistics in Table 3.1. However,

for the sake of brevity, we report the visual network representations and the cluster size

distributions only for two representative examples, the Pharmaceuticals sectoral R&D

network (Fig. 3.15) and the co-authorship network in applied and interdisciplinary physics

(Fig. 3.16). The results for the remaining collaboration networks are reported in Appendix

B.

We find that all collaboration networks, both in the R&D and in the co-authorship do-

mains, are characterized by high modularity scores. Precisely, all the Q scores originated

by an Infomap community detection are significantly higher than the equivalent scores on

randomly generated networks with the same degree sequence, especially in the domain of

co-authorship networks. By following such approach (Reichardt and Bornholdt, 2006), we
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3.2. Robust network features across domains

N E Links Clusters Q Qrand

Pooled R&D network 14,561 14,829 21,572 3,561 0.679 0.570 ± 0.001

Sectoral R&D networks

Pharmaceuticals (SIC 283) 3,829 5,277 6,019 860 0.607 0.438 ± 0.002

Computer hardware (SIC 357) 1,582 2,672 4,047 783 0.623 0.502 ± 0.002

Communications equipment (SIC 366) 1,133 1,888 2,726 749 0.653 0.461 ± 0.002

Electronic components (SIC 367) 1,615 2,574 3,756 302 0.502 0.311 ± 0.002

Computer software (SIC 737) 3,381 4,134 5,862 354 0.531 0.333 ± 0.002

R&D, laboratory and testing (SIC 873) 3,188 4,032 5,364 256 0.527 0.317 ± 0.003

Co-authorship networks

Quant. mech., field theories, spec. relativity (PACS 03) 21,501 19,647 56,111 3,029 0.779 0.2344 ± 0.0004

General relativity and gravitation (PACS 04) 8,294 8,158 32,513 1,207 0.795 0.128 ± 0.016

Optics (PACS 42) 27,436 20,105 94,961 2,853 0.794 0.195 ± 0.002

Electronic transport in condensed matter (PACS 72) 19,492 11,687 55,818 2,411 0.832 0.2609 ± 0.0004

Superconductivity (PACS 74) 14,920 10,541 52,615 1,663 0.769 0.208 ± 0.003

Other applied and interdisciplin. physics (PACS 89) 4,881 2,873 8,777 966 0.920 0.395 ± 0.001

Table 3.1: Modular properties for the pooled R&D network, the six largest sectoral
R&D networks, and the six representative co-authorship networks. For all domains, we
consider the respective cumulative networks, i.e. the networks obtained by keeping all the
links at any time. For each network, we report the number of nodes N , of collaboration
events E, of resulting links in our network representation, of clusters detected by the
Infomap algorithm, the modularity score Q of the network, and (as robustness check) the
modularity score Qrand obtained in a set of 100 randomly generated networks with the
same size and degree sequence as the network under examination.

can safely conclude that – in every collaboration network that we test – such high Q values

are indicative of a real modular structure, and not a simple artifact of the network’s size

and density.

(a)
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Figure 3.15: (a) Visual representation of the Pharmaceuticals sectoral R&D network,
considering only the 30 largest clusters detected by the Infomap algorithm. Distinct
clusters are represented by grouping nodes in distinct regions of the plot area. (b) Size
distribution of the network clusters.
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Chapter 3. Similarities among collaboration networks

(a)
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Figure 3.16: (a) Visual representation of the co-authorship network in applied and
interdisciplinary physics, considering only the 30 largest clusters detected by the Infomap
algorithm. Distinct clusters are represented by grouping nodes in distinct regions of the
plot area. (b) Size distribution of the network clusters.

In conclusion, by performing a community detection algorithm, we have found that col-

laboration networks are characterized by modular structures. This finding is robust across

domains, and supported by the evidence of significantly lower modularity scores on ran-

domly generated networks with preserved degree sequence – i.e. the modularity is not an

artifact of the specific networks’ degree sequences. However, differently from the distribu-

tions of agent activity and number of agents per collaboration, we will not use such result

as a building block for our agent based model. The network modularity is a complex,

emerging phenomenon of the evolution of collaboration networks, and we will rather use

it as a criterion to validate the predictions of our model.

We argue instead that such modular structures are indicative of some specific microscopic

rules of strategic link formation, probably involving the presence of an agent membership

attribute. This intrinsic membership attribute goes beyond the sectoral, geographical or

research field belonging of the agents, and causes them to form dense network clusters,

albeit allowing a certain level of inter-cluster connections. This hypothesis is in line with

the findings reported by Yang and Leskovec (2012), that have tried to identify the presence

of communities based on ground truth in real networks. Therefore, we use such concept

of membership attribute as a microscopic rule for our agent-based model, leaving the

modularity and the emergence of clusters as a validity test.
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3.3. Discussion

3.3 Discussion

The implications of the analyses carried out in the present Chapter are twofold. First, we

have extended the investigation of network trends and patterns from R&D to co-authorship

networks in scientific disciplines. We find that co-authorship networks are characterized

by similar network structures to the R&D networks, i.e. the emergence of giant connected

components, heterogeneous degree distributions, small world properties, and a positive

degree assortativity coefficient (this is in agreement with the pooled R&D network, but

in contrast to the sectoral R&D networks, which are generally characterized by negative

degree-degree correlations).

However, differently from R&D networks, co-authorship networks do not exhibit any rise-

and-fall trend. On the contrary, they are characterized by generally rising trends over

the last three decades, in terms of size, component number and average component size,

associated with decreasing trends for the network density, and non-constant, remarkably

fluctuating trends for degree heterogeneity across nodes, assortativity and small world

properties. This can be explained with the unprecedented growth that has characterized

every scientific field – and the corresponding publication rates – in the recent years.

This brings us to the second finding of the present Chapter. The empirical evidence sug-

gests the existence of some invariant mechanisms, associated with domain-related speci-

ficities, giving rise to collaboration networks. Considering that our aim is to identify the

minimal set of microscopic rules able to reproduce the topology of such networks, we have

investigated a different set of features on real collaboration networks. Such features are

more elementary and primitive than the ones previously studied, thus representing more

suitable basic blocks for our future agent-based model. The features that we have studied

are: i. the size of collaboration events (i.e. firms per alliance or authors per paper), ii.

the agents’ activity (i.e. their propensity to engage in a collaboration) and iii. structural

communities in the network (beyond the agents’ sectoral or geographical positions).

Our findings can be summarized as follows. The distribution of agents per collaboration

is broad and right-skewed for all R&D and co-authorship networks, even though the co-

authorship networks exhibit a higher degree of variability across fields. The number of

agents per collaboration event spans from 2 (the vast majority in all networks) to 55 (in

the relativity and gravitation co-authorship network). The agents’ activities distribution

are dispersed and right-skewed as well, spanning several orders of magnitude. Differently

from many networks indicators, the activities are stable and can effectively model the

propensity of every agent to engage in a collaboration event, thus making them viable

candidates for an agent attribute in our model.

Finally, we have detected the presence of modular structures in all collaboration networks,

through a well-known community detection algorithm (Infomap). Such finding is signifi-
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Chapter 3. Similarities among collaboration networks

cant and robust across domains. However, being it a complex and emerging topological

property of the network, we decide to use it as a validity test, and not as a building block

of our model. We argue that the modular structures are indicative of some specific micro-

scopic rules of strategic link formation, that involve the presence of an agent membership

attribute. The existence of this attribute, together with some rules of propagation during

the establishment of collaborations, will instead be at the basis of our model; more details

will follow in Chapter 4.

In conclusion, we have identified a set of three fundamental attributes that exhibit simi-

lar properties in several collaboration networks and will constitute the building blocks of

an agent-based model, aimed at reproducing more sophisticated (both macroscopic and

microscopic) network features. Such attributes are – in order – a broad and right-skewed

distribution of agents per collaboration event, a broad and right-skewed distribution of

activities (the agents’ propensities to be involved in a collaboration event), and the pres-

ence of a membership attribute, that can be propagated between agents in a collaboration

event and defines the network clusters.

The remaining network properties, together with the stylized facts that we have studied in

Chapter 2, rather than being a starting point, will instead be used to validate our model

and fine-tune its parameters in different collaboration networks. The development of the

agent-based model and its validation in both the R&D and the co-authorship domains is

the topic of Chapter 4.
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Chapter 4

Modeling the formation of

collaboration networks

Summary

In this Chapter we develop an agent based model of strategic link formation,
inspired by our empirical findings on R&D and co-authorship networks. We
have found that the growth of collaboration networks is driven by mechanisms
which are both endogenous to the system (that is, depending on existing al-
liances patterns) and exogenous (that is, driven by an exploratory search for
new collaborations). In order to investigate the effects and the interdependen-
cies between these two mechanisms, we develop a general modeling framework
that includes both of them and allows to tune their relative importance in the
formation of links. We first test our model against the SDC Platinum alliance
dataset, and then extend our validation on a large set of sectoral R&D net-
works as well as co-authorship networks. Remarkably, by fitting only three
macroscopic properties of the network, our model is able to reproduce a num-
ber of microscopic measures characterizing the network topology, including
the distributions of degree, local clustering, path length and component size,
and the emergence of network clusters. Furthermore, by estimating the link
probabilities, we find that endogenous mechanisms are predominant over the
exogenous ones in the network formation, in most of the collaboration networks
we investigate. Our framework not only brings additional support, but also
precisely quantifies the importance of existing network structures for selecting
collaboration partners in different domains.

Based on M. V. Tomasello, N. Perra, C. J. Tessone, M. Karsai, F. Schweitzer, “The Role of Endoge-
nous and Exogenous Mechanisms in the Formation of R&D Networks”, Scientific Reports, 4, 5679 (2014).
Only the model development and validation parts of the article are included in the present Chapter.
M.V.T. contributed to designing the microscopic rules of the model, made the major effort in running the
computer simulations, analyzed all the results and produced all the plots. The validation of the model on
co-authorship networks, not included in the original article, was designed and written by M.V.T. for the
present dissertation.
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Chapter 4. Modeling the formation of collaboration networks

4.1 Modeling the growth of R&D networks

In the previous Chapters, we have systematically analyzed the salient features of R&D

networks and co-authorship networks. Our results suggest the presence of a significant

level of similarities in the topology of these collaboration networks and the way they

evolve over time, albeit associated with domain- or sector-related peculiarities.

In particular, for the case of R&D networks, we find that two kinds of mechanisms are

crucial in the formation of new alliances, in agreement with previous studies (Rosenkopf

and Padula, 2008). Such mechanisms can be endogenous (i.e. previous alliances and

previous network structures) and exogenous (i.e. exploratory search of new partners),

with respect to the network. However, both empirical and theoretical studies have mainly

focused only on one of the two mechanisms, also called “network endogeneity”(Garas et al.,

2014; Gulati and Gargiulo, 1999; Powell et al., 1996; Walker et al., 1997) and “exogenous

partner selection”(Burt, 1992; Cowan and Jonard, 2004; Rosenkopf and Nerkar, 2001)

respectively.

The goal of the model we develop in the present Chapter is to unify these two classes

of mechanisms and quantify their relative importance in the formation of a collaboration

network. We aim as well at extending the validity of such concept from R&D to co-

authorship networks. Our model is intended to reproduce the main global properties

and a set of microscopic measures (including degree, local clustering and path length

distributions) of real networks. To this purpose, we test the model against the SDC

alliance dataset, as well as the APS dataset for co-authorship networks in science. The

validation of the model and the tuning of its parameters will give us insights into the micro-

level decisions operated by the agents and – consequently – the growth of the networks

themselves, pointing out possible similarities and differences across sectors and domains.

4.1.1 Deriving the microscopic rules for link formation

Typically, the concept of endogenous and exogenous mechanisms has been used in the

management literature with respect to the belonging of firms to the R&D network. We

follow such definition and refer to an alliance involving a partner that is already part

of the R&D network as “endogenous”. Likewise, an alliance involving a partner that is

not part of the R&D network yet is referred to as “exogenous”. While the endogenous

mechanisms depend on the firms’ social capital (describing their position in the network),

the exogenous mechanisms are affected by the firms’ technological and commercial capital.

A firm’s social capital can be further explained by two variables(Gulati, 1995b; Podolny,

1993): its prominence – i.e. the history of its previous alliances – and its cohesiveness,

defined as the set of its direct and indirect links with other firms in the network. In this

regard, some empirical studies(Powell et al., 1996; Rosenkopf and Padula, 2008) found
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4.1. Modeling the growth of R&D networks

that several firm “clusters” populate the R&D network, thus giving rise to different kinds

of alliances depending on the firms’ position in the network.

In particular, three categories of R&D alliances have been identified: i. within-cluster

alliances (the partners belong to the same cluster); ii. semi-distant alliances (the partners

form a so-called “shortcut” between two different clusters); iii. distant alliances (at least

one of the partners is an isolated node, i.e. a newcomer firm). Obviously, a certain number

of R&D alliances is not explained by the partners’ social capital – think, for instance,

of alliances involving start-up companies or financial institutions that have no previous

experience in R&D activities. One rationale for the search of this kind of partners, whose

technological and commercial capital plays a crucial role, is that they can provide access

to new information or unique technical knowledge.

However, neither the network endogeneity nor the exogenous partner selection, taken in-

dependently, are able to explain the topology of observed R&D networks. Endogenous

mechanisms alone would lead to more and more centralized network structures over time,

which we do not observe in reality (see Chapter 2). On the other hand, exogenous mech-

anisms alone would lead to more regular networks topologies, which we do not observe

neither. There exists a prominent modeling work (Guimera et al., 2005) that analyzes

the formation of teams as a function of some microscopic parameters, including the team

size and the propensities to select newcomers or repeat collaborations. We extend this

study by considering more fine-tuned linking probabilities, adding a heterogeneous agent

propensity to initiate alliances, and validating such a model for the first time, to the best

of our knowledge, on a set of large inter-firm networks – and not networks of individuals.

Inspired by these considerations and by the empirical evidence, we introduce below the

microscopic rules of our agent-based model.

4.1.2 Development of the agent-based model

To quickly recap, the empirical observations on collaboration networks indicate clear het-

erogeneities in activity and connectivity patterns, small-world features, a moderate level

of transitivity, and a highly modular structure. Starting from this evidence, we consider a

network composed of N nodes; each of them is endowed with two fundamental attributes,

an activity and a label. Such attributes define the nodes’ interaction rules, which are

organized in five distinct phases, as described below.

Node activation. We assign to each of the i = 1, . . . , N nodes an activity ai, analogous

to the empirical activities extracted from the SDC dataset. Indeed, we sample without

replacement all the values ai from the empirical activity distribution. The activities we

assign to theN nodes are computed by considering the entire observation period (therefore,
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Chapter 4. Modeling the formation of collaboration networks

in the case of the pooled R&D network, ai ≡ a∆t=26years
i,t=2009 ). Given the strong robustness

of empirical activities to the time window, we decide to use the longest possible window,

because it contains complete information about the dataset and gives activities ai that are

always strictly greater than 0 – all firms listed in the SDC dataset, by definition, must be

involved in at least 1 alliance, and all authors must have co-authored at least one paper

to be reported in the co-authorship network. The activity defines the propensity of each

node to be involved in a collaboration event. We use this quantity to model the activation

probability of each agent. In particular, at every time step, a node i initiates an alliance

with probability pi = ηai∆t, and the number of active nodes NA is

NA = η〈a〉N∆t, (4.1)

where 〈a〉 is the average node activity and η is a rescaling factor that allows to adjust

the activation rates, and consequently the number of active nodes per time step. We find

that the model is strongly robust to the choice of η, showing no measurable changes for

η ranging from 10−5 to 1; however, we fix η to obtain NA roughly equal to the number

of alliance events or co-authored papers per day actually reported in the datasets that we

analyze. In the case of the pooled R&D network, η = 0.01. Without loss of generality, we

fix ∆t = 1.

Selection of the alliance size. When a node gets activated, it selects the number of

partners m with whom the alliance is formed. We assume that the value of m is totally

independent of any characteristic of the active node: we sample it, without replacement,

from the empirical distribution of number of partners per alliance. In other words, we

shuffle the sequence of number of partners per alliance, or authors per paper (directly

measured from the datasets), and then extract a value every time an activation event

occurs; m can be thought of as the number of agents involved in every collaboration

event, diminished by 1, because the active node is not counted twice.

Label propagation. As we have previously shown in Chapter 3, real collaboration

networks are organized in clusters of tightly interconnected nodes. However, these clusters

are not isolated; in the case of R&D networks, previous studies (Rosenkopf and Padula,

2008) have detected the existence of “shortcuts” connecting different clusters, as well as

the formation of alliances with new partners not yet belonging to the R&D network.

This observation suggests that firms diversify some of their alliances, rather than just

establishing collaborations within a specific cluster. We model this feature assuming that

each of the N nodes is endowed with an attribute named label. This attribute is unique –

i.e. every node can have only one label at any time – and fixed – once a node assumes a

label, it does not change –. Labels model the belonging of the firms to different groups that

they implicitly define with their shared practices and commonly recognized behaviors: in
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4.1. Modeling the growth of R&D networks

other words, a label symbolizes the membership of the firm in a well defined and recognized

“club” or “circle of influence”. In addition, we assume that such membership can be

transferred to other firms as a consequence of an alliance, provided that they are not part

of any circle of influence yet.

The hypothesis of such a membership attribute is in agreement with the results reported

by Yang and Leskovec (2012), that have identified the presence of communities based

on ground truth in real networks. Such communities include nodes that do not neces-

sarily share features such as the same geographical provenience, or the belonging to the

same institution. They rather define these communities dynamically, through consecu-

tive interactions and link formations, phenomenon that is captured by our membership

attribute and its propagation. We argue that the same reasoning holds for co-authorship

networks, where clusters of collaborating authors are formed depending not only on their

geographical or scientific distance, but also through subsequent propagation of an implicit

membership attribute. In our network representation, every collaboration initiator does

indeed propagate its label to all of its m partners, if they are non-labeled. At the beginning

of every simulation, all nodes are non-labeled, meaning that their membership attribute is

blank. There are two ways a non-labeled node can assume its label: (i) the node either

receives the label from another node, if the latter initiates an alliance, or (ii) it takes an

arbitrary and unique label when it becomes active for the first time (see Fig. 4.1).

t=T t=T+1

Figure 4.1: Two representative examples of label propagation. A labeled node (whose
label is depicted in green) chooses to form an alliance with m = 2 partners, one having
a different label (depicted in yellow) and one non-labeled, at time t = T . The initiator
propagates its green label at time t=T+1 only to the previously non-labeled node. The link
with the yellow node is still formed, but the label propagation does not occur. Likewise, a
non-labeled node gets activated at time t=T and forms an alliance with m = 3 partners,
two non-labeled nodes and one labeled (blue) node. The non-labeled initiator takes a new
arbitrary label (depicted in red) at time t=T+1 and propagates it only to its previously
non-labeled partners. The red label is not propagated to the blue node, even though the
links are regularly formed.
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Selection of the partner categories. The presence of node labels induces different

types of alliances, that we explicitly distinguish in our model (see Fig. 4.2). This is in

line with previous studies on team assembly mechanisms (Guimera et al., 2005), that we

extend to collaboration networks whose agents can be represented also by firms, and not

only individual scientists or artists. In particular, we assume that if the alliance initiator is

a labeled node, it represents an incumbent firm, i.e. a firm that has already been involved

in at least one alliance, or an expert author, i.e. an author that has co-authored at least

one scientific paper. In this case, the initiator can link to a labeled node having the same

label (with probability pLs ), or to a node having a different label (pLd ), or to a node without

label (pLn). If the initiator is a non-labeled node, it represents a newcomer firm, i.e. a

firm that has not been involved in any alliance event yet, or a novice scientific author. In

this case, the initiator can link to a labeled node (with probability pNLl ), or to another

non-labeled node (pNLnl ). The five probabilities associated to these occurrences, represented

in Fig. 4.2, are the free parameters of our model.

Following the definitions traditionally adopted in previous theoretical literature, we argue

that the probabilities associated to a connection with a labeled node (pLs , pLd and pNLl )

quantify the relevance of endogenous mechanisms for link formation, given that the ini-

tiator of the alliance has information about the network position (i.e. social capital) of

its potential partners. Likewise, the probabilities associated to a connection with a non-

labeled node (pLn and pNLnl ) estimate the relevance of the exogenous mechanisms. In this

case, the initiator cannot have any information about the social capital of a firm (or an

author) that is not part of the network yet; the choice to initiate a collaboration event is

due to different rationales, such as the technological, scientific or geographical proximity

of the agents. It should be noted that the agents in this phase select the category of their

partners, not the specific partners themselves. The selection of such categories is made

independently of their population: this means that the initiator only selects the pool in

which the potential partner will be, and only afterwards the actual link will be formed.

Obviously, the population of every category and every circle of influence changes dynam-

ically as the network evolves. At the beginning of the network evolution, for instance,

all nodes are non-labeled and the few existing circles of influence slowly grow around the

few active nodes. This kind of dynamics is not only in agreement with some theoretical

arguments (Kahneman and Tversky, 1996), but also capable of originating the features

that we observe in real collaboration networks, as we show below. The five probabilities

are bounded by two conditions, reducing the number of independent parameters to three;

their nomenclature and their meaning are summarized in Table 4.1.

Link formation. After deciding the category of each of its m partners, we assume that

the initiator selects its specific partners within those categories according to their attrac-

tiveness. Indeed, it has been shown for the case of R&D networks (Gulati, 1995b; Podolny,
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4.1. Modeling the growth of R&D networks

(a) (b)

Labeled nodes
Non-labeled nodes

Figure 4.2: Selection of partner categories. (a) If a labeled node (depicted in green)
gets activated, it has 3 choices: it can link to a labeled node having the same label with
probability pLs , or to a labeled node having a different label with probability pLd , or to a
non-labeled node with probability pLn . (b) If a non-labeled node (depicted in white) gets
activated, it has 2 choices: it can link to a labeled node with probability pNLl , or to another
non-labeled node with probability pNLnl .

Parameter Meaning Type of mechanism

pL
s Probability of a labeled node to select a node with the same label Endogenous

pL
d Probability of a labeled node to select a node with a different label Endogenous

pLn Probability of a labeled node to select a non-labeled node Exogenous

pNL
nl Probability of a non-labeled node to select a non-labeled node Exogenous

pNL
l Probability of a non-labeled node to select a labeled node Endogenous

Table 4.1: Model parameters and their explanation. We have two binding conditions,
reducing the number of independent parameters to three: the probabilities pLs , pLd and pLn
sum up to 1. Likewise, pNLnl and pNLl sum up to 1. We report the probabilities that we
choose as independent parameters in bold character.

1993) that alliances tend to be directed towards firms having a higher prominence (i.e.

history of previous alliances). We argue that the same holds for co-authorship networks,

and model this by considering the degree of each potential partner. More precisely, we use

a linear preferential attachment rule, where the probability to attach to a node j linearly

scales with its degree kj, meaning that Π(kj) ∼ kj. The preferential attachment rule is

applied within the pool of all candidate partners, once the selection of the partner cate-

gory has been made by the collaboration initiator (see Fig. 4.2). This rule obviously does

not apply when the initiator – be it labeled or not – decides to connect to a non-labeled

node, which has by definition no previous partners (kj = 0). In this case, the partner is

selected among all non-labeled nodes with equal probability. When the selection process

is complete, the initiator connects to its m partners. In agreement with our representation

of the R&D and co-authorship networks, we assume that all the m partners will also link

to each other, forming a fully connected clique of size m+ 1.
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4.2 Model validation

For the sake of clarity, in the current Section we describe the validation procedure of our

model against one dataset, namely the SDC Platinum alliance database. The validation

and fine tuning of the parameters will be also performed on other datasets – as we explain

in Section 4.3 – by adjusting a set of relevant measures, but keeping the same exact

procedure.

4.2.1 Implementation and parameter space exploration

We perform extensive computer simulations by applying the microscopic rules described

in Section 4.1.1, and varying the values of the independent parameters. We fix the model

parameters that we can directly measure from the data, namely the number of agents (in

this case, N = 14, 561), the distribution of the node activities ai, and the distribution

of number of partners m per alliance event. We stop every computer simulation when

the total number of formed alliances equals the number of alliance events reported in the

dataset (in this case, E = 14, 829).

We vary the values of pLs , pLd and pNLnl in discrete steps spaced by 0.05, in the interval (0, 1).

The parameters pLs and pLd are bounded by the condition pLn = 1− pLs − pLd ≥ 0, meaning

that their sum has to be smaller or equal to 1. This condition translates into 3,249 points

to explore in the 3-dimensional parameter space, for each of which we run 200 simulations

(for a total of 649,800 runs). Similarly to the previously analyzed collaboration networks

(see Chapter 3), we test the final aggregated network resulting from each of the 649,800

computer simulations with respect to three properties: average degree 〈k〉, average path

length 〈l〉 and global clustering coefficient C. Remarkably, we find that all such quantities

are distributed around the real values for all the collaboration networks we study, as we

report in Appendix C more detail. This testifies that our model well captures the topology

of many observed networks for a large set of free parameters.

It should be noted that we have imposed a few features from the empirical networks

(number of nodes N and alliances E, and the distributions of node activities ai and

partners per alliance m). However, the distributions of the simulated 〈k〉, 〈l〉 and C

obtained by exploring the parameter space of the model, although centered around the

real values, exhibit a fairly large variance (as reported in Appendix C), thus allowing

a meaningful exploration of the parameter space. As a logical consequence, we aim at

identifying which parameter combination is able to give the best match with the real

network. To this purpose, we use a Maximum Likelihood approach. The peculiarity of

this study is that, instead of having a set of observations against which we can validate

our model, we only have one empirical point: the real network. In particular, we cannot
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4.2. Model validation

consider the three measures as independent, therefore the Likelihood function L reads as:

L(p|netOBS) = f(netOBS|p) (4.2)

where f(·) is the joint density function of all parameter combinations p resulting in a

network that is equivalent to the observed one netOBS. Both p and netOBS are vectors with

three components, expressing respectively the three model parameters p ≡ (pLs , p
L
d , p

NL
nl )

and the three global network measures netOBS ≡
(
〈k〉OBS, 〈l〉OBS, COBS

)
. Therefore, we need

to find the parameter combination (pLs , p
L
d , p

NL
nl ) maximizing the Likelihood L(p|netOBS)

to generate a network whose macroscopic properties are sufficiently similar to the real

network netOBS. By this, we mean that the relative errors from the observed values for

the average degree ε〈k〉, the average path length ε〈l〉 and the global clustering coefficient

εC have to be smaller than a certain threshold ε0.

We empirically compute the Likelihood function L for each point in the parameter space

by counting the fraction of its 200 simulation realizations that fulfill the criteria ε〈k〉 < ε0

; ε〈l〉 < ε0 ; εC < ε0. This way, we obtain values that can range from 0 (no realization

of that parameter combination fulfills the criteria) to 1 (all of its realizations fulfill the

criteria).

The error threshold value ε0 we impose for the computation of the Likelihood score in-

fluences the number of points in the parameter space that fulfill our matching criteria.

Obviously, by decreasing ε0, we observe a smaller number of points displaying high likeli-

hood scores, as we could expect, because a better representation of reality is required (see

Appendix C). We take a conservative approach and use an error threshold ε0 = 0.02, that

ensures a good matching with the observed R&D network, without cutting out too many

points in the parameters space.

The corresponding Likelihood scores are reported in Fig. 4.3 by means of a 3-dimensional

color map, where the color scale is representative of the Likelihood. To have a more

detailed representation of the likelihood scores, we also show three slices of the parameter

space obtained by fixing the parameter pLs in the range 0.25 ÷ 0.35, corresponding to

the highest likelihood score region, always using the error threshold ε0 = 0.02. The 2-

dimensional color maps reported in Fig. 4.3 depict the likelihood score as a function of

the other two free parameters pLd and pNLnl .

The point with the highest likelihood score, for the pooled R&D network, has the following

coordinates in the parameter space: p∗Ls = 0.3, p∗Ld = 0.3 and p∗NLnl = 0.25. We can already

see that in the optimal configuration, labeled nodes exhibit a balanced alliance strategy,

with p∗Ls = 0.3, p∗Ld = 0.3, and consequently p∗Ln = 0.4, while the non-labeled nodes exhibit

a strong tendency to connect to labeled nodes (p∗NLl = 0.75), as opposed to a low linking

probability with other non-labeled nodes (p∗NLnl = 0.25). This tendency, as we show later,

is common to most collaboration networks.
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Figure 4.3: Likelihood scores for all points in the parameter space, for ε0 = 2%,
represented with a 3-dimensional color map (a). After fixing the value of pLs to 0.25 (b),
0.3 (c) and 0.35 (d), we report the Likelihood score as a function of pLd and pNLnl , using the
same color scale.

Optimal simulated R&D network Observed R&D network

Model parameter Value Measure Value Measure Value

p∗Ls 0.3 〈k〉∗ 2.764± 0.006 〈k〉OBS 2.736

p∗Ld 0.3 〈l〉∗ 5.329± 0.068 〈l〉OBS 5.412

p∗Ln 0.4 C∗ 0.098± 0.005 COBS 0.101

p∗NL
nl 0.25

p∗NL
l 0.75

Table 4.2: Model parameter set p∗ defining the optimal simulated R&D network. The
average degree, average path length and global clustering coefficient of the 200 realizations
of the optimal R&D network are compared to their analogous empirical values.

We report in Table 4.2 the set of parameter values maximizing the likelihood score, together

with the values of average degree, average path length and global clustering coefficient for

the simulated and the real R&D networks. From now on, we call the network generated

with these parameters the optimal simulated R&D network. More precisely, we generate

200 realizations of the optimal simulated R&D network (as well as of any other network

with a generic parameter set). For this reason, the results we present in the next section

are computed on all the 200 realizations of such optimal network.
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The optimal set of linking probabilities gives some interesting insights into the nature of

the strategies pursued by the agents in a collaboration network. In the case of the pooled

R&D network, we find that all firms tend to have a preference to link incumbent firms:

60% of the alliances initiated by incumbents belong to this category (p∗Ls +p∗Ld ), as well as

75% of the alliances initiated by newcomers p∗NLl . This result in is line with well-known

economic theories(Gulati, 1995a) that have shown how previous interactions between two

firms increase the likelihood of future alliances among them if they are already part of

the R&D network. In addition, newcomers are incentivated to join the R&D network by

partnering with firms that are already part of it(Ahuja, 2000b). On the other hand, we

find that 40% of the alliances initiated by incumbents, as well as 25% of the alliances

initiated by newcomers, are directed to newcomers. These alliances can be driven only by

exogenous factors(Rosenkopf and Nerkar, 2001), and a possible explanation behind this

tendency is the appealing of newcomers’ commercial or technological capital.

Overall, our findings suggest that both endogenous and exogenous mechanisms contribute

to the alliance formation. However, the first class appears to be more prominent: the

fine tuning of our model provides additional evidence, and a precise quantification, of

how previous network structures play the biggest role in deciding the potential partners

when a new alliance is formed. As reported in the literature(Gulati, 1995a; Podolny,

1993), the belonging to the R&D network, and in particular the belonging to a specific

circle of influence, signals a firm’s reliability and competencies to potential partners. This

mechanism is clearly predominant over the exogenous search for alliance partners, hence

we argue that being aware of the partners’ positions in the R&D network is of fundamental

importance for every firm.

4.2.2 Validation and further tests

The optimal parameter set for the case of the pooled R&D network, as we have shown

above, is p∗ ≡ (p∗Ls = 0.3; p∗Ld = 0.3; p∗Ln = 0.4; p∗NLnl = 0.25; p∗NLl = 0.75). As a second,

last step in our validation procedure, we now want to check whether our model, fed with

these parameter values, is able to reproduce further microscopic properties of the real

network. To this purpose, we report in Fig. 4.4 four additional distributions computed

on the optimal simulated R&D network – node degrees, path lengths, local clustering

coefficients and component sizes – and compare them to the empirical ones. From now

on, in every plot we show, the blue circles correspond to the mean values and the error

bars correspond to the standard deviations of all the quantities we analyze on the 200

realizations of the optimal simulated R&D network.

Remarkably, we find that our model is able to reproduce all the distributions, namely

the typical right-skewed degree distribution, the path length distribution peaked around

the mean value 5 and the local clustering coefficient distribution. The model can also
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Figure 4.4: Distributions of node degrees (a), path lengths (b), local clustering coeffi-
cients (c) and component sizes (d) for the real and the optimal simulated networks. Most
of the error bars are not visible, because the values are very narrowly distributed across
the 200 realizations of the optimal simulated network.

reproduce the component size distribution, showing the emergence of a giant component in

the network (containing roughly 60% of the nodes) together with many smaller components

down to size two. Isolated nodes (nodes with degree equal to 0) are excluded from our

representation; hence, the smallest observable component size in our networks is 2.

Going further in our validation procedure, we test the modular properties of the optimal

simulated R&D network. As already done in Chapter 3, we run the Infomap community

detection algorithm (Rosvall and Bergstrom, 2008) on all of the network realizations. We

identify the presence of 1,600 ± 20 clusters (whilst 3,500 clusters populate the empirical

R&D network), whose minimum size is 2 and maximum size is around 100 nodes, similarly

to the empirical network (see Fig. 3.14). We report in Fig. 4.5 a visual representation of

the optimal simulated R&D network and the size distribution of the detected clusters.

Interestingly, this distribution resembles the one of the empirical R&D network, with the

only exception of having significantly fewer counts related to small clusters of size 2 and 3.

The larger clusters, up to 100 nodes, that dominate the network structure and contribute

to its modularity, are equally populating the empirical and the optimal simulated R&D

networks. Another evidence of their similarity is the modularity score of the optimal

simulated R&D network Q∗ = 0.66 ± 0.01, surprisingly close to its empirical analogue

QOBS = 0.68. Also in the case of the optimal simulated R&D network, its modularity

score Q∗ is significantly greater (with a p-value computationally indistinguishable from

zero) than the ones obtained for a set of 500 randomly generated networks with the same
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degree sequence (whose Q is normally distributed around 0.485 with a standard deviation

of 0.001), showing that the modularity is not an artifact of the network size and density.
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Figure 4.5: (a) Visual representation of one realization of the optimal simulated R&D
network, using the Fruchterman-Reingold layout(Fruchterman and Reingold, 1991) and
considering only the 30 largest clusters detected by the Infomap algorithm. Distinct
clusters are represented by grouping nodes in distinct regions of the plot area. In addition,
we depict our node labels by using different colors; it is clearly observable that most of
the nodes in a given cluster share the same label. (b) Size distribution of i. the circles of
influence in the 200 realizations of the optimal simulated R&D network, ii. the Infomap
clusters in the 200 realizations of the optimal simulated R&D network and iii. the Infomap
clusters in the empirical R&D network.

We now test whether our node labels are actually able to reproduce such a modular

structure of the network. In order to estimate the overlap between the clusters detected via

the Infomap algorithm and the circles of influence defined by our node labels, we compute

the normalized mutual information coefficient Inorm(Danon et al., 2005), very often used

to this purpose(Lancichinetti and Fortunato, 2009). Given two network partitions A and

B, the value of the coefficient Inorm(A,B) ranges from 0 (if the partitions A and B are

independent) to 1 (if the partitions A and B are identical). In our case, we obtain a

striking Inorm(Labels, Infomap clusters) = 0.899 ± 0.001, testifying how well our node

labels capture the emergence of clusters in the R&D network. We also present a visual

comparison of the clusters identified by means of Infomap with the circles of influence

resulting from the implementation of our model in Fig. 4.5. Similarly to the empirical

R&D network, we consider only the 30 largest Infomap clusters in the optimal simulated

R&D network and visualize them by grouping the corresponding nodes in distinct regions

of the plot; in addition, here we depict our node labels with arbitrary colors. As testified
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by the high normalized mutual information score, our visual example nicely confirms that

most of the nodes in a given cluster share the same label. The size distribution of the

circles of influence defined by these labels is also shown in Fig. 4.5. Its similarity to the

size distribution of the Infomap clusters in both the empirical and the optimal simulated

R&D network provides another evidence of the goodness of our model.

In order to estimate to what extent our link formation rules capture the decision making

process made by real firms, we test the optimal simulated network with respect to a feature

that is both microscopic and dynamic: the distribution of path lengths between every pair

of nodes at the moment of the link formation. This should not be confused with the path

lengths analyzed before, whose distribution was computed on the final aggregated R&D

network, between every pair of nodes, in both the real and the simulated case. Now we

only consider pair of nodes that eventually form a link between each other. More precisely,

we plot the distribution of the path lengths between two firms as of the day before their

alliance formation (for the real R&D network) and the path lengths between two nodes at

the time step preceding the link formation (for the optimal simulated R&D network). We

also consider as separated counts all those alliance events involving at least one newcomer

firm (or an isolated node, in the simulated network).
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Figure 4.6: (a) Distribution of link types for the real and the simulated R&D networks.
“Connected” refers to nodes already belonging to the same connected component of the
network prior to the link formation; “disconnected” refers to nodes already belonging to
the network, but placed in two disconnected components; “newcomer(s)” means that at
least one of the nodes was isolated (i.e. not yet part of the network) before the link
formation. (b) Distribution of path lengths at the moment of link formation (only for
nodes belonging to the same connected component).

We show our findings in Fig. 4.6. The model can reproduce the counts of links formed

between (i) firms belonging to the same connected component of the network, (ii) firms

belonging to different disconnected components and (iii) involving at least one newcomer

(isolated) firm. Furthermore, the model reproduces also the counts relative to nodes which

are already connected by a path before the link formation. The only small discrepancies

can be observed in correspondence to path lengths equal to 2 and 3, due to effects of triadic
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and cyclic closure exhibited by real firms that are not fully captured by our model, as we

already anticipated. However, our model correctly predicts the formation of links between

nodes that are relatively distant in the network or even already directly connected – the

cases when the path length is equal to 1 are related to the same two partners engaging in

a new alliance.

In conclusion, we find that our model, although tuned only considering three global static

measures, provides a surprisingly good prediction of several microscopic and dynamic

features, such as the distributions of degree, local clustering, path length and component

size, the emergence of network clusters and, even more remarkably, the distribution of

path lengths at the moment of the alliance formation.

4.3 Comparing different collaboration networks

In the present Section, we extend the validation of our model to a larger set of collaboration

networks. We adopt the same procedure described in Section 4.2 and replicate it on

the different datasets, by appropriately adjusting the relevant empirical parameters –

namely, the number of nodes N and collaboration events E, and the distributions of node

activities ai and partners per collaboration m. The datasets against which we test our

model represent six sectoral R&D networks, extracted from the SDC dataset through the

procedure described in Chapter 4, and six co-authorship networks, extracted from the

APS dataset (see Chapter 3).

The six R&D networks are related to the sectors of computer software, pharmaceuticals,

R&D laboratory and testing, computer hardware, electronic components and communica-

tions equipment. The six co-authorship networks are instead related to the scientific fields

of quantum mechanics, field theories, and special relativity; general relativity and grav-

itation; optics; electronic transport in condensed matter; superconductivity; other areas

of applied and interdisciplinary physics (this field includes network theory). We list the

main empirical properties of these networks in Table 4.3, including also the pooled R&D

network for comparison.

The quantities reported in Table 4.3 are used to calibrate our model, together with the

distributions of agent activities ai and number of partners m per collaboration event.

For every collaboration network, we then explore the parameter space, in order to find

the probability set ensuring the best match with the corresponding empirical network.

This procedure requires a remarkable computational effort; each of the 12 collaboration

networks originates a parameter space composed of 3,249 points, for each of which we run

25 computer simulations – for a total of around 1 million simulations. Even though the

realizations of each parameter set that we obtain with such computationally cumbersome

procedure are 25, we find that all of them exhibit network properties with a very small
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N E Links 〈k〉OBS 〈l〉OBS COBS

Pooled R&D network 14,561 14,829 21,572 2.74 5.41 0.101

Sectoral R&D networks

Pharmaceuticals (SIC 283) 3,829 5,277 6,019 3.14 4.94 0.097

Computer hardware (SIC 357) 1,582 2,672 4,047 5.12 3.70 0.161

Communications equipment (SIC 366) 1,133 1,888 2,726 4.81 3.75 0.203

Electronic components (SIC 367) 1,615 2,574 3,756 4.65 3.80 0.168

Computer software (SIC 737) 3,381 4,134 5,862 3.47 4.33 0.138

R&D, laboratory and testing (SIC 873) 3,188 4,032 5,364 3.37 5.15 0.205

Co-authorship networks

Quantum mechanics, field theories, special relativity (PACS 03) 21,501 19,647 56,111 5.22 6.43 0.379

General relativity and gravitation (PACS 04) 8,294 8,158 32,513 7.84 6.27 0.666

Optics (PACS 42) 27,436 20,105 94,961 6.92 6.40 0.425

Electronic transport in condensed matter (PACS 72) 19,492 11,687 55,818 5.73 7.06 0.448

Superconductivity (PACS 74) 14,920 10,541 52,615 7.05 5.87 0.443

Other areas of applied and interdisciplinary physics (PACS 89) 4,881 2,873 8,777 3.60 8.28 0.462

Table 4.3: Main empirical properties for the entire set of studied collaboration networks.
For each network, we report the number of nodes N , of collaboration events E, of resulting
links in our network representation, and the observed values of average degree 〈k〉OBS,
average path length 〈l〉OBS and global clustering coefficient COBS.

variance – similarly to the pooled R&D network (see Section 4.2) – and obtaining additional

statistics would not significantly improve our results.

We report the optimal parameter set for every collaboration network in Table 4.4, together

with the resulting mean values of average degree, path length and clustering coefficient for

the optimal simulated networks. It should be noted that – given the extreme variability of

the networks we test, in terms of size, density and modularity – we are forced to adjust the

error threshold value ε0 (see Section 4.2), in order to find a meaningful number of parameter

configurations that are able to reproduce the empirical network with a precision ε0. In

particular for some co-authorship networks, we are not able to retrieve the average degree

〈k〉, the average path length 〈l〉 and the global clustering coefficient C with an accuracy as

low as 2% (which we could achieve for the pooled R&D network). However, all the values

we obtain for our simulated networks are fairly accurate and deviate from the empirical

values by less than 12%, with the only exception of one co-authorship network (general

relativity and gravitation).

The analysis of the optimal parameter sets reveals an even more surprising level of simi-

larity among the collaboration networks that we have studied. First of all, the exact same

model is able to reproduce the topology of all networks, in terms of average degree, average

path length and global clustering coefficient, with an accuracy of at most 12%. The only

exception is represented by the co-authorship network in the field of general relativity and

gravitation (PACS number 04), for which the model fails to generate a network matching

all the three measures 〈k〉, 〈l〉 and C at the same time. We argue that this is due to the

bi-modal distribution of the partners per collaboration – or, precisely, authors per paper

– in this scientific field. Differently from the other co-authorship networks, which exhibit
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ε0 〈k〉∗ 〈l〉∗ C∗ p∗L
s p∗L

d p∗L
n p∗NL

l p∗NL
nl

Pooled R&D network 2% 2.76 5.33 0.098 0.30 0.30 0.40 0.75 0.25

Sectoral R&D networks

Pharmaceuticals (SIC 283) 2% 3.13 4.95 0.097 0.35 0.35 0.30 0.80 0.20

Computer hardware (SIC 357) 6% 5.37 3.59 0.175 0.55 0.30 0.15 0.90 0.10

Communications equipment (SIC 366) 2% 4.83 3.76 0.210 0.75 0.15 0.10 0.80 0.20

Electronic components (SIC 367) 2% 4.76 3.83 0.174 0.65 0.20 0.15 0.90 0.10

Computer software (SIC 737) 3% 3.56 4.27 0.141 0.55 0.20 0.25 0.95 0.05

R&D, laboratory and testing (SIC 873) 3% 3.30 5.22 0.200 0.40 0.40 0.20 0.20 0.80

Co-authorship networks

Quant. mech., field theor., spec. relativity (PACS 03) 12% 5.83 5.58 0.392 0.85 0.05 0.10 0.45 0.55

General relativity and gravitation (PACS 04) > 30%∗ 16.64 4.39 0.535 0.50 0.05 0.45 0.05 0.95

Optics (PACS 42) 10% 7.60 5.79 0.451 0.60 0.05 0.35 0.35 0.65

Electronic transport in condensed matter (PACS 72) 8% 6.15 6.58 0.471 0.50 0.05 0.45 0.30 0.70

Superconductivity (PACS 74) 7% 7.51 5.51 0.465 0.55 0.05 0.40 0.35 0.65

Other applied and interdisciplin. physics (PACS 89) 8% 3.82 7.82 0.501 0.65 0.05 0.30 0.25 0.75

Table 4.4: Summary of all optimal simulated network statistics. For each collaboration
network, we report the error threshold or accuracy ε0; the mean values over the 25 network
realizations of average degree 〈k〉∗, average path length 〈l〉∗ and global clustering coefficient
C∗; the optimal linking probabilities, namely the probability of a labeled node to select
a node with the same label (pLs ), a node with a different label (pLd ) and a non-labeled
node (pLn), plus the probability of a non-labeled node to select a labeled node (pNLl ) and a
non-labeled node (pNLnl ). The probabilities pLs , pLd and pLn sum up to 1; likewise, pNLl and
pNLnl sum up to 1.
∗The model is unable to generate a network matching all the three measures 〈k〉, 〈l〉 and
C at the same time, for the co-authorship network in general relativity and gravitation
(PACS 04). Only 〈l〉 and C can be retrieved with an accuracy of 30%, while the generated
〈k〉 is not compatible with the empirical measure. Even though we report these values for
the sake of completeness, they cannot be considered significant.

broad partner number distribution with at most a heavy tail, this co-authorship network is

characterized by the presence of two distinct groups of authors in the sub-fields of general

relativity and gravitation, having different behaviors in terms of publications and number

of co-authors (for more details, see Fig. 3.8 in Chapter 3). This bi-modality changes the

intrinsic nature of this network, thus rendering the model unable to isolate and capture

the two behaviors behind the link formation.

However, the model is able to reproduce two of the three measures (namely, the average

path length and the global clustering coefficient) also for this collaboration network, with

an accuracy of 30%. Even though the value of the average degree is not compatible with

its empirical equivalent, we report in Table 4.4 the parameter set generating this network

for the sake of completeness; the linking probabilities and all the other results associated

to this co-authorship network, obviously, cannot be considered significant.
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Chapter 4. Modeling the formation of collaboration networks

Similarities and differences. The optimal parameter sets show that, in all collabo-

ration networks, nodes that are already part of the network – i.e. incumbent nodes, or

labeled nodes in our network representation – tend to form links with other incumbent

nodes, rather than newcomer nodes. Looking at Table 4.4, we indeed find that the prob-

ability of forming links directed from labeled nodes to other labeled nodes, that reads as

p∗Ls + p∗Ld , is larger than 55% for all networks. Obviously, the probability of an incumbent

node to choose a newcomer node as collaboration partner is always smaller than 45%.

In particular, we find that the probability of a collaboration initiator to choose partners

from the same circle of influence is always greater than or equal to the probability to

choose them from a different circle of influence: for all networks, p∗Ls ≥ p∗Ld . Indeed, p∗Ls is

strictly greater than p∗Ld for the totality of the co-authorship networks and almost all the

sectoral R&D networks, with the exception of pharmaceuticals and R&D, laboratory and

testing. These two sectors are characterized by a high technological dynamism which, we

argue, is reflected on a more diversified strategy of the alliance initiators when searching

for new partners. Interestingly, the same remark holds for the pooled R&D network, that

includes all industrial sectors and thus combines all possible alliance strategies; this results

in equal linking probabilities for labeled nodes to connect with nodes in the same or in a

different circle of influence.

The tendency of collaboration initiators to select partners having the same membership at-

tribute is much stronger in co-authorship networks. Indeed, all the examined co-authorship

networks exhibit a noteworthy characteristic: the probability of an expert scientist (i.e. a

person that has already authored at least one paper) to select a co-author from his/her

own circle of influence is at least 10 times bigger than the probability to select a co-author

from a different circle of influence (p∗Ld equals the lowest possible value, 5%, in all cases).

These findings support and generalize the claim that network endogenous factors are

predominant in the formation of new collaborations, or – in other words – the existing

network structures explain most of the newly formed links. This holds for both sectoral

R&D networks and co-authorship networks.

As for the strategy of newcomer (or non-labeled) nodes, we detect some differences be-

tween the R&D and the co-authorship networks. While in the totality of co-authorship

networks, newcomer nodes tend to enter the network by forming links with other new-

comer nodes (p∗NLnl ≥ 0.55), in almost all the sectoral R&D networks, newcomers tend

to enter the network by forming links with incumbent nodes (p∗NLl ≥ 0.75). The only

exception is represented by the R&D, laboratory and testing sector, where the majority

of links initiated by newcomers are directed towards other newcomers (p∗NLnl = 0.8). The

fact that p∗NLnl ≥ 0.55 in co-authorship networks nicely represents a typical observed be-

havior: when a scientist authors his/her first paper, the majority of his/her co-authors

are young scientists as well (i.e. scientists that have not co-authored a paper yet), while

a smaller part of the co-authors is represented by expert scientists (typically, post-docs or
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4.3. Comparing different collaboration networks

the professor from the same research group).

In conclusion, all the co-authorship networks, plus one R&D network in a highly techno-

logical and dynamic sector, are characterized by a tendency of newcomers to form their

first links with other newcomer nodes. Conversely, in the almost totality of R&D sectors,

including the pooled R&D network, newcomers tend to enter the network by forming links

with incumbents.

Additional tests on collaboration networks. Similarly to the approach adopted

in Section 4.2.2, we now investigate whether the model is able to reproduce a number of

microscopic network properties of the collaboration networks, even without imposing them

in the validation phase. To this purpose, we study four additional distributions computed

on the optimal simulated networks – node degrees, path lengths, local clustering coefficients

and component sizes – and compare them to the empirical ones. Like in Section 4.2.2,

the blue circles in our plots correspond to the mean values and the error bars correspond

to the standard deviations of all the quantities we analyze on the 25 realizations of each

optimal simulated collaboration network. In many cases, the error bars are not visible,

because the values are very narrowly distributed across these 25 realizations.

For the sake of brevity, we do not report the plots corresponding to all of the 12 collab-

oration networks that we have studied. We only choose one representative sectoral R&D

network, pharmaceuticals, reported in Fig. 4.7, and one representative co-authorship net-

work, other applied and interdisciplinary physics (the field containing network theory),

reported in Fig. 4.8.

Remarkably, we find that the distributions generated by our model exhibit a good over-

lap with the corresponding empirical ones, even though the model was not required to

reproduce them. Namely, we can retrieve the typical right-skewed degree distribution, the

local clustering coefficient distribution, the path length distribution peaked around a mean

value of 5 for the pharmaceuticals R&D network and 8 for the co-authorship network in

interdisciplinary physics. The model can also reproduce the component size distribution,

in particular showing the emergence of a giant component in both networks, together with

many smaller components down to size two. The same finding, even though we do not

show it here, holds for the remaining collaboration networks we have tested.

Going further in this extended validation procedure, we test the modular properties of

the optimal simulated networks, by running the Infomap community detection algorithm

on all of their realizations (see Section 4.2). We report the results for the pharmaceuti-

cals R&D network in Fig. 4.9, and for the co-authorship network in other applied and

interdisciplinary physics in Fig. 4.10.

Both simulated distributions resemble their empirical counterparts, similarly to the pooled

R&D network (see Section 4.2). Another evidence of their similarity is the modularity score
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Figure 4.7: Pharmaceuticals R&D network (SIC code 283). Distributions of node
degrees (a), path lengths (b), local clustering coefficients (c) and component sizes (d) for
the real and the 25 optimal simulated networks.

of the optimal simulated networks – Q∗ = 0.61 ± 0.01 for the pharmaceuticals network,

and Q∗ = 0.87 ± 0.01 for the co-authorship network in interdisciplinary physics. These

values are surprisingly close to their empirical equivalents, 0.62 and 0.92 respectively. In

all cases, the modularity scores are significantly greater (with a p-value computationally

indistinguishable from zero) than the ones obtained for a set of 500 randomly generated

networks with the same degree sequence, proving that the modularity is not an artifact of

the network size and density; see Chapter 3 for more numerical examples.

In addition, we find that our node labels are actually able to reproduce such a modular

structure of both networks. Similarly to the approach described in Section 4.2, we esti-

mate the overlap between the clusters detected via the Infomap algorithm and the circles

of influence defined by our node labels, by using the normalized mutual information co-

efficient Inorm. We obtain a striking Inorm(Labels, Infomap clusters) = 0.887 ± 0.003 for

the pharmaceuticals network, and Inorm(Labels, Infomap clusters) = 0.952± 0.002 for the

co-authorship network in interdisciplinary physics.

Finally, we test the optimal simulated networks with respect to the distribution of path

lengths between every pair of nodes at the moment of the link formation. This should not

be confused with the path lengths analyzed before, whose distribution was computed on

the final aggregated networks. Now, we only consider pair of nodes that eventually form

a link between each other and plot the path length between these nodes at the time step

preceding the link formation (see Section 4.2 for more details). We show our findings in
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Figure 4.8: Other applied and interdisciplinary physics co-authorship network (PACS
number 89). Distributions of node degrees (a), path lengths (b), local clustering coefficients
(c) and component sizes (d) for the real and the 25 optimal simulated networks.

Fig. 4.11 for the pharmaceuticals network, and in Fig. 4.12 for the co-authorship network

in interdisciplinary physics.

The model can nicely reproduce such microscopic and dynamic feature for both collabo-

ration networks under examination, in particular the counts of links formed between (i)

agents belonging to the same connected component of the network, (ii) agents belonging

to different disconnected components and (iii) involving at least one newcomer (isolated)

agent. Furthermore, the model correctly predicts the formation of links between nodes

that are already in the same network component, thus allowing the exact calculation of

the shortest path length at the moment of link formation. Both collaboration networks

exhibit the tendency of having more links between nodes with a short geodesic distance;

in particular, the co-authorship network in other applied and interdisciplinary physics

presents many counts for low path lengths, especially 2 (that is, triadic closure) and 1

(that is, repeated collaboration). This feature, which is nicely reproduced by our model,

is in agreement with the finding of high probabilities for expert scientists in co-authorship

networks to connect with scientists from the same circle of influence – or, in our network

representation, high probability for labeled nodes to connect with nodes sharing the same

label.
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Figure 4.9: Pharmaceuticals R&D network (SIC code 283). (a) Visual representation of
one realization of the optimal simulated network including the 30 largest clusters detected
by the Infomap algorithm. Distinct clusters are represented by node groups in distinct
regions of the plot area. In addition, we depict our node labels by using different colors:
most of the nodes in a given cluster share the same label. (b) Size distribution of i. the
circles of influence in the 25 realizations of the optimal simulated network, ii. the Infomap
clusters in the 25 realizations of the optimal simulated network and iii. the Infomap
clusters in the empirical network.

4.4 Discussion

In the present Chapter, we have developed an agent based model of strategic link for-

mation aimed at reproducing the formation of collaboration networks. Inspired by our

empirical findings, especially on R&D networks, we have designed a model where the

agents, representing real collaborating agents, are endowed with two key attributes: an

activity (representing their propensity to engage in new alliances) and a label (representing

their membership in a given circle of influence).

Next, we have proposed a simple yet effective set of microscopic rules to reproduce the

topology of the observed networks, including both network-endogenous and network-

exogenous mechanisms for link formation. Our model is centered around the assumption

that the agents have a membership attribute, that we call label. Such attribute can be

propagated to other agents as a consequence of a collaboration, thus defining the so called

circles of influence (groups of nodes sharing the same membership attribute). The model

includes different link formation probabilities, that depend on both the collaboration ini-

tiator’s and its partners’ membership attributes.

We have first tested our model against the SDC Platinum alliance dataset. By running

extensive computer simulations, we have identified the set of linking probabilities that gen-

erates the closest network to the empirical pooled R&D network, with respect to average
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Figure 4.10: Other applied and interdisciplinary physics co-authorship network (PACS
number 89). (a) Visual representation of one realization of the optimal simulated network
including the 30 largest clusters detected by the Infomap algorithm. Distinct clusters are
represented by node groups in distinct regions of the plot area. In addition, we depict
our node labels by using different colors: most of the nodes in a given cluster share the
same label. (b) Size distribution of i. the circles of influence in the 25 realizations of the
optimal simulated network, ii. the Infomap clusters in the 25 realizations of the optimal
simulated network and iii. the Infomap clusters in the empirical network.
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Figure 4.11: Pharmaceuticals R&D network (SIC code 283). (a) Distribution of link
types for empirical and simulated networks. “Newcomer(s)” means that at least one of the
nodes was isolated (i.e. not yet part of the network) before the link formation; “discon-
nected” refers to nodes already belonging to the network, but placed in two disconnected
components; “connected” refers to nodes already belonging to the same network compo-
nent prior to the link formation. (b) Distribution of path lengths at the moment of link
formation (only for nodes belonging to the same connected component).

degree, global clustering coefficient and average path length. We have found that a labeled

node (i.e. an incumbent firm) connects to a node having the same label with probability

pLs = 0.3, to a node having a different label with probability pLd = 0.3 and, consequently, to
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Figure 4.12: Other applied and interdisciplinary physics co-authorship network (PACS
number 89). (a) Distribution of link types for empirical and simulated networks. “New-
comer(s)” means that at least one of the nodes was isolated (i.e. not yet part of the
network) before the link formation; “disconnected” refers to nodes already belonging to
the network, but placed in two disconnected components; “connected” refers to nodes
already belonging to the same network component prior to the link formation. (b) Distri-
bution of path lengths at the moment of link formation (only for nodes belonging to the
same connected component).

a non-labeled node (i.e. a newcomer firm) with probability pLn = 0.4. A non-labeled node

(a newcomer), when initiating a collaboration, connects instead to a labeled node with

probability p∗NLl = 0.75 and to another non-labeled node with probability p∗NLnl = 0.25.

The optimal simulated network generated by our model exhibits network measures that

deviate from the empirical values by less than 2%.

The linking probabilities listed above have a precise meaning in terms of strategies pursued

by firms. Our findings suggest that incumbent firms tend to have a preference towards

other incumbent firms: 60% of their alliances belong to this category, split between a 30%

probability to connect to a node in the same circle of influence and a 30% probability

to connect to a node in a different circle of influence. This finding is in agreement with

well-known economic theories (Ahuja, 2000b; Gulati, 1995a) pointing out that previous

network connections positively affect the likelihood of alliance formation between two

companies. Moreover, we extend previous empirical results (Rosenkopf and Padula, 2008)

by including an explicit quantification of the linking probabilities. We find that incumbents

willing to form alliances with other incumbents equally share their preferences between

firms belonging to the same circle of influence and firms belonging to a different one. In

the remaining 40% of the cases, incumbents form alliances with newcomers: these alliances

are driven only by exogenous factors (Rosenkopf and Nerkar, 2001), since there cannot be

any network endogeneity affecting nodes that are not part of the network yet.

On the other hand, newcomers have a more unbalanced alliance strategy, given that they

link to incumbent firms in 75% of the cases. Such alliances are driven by network endoge-

nous factors, namely the newcomers’ motivation to join the R&D network by partnering
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with firms that are already part of it. This is in line with a number of studies (Podolny,

1993; Raub and Weesie, 1990) that have analyzed how being embedded in the network sig-

nals attractiveness, also beyond the firm’s circle of influence and even to newcomer firms.

Indeed, the preferred way for the newcomers to enter the R&D network is to form an al-

liance with an incumbent firm. Our results confirm and extend previous findings (Powell

et al., 2005; Rosenkopf and Padula, 2008) that did never quantify such a preference of

newcomers towards incumbents.

However, a fraction (25%) of alliances initiated by newcomers are directed to other new-

comers. The reasons behind these alliances are not related to network endogeneity, but

rather to exogenous factors such as the firms’ commercial or technological capital. Some

newcomers prefer to join the R&D network by partnering with other newcomers with no

network experience (Baum et al., 2000) – this could be the case, for instance, of small start-

up companies in highly technologically dynamic environments – rather than engaging in

an alliance with an incumbent firm.

Following this validation procedure, we have extended our tests on a large set of sectoral

R&D networks as well as co-authorship networks, by computing for every case the set of

optimal linking probabilities. Our findings can be summarized as follows:

• For both R&D and co-authorship networks, labeled nodes (incumbents) tend to form

links with other labeled nodes (p∗Ls + p∗Ld > 55% in all of the examined collaboration

networks).

• When forming a link with another labeled node, the collaboration initiator tends to

select a node having the same label, i.e. belonging to the same circle of influence

(p∗Ls ≥ p∗Ld in all networks). This tendency is less pronounced in the pooled R&D net-

work and the sectoral R&D networks characterized by high technological dynamism,

where incumbents exhibit a balanced alliance strategy, and is instead much stronger

in the totality of co-authorship networks, where the circles of influence drive the

formation of links between incumbents.

• In all co-authorship networks, plus the sectoral network of R&D, laboratory and

testing (again, a highly technologically dynamic sector), non-labeled nodes – i.e.

newcomers – tend to form their first links with other non-labeled nodes (p∗NLnl >

p∗NLl ). Newcomers tend to enter the network by forming a link with other newcomers.

• For the rest the sectoral R&D networks, instead, non-labeled nodes (newcomers)

tend to enter the network by forming a link with labeled nodes, i.e. incumbents

(p∗NLl > p∗NLnl ).

Overall, the fine tuning of our model suggests that endogenous mechanisms for network

formation are predominant over the exogenous ones, or – in other words – the existing
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network structures explain most of the newly formed links. This holds for both sectoral

R&D networks and co-authorship networks.

However, while newcomers tend to form their first links with other newcomers in co-

authorship networks, they instead tend to enter the network by forming links with incum-

bents in R&D networks. We argue that this is due to higher entry barriers in economic

systems than in academic environments. This finding is consistent with empirical evidence;

unlike newcomer firms, which join the R&D network for the first time by partnering with

incumbent firms, a young scientist writes his/her first paper mostly with other young sci-

entists, being only a small part of the co-authors expert scientists (typically, post-docs or

the professor in the same research group).

Finally, we have performed further tests to check whether the model is able to reproduce a

set of microscopic network properties, even without imposing any equivalence in the vali-

dation procedure. For all examined collaboration networks, we have obtained a surprising

agreement with the empirical data. Our model, fed with the optimal parameter combi-

nations, is able to reproduce the distributions of degrees, path lengths, local clustering

coefficients and network component sizes. We have also retrieved the distribution of path

lengths between every pair of nodes at the moment of link formation, especially including

the counts for path lengths 1 (i.e. repeated collaborations) and 2 (i.e. triadic closures).

This strongly supports the goodness of our model microscopic rules.

In addition, we have reproduced the emergence of clusters in our collaboration networks.

Interestingly, we have found a remarkable overlap between the network partition defined

by a widely used community detection algorithm (Infomap) and the one defined by our

node labels (i.e. membership attributes). Such overlap, measured through a normalized

mutual information criterion, is around 90% for all collaboration networks. We argue that

this highlights how effectively the label propagation mechanism can model the formation

of agents’ circles of influence within every collaboration network. This result is even more

remarkable if we consider that the Infomap algorithm detects structural clusters based

on the probability flow of random walks in the network (Rosvall and Bergstrom, 2008),

while our label propagation mechanism consists of an assignment of a fixed membership

attribute – which is not only closer to a real phenomenon, but also computationally easier.

In conclusion, we argue that our model is able to reproduce the formation of links and more

complex structures in many R&D and co-authorship networks. The analysis of patterns

in the numerical values of the optimal linking probabilities has provided us with insights

into the microscopic rules driving the establishment of collaborations in different systems.

The first logical extension to the present model, which we will develop in the next Chapter,

consists in a more rigorous definition of the exogeneity rules. This will result in a precise

quantification of the technological capital – or knowledge basis – of the agents, and the

subsequent effects on link formation and evolution.
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Chapter 5

Modeling the exchange of knowledge

in a collaboration network

Summary

Following the modeling approach introduced in Chapter 4, we now investigate
one mechanism that co-evolves and exhibits complex interdependencies with
respect to the network topology, namely the exchange of knowledge in a collab-
oration network. We include this ingredient in an agent-based model, together
with a set of basic network properties, as a first step toward a comprehensive
modeling framework. The agent based model we develop here assumes that
a knowledge exchange may take place as a consequence of the formation of
a link. This allows us to study the complex interdependencies and mutual
feedbacks between the network structure and the nodes’ intrinsic characteris-
tics (i.e. their knowledge basis). The model parameters that determine the
overall properties of the system are the link rewiring rate of the network and
the agents’ interaction radius. We define the performance of the collaboration
network as the distance traveled by all of its agents in a knowledge space, that
for the sake of simplicity we model as a metric one. We find that, depending
on the values of link rewiring and interaction radius, the agents tend to cluster
around one or a few attractors in the knowledge space, whose position is an
emergent property of the system. And, more importantly, we find that there
exist optimal values for both parameters maximizing the network performance.

Based on M. V. Tomasello, C. J. Tessone, F. Schweitzer, “Network dynamics and the exploration of
knowledge in collaboration networks”, manuscript pending submission. M.V.T. contributred to designing
the microscopic rules of the model, made the major effort in running the computer simulations, analyzed
all the results and produced all the plots. The manuscript was mostly written by M.V.T.
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Chapter 5. Modeling the exchange of knowledge in a collaboration network

5.1 Building blocks of the agent-based model

In Chapter 4, we have modeled the formation of collaboration networks inspired by the

experimental findings presented in Chapters 2 and 3. The agent based model we have

developed, however, considers all the mechanisms of link formation that are not directly

attributable to the existing network structure as “exogenous”. The purpose of this Chap-

ter is to understand one of these mechanisms, that has complex interdependencies and

co-evolves with the network topology, and include it in an agent based model together

with a set of basic network properties, as a first step towards a comprehensive modeling

framework. Namely, the aspect we want to investigate now is the knowledge exchange in

a collaboration network. In the model that we develop here, such an exchange is assumed

to occur as a consequence of the formation of a link; however, only some links actively

contribute to this knowledge exchange mechanism, thus introducing complex mutual feed-

backs between the network structure and the nodes’ intrinsic characteristics (i.e. their

knowledge basis).

The model that we introduce here perfectly suits the description of a system where the

collaborating agents have a measurable knowledge basis, such as an R&D network between

firms (whose knowledge is well proxied by their patenting activity), but it can be extended

– in principle – to any network involving a learning process when links are formed. In a

co-authorship network, for instance, scientists learn from each other when co-authoring

a paper; however, an empirical validation of the model would be challenging, given that

knowledge classifications are typically applied to scientific papers (i.e. the links of the

network) rather than the scientists themselves (i.e. the nodes of the network). For this

reason, in the continuation of the current chapter, we will often refer to R&D networks

as the starting point for the definition of the model’s microscopic rules, laying also the

foundations for the empirical validation of the model itself. Likewise, we will use the terms

agents, nodes or firms exchangeably. Nevertheless, the reader has to keep in mind that

the model can be extended to any collaboration network and even empirically validated,

if appropriate data are available.

5.1.1 Model foundations

The model we propose follows an existing stream of literature in the direction of bounded

confidence and continuous opinion dynamics models (Axelrod, 1997; Deffuant et al., 2000;

DeGroot, 1974; Hegselmann and Krause, 2002; Schweitzer and Behera, 2009), especially

applied to innovation networks (Baum et al., 2010; Fagiolo and Dosi, 2003). In the wake of

this previous work, we assume that the collaborating nodes are endowed with an evolving

knowledge basis, that affects alliances and – in its turn – is affected by them. However,

differently from the studies that have been done so far, our model does not focus on
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the formation of consensus clusters (see Axelrod, 1997; Groeber et al., 2009, in the case of

social systems) or technology islands (see Fagiolo and Dosi, 2003, for an economic system).

Also, our work differs from previous studies (Gersbach and Schmutzler, 2003; Suzumura,

1992) that are focused on strategic decisions made by firms and the effects that these

have on the innovation incentives for the involved firms. We rather focus on the dynamics

that leads the system to the observed final state, with emphasis on the “exploration” of

the knowledge space by the collaborating agents. We then investigate the existence of an

“optimal” network dynamics that maximizes such knowledge space exploration.

With respect to R&D networks, we have shown in Chapter 2 that – despite long-term

simultaneous fluctuations – different industrial sectors exhibit different characteristics in

their alliance activity (size and density of the corresponding inter-firm network, hetero-

geneity of degree distributions, other sophisticated topological network properties and so

on). Rosenkopf and Schilling (2007) explained part of these observed differences with

the so-called “technological regime” of the sector. A technological regime is defined (Nel-

son and Winter, 1982) as the pattern of behaviors and common practices in an industrial

sector, that are influenced by factors such as technological dynamism, technological uncer-

tainty or separability of innovation activities. In the literature, two technological regimes

have originally been detected (see Winter, 1984): an entrepreneurial regime, where R&D

activities are mainly carried out by new innovative firms, and a routinized regime, where

innovation is mainly done by incumbent firms. These two extremes are often referred to

as explicit knowledge regime and tacit knowledge regime, respectively, because firms in the

network tend to interact with diverse firms or with similar firms (in terms of knowledge

basis), in the respective cases. However, this distinction has been extended over the years,

bringing to the identification of several classes of technological regimes, spanning between

the two aforementioned extremes.

Therefore, the model we present is intended to reproduce the knowledge exchange process

occurring in a collaboration network. Our aim is to capture the existence of an optimal

rate of alliance formation and its dependence on the underlying technological regime.

5.1.2 Microscopic rules: stylized facts and theoretical arguments

The microscopic rules of our model are inspired by a number of stylized facts, as well as

theoretical speculations, in network evolution studies, opinion dynamics models, R&D and

collaboration networks. Below, we provide a brief description of every building block that

we employ in the definition of our agent-based model.

Monogamous network approximation. Inter-organizational networks are proven to

have low density, i.e. only a small fraction of all potential collaborations between com-

panies are actually realized. The density of R&D networks ranges from 0.1% to 1% for
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Chapter 5. Modeling the exchange of knowledge in a collaboration network

all industrial sectors, as we have shown in Chapter 2. This empirical evidence allows us

to model the formation of R&D alliances between companies as a monogamous network,

i.e. a network in which every agent is linked to only one other agent at every time step

(Vazquez and Zanette, 2010). Furthermore, the degree distributions (see Chapters 2 and

3) show that the vast majority of the nodes have only one partner, even in the cumulative

representation. Even though all agents can have only one link at every time step, they

are allowed to change their partners in the subsequent time steps and, depending on their

position, they can actually collaborate with many firms in a small time window. To have a

more realistic picture, it would be possible to aggregate an appropriate number of network

snapshots over time, as suggested by Baum et al. (2010) to study the topological proper-

ties of theoretical R&D networks; however, this investigation is beyond the scope of the

present model. This assumption might seem strong for high-technology industries, such

as Pharmaceuticals or Computers, that – although having low density – show small world

properties and hierarchical structures. The “hubs” of these industries can actually have

more than a hundred partners at the same time, with which they collaborate on different

projects (Hanaki et al., 2010; Powell et al., 2005). However, we argue that the monog-

amous assumption holds, because we are still able to capture these cases of enormous

alliance activity in our model through the rewiring of the links.

Position of companies. In the knowledge-based view of the firm, every company is

endowed with a knowledge basis that uniquely identifies its resources and its capabilities.

We assume that a firm is represented by an agent in our modeling framework, and associate

it with a vector of D components, each of which represents its level of knowledge in a given

direction. Furthermore, we directly associate these vectors to a metric knowledge space in

which the collaborations occur: every firm occupies a point in this D−dimensional space,

whose coordinates are given by its knowledge vector. Such an approach is similar to a

more general model (in the broader context of social influence), that is the one proposed

by Axelrod (1997). The concept of a metric knowledge space has been used by Groeber

et al. (2009), in one dimension, and by Baum et al. (2010); Fagiolo and Dosi (2003), in

two dimensions. We generalize the dimensionality of the space to D.

Alliance formation. In our monogamous network, all nodes are linked in pairs at every

time step. We assume that two pairs of allied nodes mutually rewire their links at every

time step with a given probability, and the new formed links are active if the Euclidean

distance between the new partners is smaller than a threshold value. Such a proximity

condition models the theoretical argument in Cohen and Levinthal (1989) and Cohen and

Levinthal (1990), highlighting that an interaction between two companies is profitable

only if their absorptive capacity is large enough or – in other words – their knowledge

distance is small enough. The choice of the Euclidean metric to compute this distance is
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quite realistic, even if it implies extensive information of the companies about their mutual

position in the knowledge space. Indeed, obtaining detailed information about a company,

its patent production, its scientific production and its activities in general is nowadays

not only feasible – thanks to the Internet – but actually done by most of the firms willing

to engage in an alliance (see Ahuja, 2000a; Baum et al., 2010; Sampson, 2007). The

threshold value is instead supposed to model the technological regime characterizing the

collaboration network under examination. The larger its value (corresponding to a more

explicit knowledge regime), the more easily the agents establish active collaborations, even

if their knowledge distance is large. The smaller its value (corresponding to a more tacit

knowledge regime), the closer the agents have to be in the knowledge space in order to

establish an active collaboration.

Partner selection. The dynamics of alliance formation in the present model is assumed

to be semi-random, meaning that the rewiring of links between nodes occurs randomly

and independently of the position of the nodes themselves in the knowledge space: we

call this an exploration phase. However, a link between two nodes is active only if they

are close enough in the knowledge space: if this happens, a so-called knowledge transfer

phase begins. The rewiring mechanism does not want to be a close representation of what

happens in reality. It only has the function of modeling the volatility of R&D alliances,

capturing the characteristic time scale at which firms decide to engage in a new alliance.

The second focal aspect that we want to model – namely the formation of alliances at

the right knowledge distance – is instead fully captured by the threshold value for the

knowledge distance of the potential partner.

Approaching in the knowledge space. Once a link has been established, we assume

that a knowledge exchange between the partners takes place, causing their knowledge

bases to become more similar and bringing them closer in the knowledge space. This

assumption is in line with the conceptualization of R&D alliances as a means to exchange

technological knowledge among firms (Gomes-Casseres et al., 2006; Grant and Baden-

Fuller, 2004; Mowery et al., 1998; Owen-Smith and Powell, 2004) and has already been

used in a number of agent based models (Cowan et al., 2007; Gilbert, 2004; Pyka and

Fagiolo, 2007). The speed at which the agents approach each other in our agent-based

model represents another parameter of the network dynamics. Our work studies a scenario

in which the two partners approach with respect to allD dimensions of the knowledge space

(as done by Baum et al., 2010). That is, we assume that knowledge spillovers occurring

in a R&D alliance cause the partners to exchange knowledge along every dimension, not

limiting the knowledge transfer to a specific R&D project that they have in common.
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Exploration of knowledge space. Finally, we want to study the performance of the

whole collaboration network as a function of the relevant model parameters. The indica-

tor we propose to measure the global knowledge production depends on the exploration

of the knowledge space by the collaborating agents: in other words, it quantifies the dis-

tance traveled by all agents during the whole simulation. In our model, we consider that

knowledge itself is represented by the motion in the space, which is fully captured by

this indicator. The underlying assumption is that the exploration of as many locations as

possible is beneficial for the collaboration network, in that it allows the agents to come in

contact with many technological opportunities, potentially leading to more frequent inno-

vations (Fagiolo and Dosi, 2003). Testing our model by means of computer simulations, we

find that the rewiring of links and the mutual knowledge exchanges over time eventually

lead the whole system to a steady state through a non-trivial dynamics. The model and

its results are presented in detail in the next two Sections.

5.2 Development of the agent-based model

Starting from the evidence and the arguments presented in the previous Section, we now

present the implementation of the agent-based model. We consider a network composed

of N nodes, each representing an agent – in the particular case of R&D networks, a firm

– performing collaboration activities in a knowledge space. The model is implemented by

means of computer simulations, consisting of a sequence of discrete time steps of length

dt. The microscopic interaction rules are described below.

5.2.1 Exploration phase

Every node i is located in a metric space (henceforth, the knowledge space); this point

has coordinates xi, identified by a vector of D real numbers ranging from 0 to 1. The

coordinates of every node can be thought of as the ratios of the corresponding firm’s

expertise along each of the D dimensions of the knowledge space. At the initial stage of

every simulation, all the nodes’ positions are drawn from a uniform distribution.

xi ≡ (xi1, xi2, . . . , xiD) i = 1, . . . , N. (5.1)

All nodes in our R&D network have the possibility to change their partner, thus generating

a dynamic network topology. We model this by means of a link rewiring mechanism. The

time steps in our computer simulations have a duration equal to dt; in each time step, two

pairs of connected firms are randomly chosen and, with a rate λ, they rewire their links.

We call this process “exploration phase”, and depict it in Fig. 5.1. Let us assume that

the nodes i and j and the nodes i′ and j′ constitute the two linked pairs chosen at time t.
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With probability λdt, they mutually exchange their partners, and at time t+ dt the nodes

i and i′ and the nodes j and j′ will form the new linked pairs. With probability 1− λdt,

instead, nothing happens and at time t+ dt the nodes i and j and the nodes i′ and j′ will

still be respectively linked.

Figure 5.1: Schematization of a link rewiring between two pairs of connected nodes. At
time t, the nodes i and j and the nodes i′ and j′ are linked in pairs. These two couples of
nodes are selected and, with probability λdt, they switch links: at time t+ dt the nodes i
and i′ and the nodes j and j′ are the new linked pairs. Obviously, with probability 1−λdt,
no rewiring happens.

Such a random search for partners in the exploration phase might seem to be an unrealistic

assumption; however, this has the only function to model the volatility of R&D alliances, or

collaborations in general, capturing the characteristic time scale at which an agent decides

to engage in a new collaboration. The rate λ can be indeed thought of as the inverse of

the characteristic time elapsed before a firm takes part in a new alliance. Even though the

potential partner is selected at random, the R&D alliance – or the collaboration – will be

actually “active” only if the partner fulfills a certain proximity condition in the knowledge

space, as we will explain below. Therefore, such exploration is not fully arbitrary, and

leads to the establishment of an actual collaboration only under specific conditions. It is

worth mentioning that the results of our simulations remain qualitatively unchanged if we

use any different random link creation process, or if we relax the monogamous network

assumption (compatibly with Tessone and Zanette, 2012).

5.2.2 Knowledge transfer phase

The whole linking and rewiring process in our model occurs independently of the node

knowledge positions, but their distance in the knowledge space has a determinant effect

on the subsequent network dynamics. Indeed, the key ingredient to our model is the

existence of an optimal absorptive capacity for a profitable R&D alliance between two

firms. We assume that a link is active if the corresponding node pair exhibits a knowledge
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distance smaller than a given threshold value. If this proximity condition is not fulfilled,

even though the corresponding nodes are connected, their link is considered to be inactive,

causing no effect at all on the system. The proximity condition is evaluated for every pair

of linked nodes i and i′ as follows:

|xi(t)− xi′(t)| < ε
√
D (5.2)

where we employ the Euclidean distance | · |, consistently with the assumption of evaluat-

ing the diversity of each firm’s knowledge portfolio in all dimensions.
√
D is the maximum

possible distance between two points in a D-dimensional Euclidean space. The parameter

ε, ranging from 0 to 1, is the threshold interaction radius inside which nodes are able to

interact and collaborate profitably. Only links whose corresponding nodes fulfill this prox-

imity condition are considered to be active. Such an interaction radius can be associated

with the knowledge regime characterizing the collaboration network under examination.

A large ε means that the firms can potentially see and explore a large portion of the knowl-

edge space, being the knowledge highly codified. A small ε represents instead a regime

of tacit knowledge, where firms are able to establish alliances only if their technological

positions are already close.

We assume that an R&D alliance causes the two involved firms to pool their resources

and their knowledge basis, thus approach along every dimension in the knowledge space.

Thanks to knowledge spillovers, both firms will acquire common practices or a shared

jargon, not limiting the knowledge transfer to that specific R&D project that they have

in common, as previously discussed.1 If i is an agent and i′ is its unique partner in the

collaboration network at time t, both will move towards each other by identical paths in

the knowledge space, provided that the proximity condition expressed in Eq. 5.2 holds.

The model dynamics equation is the following:

ẋi(t) = µ [xi′(t)− xi(t)], if |xi′(t)− xi(t)| < ε
√
D (5.3)

where µ is defined as the learning rate of the agents. This parameter is constant over time

and for all nodes in the collaboration network, and can be thought of as the propensity of

the agents to exchange knowledge with their partners, thus making their knowledge bases

more similar over time. It should be noted that the parameter µ is a rate, not a speed; the

actual speed at which the corresponding nodes move in the knowledge space is given by the

product of the rate µ and their distance: therefore, the farther they are in the knowledge

space, the faster they approach. When their distance decreases, so does the potential for

new learning from the collaboration, and the approaching speed drops consequently. This

1However, we have also tested a scenario in which two allied firms exchange knowledge only in one
dimension, thus moving in only one dimension of the knowledge space as well. The results remain quali-
tatively unchanged.
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interpretation is clear in Eq. 5.4, which represents the way we implement the model in

computer simulations with discrete time steps of length dt. The evolution of every agent’s

position xi can be expressed as:

xi(t+ dt) = xi(t) + µ dt [xi′(t)− xi(t)] (5.4)

We depict such knowledge exchange mechanism in Fig. 5.2. The nomenclature and the

meaning of all the model parameters we introduced in this Section are summarized in

Table 5.1.

Parameter Meaning Type of parameter

N Number of agents (system size) Static

D Dimensionality of the metric knowledge space Static

ε Agents’ interaction radius (knowledge regime) Static

λ Link rewiring rate Network dynamics

µ Approaching rate in the knowledge space Network dynamics

Table 5.1: Model parameters and their description. The “static” parameters are associ-
ated with the system structural features, while the “network dynamics” parameters define
the characteristic speed at which the system evolves.

Figure 5.2: Schematization of the knowledge exchange process in a bi-dimensional space
(D = 2). At time t, the agents i and i′ are linked and their distance |xi′(t) − xi(t)| is
smaller than ε

√
D; consequently, at time t+dt, their positions xi(t+dt) and xi′(t+dt) will

approach in the knowledge space. The picture includes other pairs of connected agents,
whose distance is larger than ε

√
D. Therefore, these links are inactive (depicted in dashed

red lines) and do not originate any motion in the knowledge space.
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5.3 Results

We have performed extensive computer simulations, by applying the dynamics presented

in Sec. 5.2 and varying the values of the relevant model parameters. In particular, we vary

the size N of the network from 10 to 2000 nodes, the dimensionality D of the knowledge

space from 1 to 50, the interaction threshold radius ε from 0 to 1, the learning rate µ from

10−3 to 103 and the rewiring rate λ from 10−5 to 105. All of these parameters are explored

in discrete intervals, whose width is appropriately chosen – as we discuss below in more

detail.

Main model parameters and their meaning. We argue that the network evolution

is essentially characterized by two driving forces with overall opposite effects. The first

one is the formation of active links (i.e. the establishment of profitable alliances or collab-

orations); this force tends to push agents closer in the knowledge space, given the resulting

approaching motion. The second force is the link rewiring (representing the dissolution

of old collaborations and the formation of new ones), that stimulates agents to explore

new portions of the knowledge space. This force could result in an faster overlap of every

agent’s knowledge position, but it could also result – under certain conditions – in prevent-

ing the agents from converging to a knowledge attractor, thus keeping them far-between

in the knowledge space.

These competing forces are associated with the two model dynamics parameters, respec-

tively the approaching rate µ and the link rewiring rate λ. However, it is clear that the

relation between these two parameters will substantially affect the emergent properties of

the system. What truly affects the resulting dynamics of the network are not the absolute

values of the two rates µ and λ, but the ratio of the two. Indeed, using a configuration with

the same µ to λ ratio, but with smaller absolute values, will only lead to a longer computer

simulation (i.e. more discrete time steps are needed), without qualitatively changing the

results. Therefore, in the continuation of the current chapter we present our findings by

keeping the value of of the learning rate fixed to µ = 1, and studying the effect of the

dynamics parameter λ only.

The second relevant model parameter on which we focus our attention is the threshold

interaction radius ε, a static parameter representing the knowledge regime in which the

collaborating agents move. We explore a series of values ranging from a totally tacit

knowledge regime (ε = 0) to a totally explicit one (ε = 1).

Network performance. The variable that we investigate as indicator of the network

performance is the mean knowledge path 〈K〉 of the collaborating agents. We define the

path covered by every agent in the knowledge space Ki as the sum of all the distances
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that the agent travels in every time step of the simulation:

Ki =

∫ Tmax

t=0

|ẋi(t)| dt (5.5)

where Tmax is the duration of an entire computer simulation. It should be noted that the

measure |ẋi(t)| dt is a positive scalar and expresses the actual distance traveled by the

agent i, differently from its net displacement ẋi(t) dt, which is a vectorial quantity. The

measure Ki is then averaged over all the N network agents to obtain the mean knowledge

path 〈K〉 = N−1 ·
∑

iKi. We hypothesize that this measure can provide a meaningful

indication of the system performance, because – as already discussed in Section 5.1 –

firms are proven to innovate more when they come in contact with more technological

opportunities (i.e. they explore the knowledge space). We argue that the same reasoning

can be as well extended to other types of collaborations that involve learning and/or

knowledge exchange processes.

We present the results in Fig. 5.3, for a representative network of N = 200 agents moving

in a knowledge space with D = 10 dimensions. As already mentioned, the parameter µ

is fixed to 1, and we study the dependence of 〈K〉 on the dynamics parameter λ and the

static parameter ε. For a two-dimensional representation of the same results, see Appendix

D.

Figure 5.3: Mean knowledge path 〈K〉 (displayed by means of both the z-elevation
and the color scale), as a function of the rewiring rate λ and the interaction radius ε.
The R&D network under examination has N = 200 nodes and learning rate µ = 1, in a
10−dimensional knowledge space. We generate 1000 simulations for each parameter set
and then average the results.
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We find that the mean knowledge path 〈K〉 exhibits a peak in correspondence of two

optimal values for both the rewiring rate λ and the interaction radius ε (for the specific

case we present in Fig. 5.3, these values are λ = 103 and ε = 0.25). If we take a closer

look at the network performance, we find that 〈K〉 shows a monotonic growing trend as a

function of λ, when the interaction radius ε is lower than a certain value ε∗ (in our example,

ε∗ < 0.2). When fixing the interaction radius to larger values ε ≥ ε∗, we do instead find

that 〈K〉 exhibits a non-trivial peak as a function of λ. This means that, as the knowledge

regime becomes more explicit, and the agents are allowed to form active collaborations

with more diverse partners in terms of knowledge basis, there exists an optimal rewiring

rate maximizing the distance actually explored by the agents in the knowledge space.

The behavior of the mean knowledge path 〈K〉 can be also interpreted as a function of

the interaction radius ε, while keeping the rewiring rate λ fixed. What we find is that 〈K〉
grows with ε to a saturation level (when ε > 0.6), if the rewiring rate is small (λ < 1, for

the case under study). If we fix the rewiring rate λ to a value larger than 1, we find instead

that 〈K〉 increases to a peak, in correspondence to ε = 0.4, and then decreases again to

stabilize for ε > 0.6. This means that, when the characteristic alliance rewiring rate of

the network is bigger than the characteristic learning rate of the agents, there exists an

optimal threshold interaction radius (corresponding to a moderately explicit knowledge

regime) maximizing the distance covered by the agents in the knowledge space.

Knowledge clusters. We investigate a second emerging property of the system, namely

the number of knowledge clusters appearing in the network at the end of every model

run. We define a knowledge cluster as a group of nodes whose mutual distances are

smaller than ε. Moreover, the distance between every node in that cluster and every node

outside that cluster has to be larger than ε, meaning that all the agents in the cluster will

asymptotically converge to one attractor and no further inclusion of any other agent in

the cluster is possible.

It is clear that the maximum possible value of knowledge clusters equals the number

of nodes N ; we expect to observe such a value in correspondence with a low value of

the interaction radius ε, when the agents are virtually unable to establish active links.

Likewise, the minimum possible number of knowledge equals 1; we expect to observe

such a value in correspondence with high values for the interaction radius ε, when most

established collaborations are active, thus facilitating the convergence of all agents toward

one knowledge attractor.

Similarly to the mean knowledge path, we present our results in Fig. 5.4, for a network of

N = 200 agents in a knowledge space with D = 10 dimensions; µ is fixed to 1.

We find that the number of clusters generally increases by decreasing the interaction radius

ε. As expected, one extreme case occurs for ε = 0 (completely tacit knowledge regime,
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Figure 5.4: Number of knowledge clusters as a function of the rewiring rate λ, for a
set of representative values of the interaction radius ε. The network under examination
has N = 200 nodes and learning rate µ = 1, in a 10−dimensional knowledge space. We
generate 1000 simulations for each parameter set and then average the results.

where any interaction is by definition impossible), in which we have as many clusters as

agents – independently of the rewiring rate λ. The other extreme case occurs for ε ≥ 0.5

(highly explicit knowledge regime), in which all the nodes interact between each other

converging in only one cluster – again, independently of λ.

For intermediate values of ε, we observe an interesting dependence of the knowledge cluster

number on the rewiring rate λ. When λ is low, we find the existence of one or very few

knowledge clusters, because the overall effect of such a slow rewiring rate is that all nodes

tend to get closer in the knowledge space before the corresponding links are cut and

rewired. As a result, all nodes are eventually part of the same knowledge cluster. From

the visual examples in Fig. 5.5 (a) and (b), we can observe that such clusters are dispersed

in the knowledge space, and the presence of a central attractor is not visually detectable,

even though all the agents are in principle within interaction distance. What happens,

in fact, is that every pair of agents converges to the midpoint of the segment connecting

them; the system then freezes in this configuration, being the rewiring rate too low to

allow for new collaborations and new explorations.

When the value of λ increases, we instead observe a higher number of knowledge clusters.

These cluster are well delimited in the knowledge space and, as we show in the examples

of Fig. 5.5 (c) and (d), the presence of attractors is visually evident. Such non-trivial
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effect derives from the fact that the nodes cut their links and form new ones before the

approaching mechanism is complete, thus exploring a bigger portion of the knowledge

space and ending up in more than one attractor, occupying different regions of the space.

Interestingly, the effect of experiencing more alliances with different partners is therefore

the emergence of distinct knowledge attractors, rather than causing all firms to converge

towards the same knowledge attractor, thus uniforming their knowledge bases. We report

a visual example of cluster emergence as a function of the rewiring rate λ in Fig. 5.5.

(a) (b)

(c) (d)

Figure 5.5: Knowledge trajectories for a network with N = 200 nodes and learning rate
µ = 1. For the sake of visualization, here we use a knowledge space with D = 3 dimensions,
easily representable as a cube. The initial positions of the nodes are depicted with gray
dots, their trajectories with gray lines, and their final positions with black dots. We keep
the threshold interaction radius constant to ε = 0.3, and show four cases corresponding
to rewiring rate λ equal to: (a) 10−4, (b) 10−2, (c) 10−1, (d) 1.

Convergence time. We find that the networks generated by the model eventually con-

verge to a steady state, in which all the agents occupy one or more fixed positions, and no
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further collaborations, nor motion in the knowledge space, are possible. In other words,

such steady state represents a configuration in which the collaborating agents have de-

pleted all the potential for new knowledge exchange.

We define a convergence criterion based on the agents’ motion in the knowledge space,

and assume that the steady state is reached if the total knowledge path traveled by all the

agents in the last time step is smaller than the 0.5% of the cumulated covered knowledge

path. Indeed, all of the network measures described above are computed only after the

steady state is reached. We show in Fig. 5.6 the trend of the convergence time as a

function of λ and ε, for the same representative network we have studied before.

On the one hand, we find that all the relevant parameter configurations reach a steady

state before the computer simulation ends. Indeed, it should be noted that the parameter

combinations that are not able to reach a steady state before the end of the simulation

(those with ε < 0.15 or generally low λ) are the ones generating the lowest values of

mean knowledge path, for the reasons we previously discussed. Therefore, we forcedly

stop all computer simulations after 20, 000 time steps, affecting only a small fraction of

the parameter space and not influencing our results.

On the other hand, we find an unexpected trend in the convergence time as a function

of λ for some parameters combinations. One would expect that the convergence time

decreases proportionally to 1/λ, being this quantity (the inverse of the rewiring rate)

a measure of the characteristic time of the system for a complete interaction between

all agents. However, we observe this trend only for the extreme cases of highly explicit

knowledge regimes (where a complete interaction between all agents in the space can take

place), corresponding to ε ≥ 0.5. What we find is instead a non-trivial trend of the

convergence time as a function of λ for all the other values of ε, showing plateaux for high

values of λ. This means that the complex network dynamics, in the presence of certain

approaching and link rewiring rates, can lead the system to a later convergence than the

one suggested by the characteristic rate 1/λ alone.

5.4 Discussion

In this chapter we have developed an agent based model of dynamic collaboration forma-

tion and knowledge exchange. The novel contribution of the model is that it incorporates

a process of knowledge exchange and studies its co-evolution and interdependencies with

respect to the collaboration network structure.

Studying the interactions of a set of agents in a metric knowledge space, by means of

computer simulations, we have found that the system follows a non-trivial dynamics and

reaches a steady state in which the agents cluster around a set of emerging attractors.

The model parameters that determine the overall properties of the system are the link
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Figure 5.6: Convergence time as a function of the rewiring rate λ, for a set of repre-
sentative values of the interaction radius ε. The network under examination has N = 200
nodes and learning rate µ = 1, in a 10−dimensional knowledge space. We generate 1000
simulations for each parameter set and then average the results.

rewiring rate of the network λ and the agents’ interaction radius ε.

We define a knowledge cluster as a group of nodes whose mutual distances are smaller than

the threshold interaction radius ε, and whose distance with every node outside the cluster

is larger than ε (meaning that all the agents in the cluster will asymptotically converge

to one attractor and no further inclusion of any other agent in the cluster is possible).

We have found that the number of knowledge clusters observed at the end of the network

evolution decreases by increasing the threshold interaction radius ε, because the agents

are able to collaborate with partners located farther away in the knowledge space, thus

converging all together towards one position. When the knowledge regime is strongly

tacit or strongly explicit, the number of knowledge clusters depends only on ε itself, and

not on the alliance rewiring rate λ. The most interesting case occurs for intermediate

knowledge regimes, in which the number of knowledge clusters increases with λ. Small

rewiring rates lead to the emergence of only one knowledge cluster, which is dispersed in

the knowledge space and does not clearly exhibit the presence of a knowledge attractor in

it. Faster alliance rewiring rates lead the agents to potentially have collaborations with

more partners, allowing the emergence of a larger number of knowledge clusters; in this

case, the presence of knowledge attractors, around which the firms eventually cluster, is

(even visually) clear.
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In this model, our underlying assumption is that the exploration of as many locations as

possible is beneficial for the entire collaboration network. For this reason, we consider the

distance explored by the agents in the knowledge space 〈K〉 as a performance indicator of

the network evolution. We have found that there exists a specific parameter combination

maximizing such indicator of performance, specifically intermediate values of both the

rewiring rate λ and the interaction radius ε.

In particular, if we focus on the dependence of 〈K〉 on λ, given a fixed ε, we find that there

exists an optimal value λ∗ maximizing 〈K〉. Such optimal rewiring rate λ∗ exhibits a weak

dependence on ε; namely, it slightly decreases when ε increases (only for intermediate

values 0.2 ≤ ε ≤ 0.4). This is consistent with some empirical studies (Gulati et al., 2012;

Rosenkopf and Schilling, 2007, e.g.), that show a varying alliance formation rate across

industrial sectors. Similarly, we have found that, given a fixed alliance rewiring rate, there

exists an optimal interaction radius ε∗ maximizing the mean knowledge path 〈K〉.

While we believe that the study of the knowledge clusters is fascinating, and that the

model we have developed could certainly represent a contribution in this direction, we

do not further investigate this aspect in the continuation of the present dissertation. We

will rather investigate how the collaboration network evolution affects the performance

of the whole system. In this respect, our finding of the existence of optimal parameter

configurations maximizing the system knowledge exploration is extremely promising. This

result, combined with the empirical observation of different alliance formation rates in

different industrial sectors, or co-publication rates in scientific fields, constitutes the first

step towards the empirical validation of the performance of collaboration networks.

However, we have to face the problem of a lack of precise measures to quantify the un-

derlying knowledge regime (i.e. the agents’ interaction radius) in real R&D networks, or

– even worse – the lack of a consistent and reliable way to measure individual scientist

trajectories in co-authorship networks. For these reasons, we will proceed in the next

Chapter with an empirical analysis of a network whose agents are unequivocally locatable

in a metric space, namely the R&D network, and we will take into account only the as-

pects of this model that can be directly tested against the data. Nevertheless, the main

contribution of this model is the identification of a mechanism of volatile alliances to help

the collaborating agents better explore the knowledge space.

Indeed, provided that the appropriate methodologies are known, this model paves the way

for further empirical studies on collaboration networks. The scope would be to measure

knowledge positions and trajectories of agents in real knowledge spaces, using – for instance

– patent data for firms or publication data for scientific authors. In the case of empirical

R&D networks, alliance formation rates and knowledge regimes characterizing a set of

industrial sectors could be quantified and compared, allowing for a check of the consistency

of our model with the observed variations in alliance activities across sectors.
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Chapter 6

Toward a more general modeling

framework

Summary

In this Chapter we develop an agent-based model to reproduce both the link for-
mation and the knowledge exchange processes in a collaboration network. Based on
the findings of our models on network formation and knowledge exchange, we now
combine the two approaches and develop an agent based model in which agents form
links based on their network features, i.e. their belonging to one of the network’s
circles of influence and their previous alliance history, and then exchange knowledge
with their partners, thus approaching in a metric knowledge space. Furthermore, we
validate the model against real data using a two-step approach. Through the SDC
R&D alliance dataset, we estimate the model parameters that are related to the
network, thus reproducing the topology of the resulting collaboration network. Sub-
sequently, using the NBER data on firm patents, we estimate the parameters that
are related to the knowledge exchange process, thus evaluating the rate at which
firms exchange knowledge and the duration of the R&D alliances themselves. The
underlying knowledge space we consider in our real example is defined by IPC patent
classes, allowing for a precise quantification of every firm’s knowledge position. We
find that real R&D alliances have a duration of around two years, and that the sub-
sequent knowledge exchange occurs at a very low rate. Most of the alliances, indeed,
have no consequence on the partners’ knowledge position: this suggests that a firm’s
position – evaluated through its patents – is rather a determinant than a consequence
of its R&D alliances. Finally, we find that the real R&D network does not maximize
the distance traveled by its agents in the underlying knowledge space. Effective
policies to obtain an optimized collaboration network – as suggested by our model
– would incentivize shorter R&D alliances and higher knowledge exchange rates, for
instance including rewards for quick co-patenting by allied firms.

Based on M. V. Tomasello, C. J. Tessone, F. Schweitzer, “The effect of R&D collaborations on firms’
technological positions”, manuscript pending submission. M.V.T. took the major part in designing the
microscopic rules of the model, entirely performed the computer simulations and contributed to the result
analysis. The production of all plots and the writing of the manuscript were done by M.V.T.
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6.1 Combining network growth and motion in a knowl-

edge space

The agent based model that we have developed in Chapter 5 represents our first attempt

to investigate a knowledge exchange process occurring in a dynamic collaboration network.

That model has identified a mechanism of volatile alliances to help the collaborating agents

better explore a knowledge space, using the approximation of monogamous (i.e. sparse)

collaboration networks. We now introduce a more sophisticated version of such a model,

to extend the validity of our previous approach to empirically observed collaboration

networks, taking into account their complex and dynamic structure.

The agent-based model that we develop here constitutes the final step in the present disser-

tation toward a general modeling framework for collaboration networks and the knowledge

exchange process occurring on top of them. Our novel agent-based model combines the re-

alistic network formation process that we have developed in Chapter 4 with the knowledge

exchange mechanisms that we have investigated in Chapter 5. The microscopic interaction

rules, as well as the model validation, involve a two-step procedure that can be described

as follows. The agents form links based on their network features and their social cap-

ital; the model parameters related to these mechanisms are estimated through the SDC

Thomson Platinum alliance dataset. The formation of every link is then associated with a

knowledge exchange process between the partners, which consequently approach in an un-

derlying knowledge space; the model parameters related to this mechanism are estimated

through firm patenting activities.

The validation of the present model is limited to the domain of R&D networks, in that

they provide the most extensive and reliable data sources to test all the hypotheses on

both the network topology (through alliance data) and the knowledge positions of its nodes

(through patent data).

6.1.1 Social component (exploration): link formation

As mentioned in Section 6.1, the model that we develop in the present chapter combines

the microscopic interaction rules of strategic link formation with those of knowledge ex-

change in a collaboration network. Specifically, the rules for link formation are formally

identical to the ones we have presented in Chapter 4. We want every chapter of the present

dissertation to be self-contained and readable independently of the other chapters. For

this reason, we repeat here all these microscopic rules; for more details, refer to Chapter

4.
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Node activation. We consider a network composed of N nodes; each of them is endowed

with two fundamental attributes, an activity and a label. We assign to each of the i =

1, . . . , N nodes an activity ai, that will be mapped to the empirical activities extracted

from the SDC alliance dataset (Thomson-Reuters, 2013). For more details on the dataset,

see Chapter 2. For more details on the calculation of the empirical activities, see Chapter

3. The activity defines the propensity of each node to be involved in a collaboration event.

In particular, at every time step, a node i initiates an alliance with probability pi = ηaidt,

and the number of active nodes NA is:

NA = η〈a〉Ndt, (6.1)

where 〈a〉 is the average node activity and η is a rescaling factor that allows to adjust the

activation rates, and consequently the number of active nodes per time step. We find that

the model is robust to the choice of η, showing no measurable changes for η ranging from

10−5 to 1; however, we fix η = 0.0115 to obtain NA roughly equal to 2, the number of

active firms per day actually reported in the alliance dataset.1 More details will follow on

the interpretation of the time step duration dt.

Selection of the alliance size. When a node gets activated, it selects the number of

partners m with whom the alliance is formed. We assume that the value of m is totally

independent of any characteristic of the active node: we sample it, without replacement,

from the empirical distribution of number of partners per alliance. In other words, we

shuffle the sequence of number of partners per alliance (directly measured from the dataset)

and then extract a value every time an activation event occurs; m can be thought of as the

number of partners involved in every alliance event, diminished by 1, because the active

node is not counted twice.

Label propagation. We assume that each of the N nodes is endowed with an attribute

named label. This attribute is unique – i.e. every node can have only one label at any time

– and fixed – once a node assumes a label, this does not change. We remember that the

labels model the belonging of the agents to different groups that they implicitly define with

their shared practices and/or behaviors. In the example of firms forming R&D alliances,

a label symbolizes the membership of the firm in a well defined and recognized “club” or

“circle of influence”. In addition, we assume that such membership can be transferred to

other agents as a consequence of a collaboration, provided that they are not part of any

1It should be noted that NA and η slightly differ from the values we obtained in Chapter 4. This is
due to the fact that the present model – as we explain in more detail in Section 6.2 – is validated on a
subset of the SDC alliance dataset, precisely considering only the firms for which both the alliance and
the patent data are available at the same time. This creates a bias toward larger (and thus more active)
firms, causing NA and η to slightly increase.
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circle of influence yet. In our network representation, every alliance initiator does indeed

propagate its label to all of its m partners, if they are non-labeled. At the beginning of

every simulation, all nodes are non-labeled, meaning that their membership attribute is

blank. There are two ways a non-labeled node can assume its label: (i) the node either

receives the label from another node, if the latter initiates an alliance, or (ii) it takes an

arbitrary and unique label when it becomes active for the first time (see Fig. 4.1).

Selection of the partner categories. The presence of labels – as we have already

seen in our previous link formation model – induces different types of alliances, that we

explicitly distinguish. In particular, if the initiator is a labeled node, this can link to a

labeled node having the same label (with probability pLs ), or to a node having a different

label (pLd ), or to a node without label (pLn). If the initiator is a non-labeled node, i.e. it is

a newcomer in the collaboration network, this can link to a labeled node (with probability

pNLl ), or to another non-labeled node (pNLnl ). Similarly to our previous model, we define the

formation of a link with a labeled node (described by the probabilities pLs , pLd and pNLl ) as

an endogenous mechanisms, given that the initiator of the alliance has information about

the network position (i.e. social capital) of its potential partners. Likewise, we define the

connection with a non-labeled node (events pLn and pNLnl ) as an exogenous mechanisms : in

this case, the initiator cannot have any information about the social capital of an agent

that is not part of the network yet. As we have done for our previous model, we refer

to these mechanisms as endogenous or endogenous with respect to the network topology

and the label attributes. However, the model we now develop includes also rules which are

exogenous with respect to the network topology, namely the approach in the knowledge

space and the termination of some links.

Link formation. After deciding the category of each of its m partners, we assume that

the initiator selects its specific partners within those categories according to their degree

(i.e. number of previous collaborations with distinct partners). We use a linear preferential

attachment rule, where the probability to attach to a node j linearly scales with its degree

kj, meaning that Π(kj) ∼ kj. The preferential attachment rule is applied within the pool

of all candidate partners, once the selection of the partner category has been made by the

alliance initiator (see Fig. 4.2). This rule obviously does not apply when the initiator –

be it labeled or not – decides to connect to a non-labeled node, which has by definition no

previous partners (kj = 0). In this case, the partner is selected among all non-labeled nodes

with equal probability. When the selection process is complete, the initiator connects to

its m partners. In agreement with our representation of the R&D network, we assume

that all the m partners will also link to each other, forming a fully connected clique of size

m+ 1.

128



6.1. Combining network growth and motion in a knowledge space

6.1.2 Technological component (exploitation): knowledge ex-

change

The second group of microscopic rules models a process of knowledge exchange between

pairs of collaborating agents, similarly to what we have investigated in Chapter 5. In the

present agent-based model we relax the assumption that the network can be simplified into

a monogamous one (i.e. a network where every agent has only one neighbor at any point

in time). We now have a network with the typical small-world and modular structure,

which originates from our link formation rules and – as we have studied in Chapter 2 –

is much closer to reality. Basically, we assume that every agent in the network is located

in a metric knowledge space and – as a consequence of its collaborations – approaches

its partners in this space. In case of multiple partners, the motion of the focal node is

determined by the vectorial sum of all the effects due to each of its partners.

Location in a metric knowledge space. Every agent i is a point with coordinates xi,

identified by a vector of D real numbers ranging from 0 to 1. In the case of R&D networks,

the coordinates of every node can be thought of as the ratios of the corresponding firm’s

expertise along each of the D dimensions of the knowledge space. In order to validate this

model against the data, we assign all agents’ initial positions by using real patent data, as

we explain in more detail in Section 6.2.

xi ≡ (xi1, xi2, . . . , xiD) i = 1, . . . , n (6.2)

Approaching in the metric knowledge space. We assume that the existence of a link

causes the agents at both ends of the link to approach each other in the knowledge space.

Like in our previous model, we assume that every agent is endowed with a learning rate µ.

This parameter is constant over time and for all nodes in the collaboration network, and

can be thought of as the propensity of agents to exchange knowledge with their partners,

thus making their knowledge bases more similar over time. It should be noted that the

parameter µ is a rate, not a speed; the actual speed at which the corresponding nodes

move in the knowledge space is given by the product of the rate µ and their distance:

therefore, the farther they are in the knowledge space, the faster they approach. When

their distance decreases, so does the potential for new learning from the collaboration, and

the approaching speed drops consequently. The model dynamics equation can be written

as follows:

ẋi(t) = µ
∑

j∈Ni(t)

[xj(t)− xi(t)] (6.3)

where Ni(t) is the set of partners of the agent i at time t. As we can observe from Equation
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6.3, in the present model there is no proximity condition for the agents’ approach in the

knowledge space, differently from Chapter 5. Here, the formation of the network is inde-

pendent of the knowledge positions of the agents, and every link (i.e. every collaboration)

has the effect to make the involved partners approach in the knowledge space. We then

implement the model through computer simulations, using discrete time steps of length

dt. The evolution of every agent’s position xi can be expressed as:

xi(t+ dt) = xi(t) + µ
∑

j∈Ni(t)

[xj(t)− xi(t)] dt (6.4)

Alliance termination. Differently from Chapter 5, in the current model we do not have

mechanisms such as link rewiring or interaction threshold radius, because the formation of

links is determined uniquely by the network topology and the agents’ attributes. However,

in order to develop a more realistic model, we incorporate the termination of links as a

key ingredient. We achieve this by introducing a parameter, precisely a link characteristic

life time τ . We assume that the collaboration durations are distributed according to a

Poisson process with rate 1/τ ; the mean duration is obviously equal to τ . In our computer

simulations, which use discrete time steps of length dt, this translates into the use of a

fixed termination probability pT for any link at any time step, equal to pT = dt/τ . In

order to keep a simplistic set of rules, in line with our approach (see Sec. 1.2.3), we assume

that the parameter τ is independent of any other feature of the network or the knowledge

exchange dynamics.2

To sum up, in this section we have described the microscopic rules of an agent based model

that is able to reproduce a dynamic link formation in a collaboration network, together

with the approach of the agents in an underlying knowledge space. The learning rate µ of

the agents corresponds exactly to the one we have introduced in our previous knowledge

exchange model (see Chapter 5); while the link rewiring rate λ and the agents’ interaction

radius ε are replaced, respectively, by the link characteristic life time τ and a dynamic link

formation process, described by the parameters pLs , pLd and pNLnl (similarly to our network

formation model in Chapter 4). We summarize the model microscopic rules by means of

a visual example in Fig. 6.1 and report the nomenclature of all parameters in Table 6.1.

2One possible extension would be to link τ to the knowledge distance of the two partners, or some
other network-related feature.
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Figure 6.1: A representative example of network evolution in a bi-dimensional (D = 2)
knowledge space. The position of the nodes in the plot corresponds to their coordinates
in the knowledge space. At time t + dt, all existing links cause the respective agents to
approach in the knowledge space. Furthermore, we illustrate two collaboration events
occurring at time t. The first one is initiated by a labeled node (in green), that has linked
to m = 3 new partners, forming a fully connected clique. The second one is initiated by a
non-labeled node, that has linked to m = 2 new partners and has taken a new arbitrary
label (red). At time t+ dt, the alliance initiators propagate their labels (respectively, the
green one and the red one) to the partners that were not labeled at time t yet. Finally,
we illustrate the termination of 3 links (depicted with red dashed lines) at time t.

Parameter Meaning Category

pLs Probability of a labeled node to select a node with the same label Network formation

pLd Probability of a labeled node to select a node with a different label Network formation

pNL
nl Probability of a non-labeled node to select a non-labeled node Network formation

D Dimensionality of the metric knowledge space Knowledge exchange

µ Approaching rate in the knowledge space Knowledge exchange

τ Link characteristic life time Knowledge exchange

Table 6.1: Model parameters and their description. The “network formation” param-
eters are associated with the creation of new links in the collaboration network and are
analogous to the ones introduced in Chapter 4. The “knowledge exchange” parameters
are associated with the approach of the agents in a metric knowledge space, occurring as
a consequence of a collaboration, and are similar to the ones introduced in Chapter 5.

6.2 Validation on the pooled R&D network with a

two-step procedure

We now validate our model against the data, in order to estimate the value of its param-

eters. As already mentioned, we perform our validation procedure in two steps and by

using two datasets, R&D alliances and patents.

In the first step, we validate the network topology. We fix a set of parameters that we

can directly measure from the data (namely, the number of agents and collaborations, the
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agents’ activity distribution and the size of collaboration events). We then estimate the

remaining parameters – i.e. pLs , pLd and pNLnl – by running a set of computer simulations

and identifying the simulated collaboration network that best matches with the alliance

dataset.

In the second step, we fix the network formation parameters – using the values obtained

in the first step – and run a second set of computer simulations. This time we estimate

the knowledge exchange parameters – i.e. D, µ and τ – by identifying the simulated

collaboration network that best matches with the patent dataset.

6.2.1 Alliance dataset and empirical findings

Methodology. The dataset we use to build the structure of the collaboration network is

the Thomson Reuters SDC Platinum, that we already described in Chapters 2 and 4. The

methodology we employ to assign nodes and links to firms and alliances, respectively, is

equivalent to the one we utilized for our empirical analysis of R&D networks (see Chapter

2) and our network formation model (see Chapter 4). Again, in order to have a self-

contained and independently readable chapter, we report here the main procedures and

findings.

The SDC Platinum database (Thomson-Reuters, 2013) reports approximately 672,000

publicly announced alliances in all countries, from 1984 to 2009, with a granularity of 1

day, between several kinds of economic actors (including manufacturing firms, investors,

banks and universities). We select all the alliances characterized by the “R&D” flag; after

applying this filter, a total of 14,829 alliances, connecting 14,561 firms, are listed in the

dataset. Furthermore, we keep in our network representation only the firms that have a

corresponding entry in the patent dataset – namely the NBER dataset – that we utilize

to determine their knowledge positions. This results in a network comprising 5,168 firms

and 7,417 R&D alliances.

Most of the collaborations (92%) are stipulated between two partners, but some alliances

– the so-called consortia – involve three or more partners. The distribution of the number

of firms per alliance event is computed from the data and then assigned to the agents

in our computer simulations, to obtain the number of selected partners m (see Section

6.1.1). The empirical distribution of number of partners that we use in this specific

case is reported in Appendix E. In our network representation, we draw an undirected

link connecting two nodes every time an alliance between the two corresponding firms is

announced in the dataset. When an alliance involves more than two firms, we assume

that all the corresponding nodes are connected in pairs, forming a fully connected clique.

This choice derives from the fact that consortia, although representing only a minority of

the alliances, require great coordination and resource availability from the partners. More

precisely, following this procedure we obtain a total of 10,262 links from the 7,417 alliance
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events listed in the dataset. However, in the definition of our model, we have not made

any difference between a consortium and a “standard” two-partner alliance, which is only

a special case of it (and can be thought of as a fully connected clique of size 2).

We then measure the firms’ activity distribution.3 The activity expresses the probability

that a firm takes part in any alliance event occurring in a given time window. For the

validation of the present model, we use the overall firm activity, measured on the entire

observation period of the dataset. We define such activity ai, for a firm i, as the number of

alliance events ei involving firm i divided by the total number of alliance events E involving

any firm reported in the dataset. We then assign such empirical activities ai to the agents

in our computer simulations (for the empirical activity distribution, see Appendix E).

The networks that we generate by means of computer simulations are matched to the

observed R&D network with respect to three global indicators: average degree 〈k〉, average

path length 〈l〉, and global clustering coefficient C,4 which we denote as 〈k〉OBS, 〈l〉OBS and

COBS, respectively. The values we measure for this empirical R&D network are 〈k〉OBS =

3.45, 〈l〉OBS = 5.05 and COBS = 0.11, meaning that the network is slightly denser, more

clustered, with a shorter average path length than the R&D network we analyzed in

Chapter 4. As we have already found for the node activities, this happens because we

now consider only the firms for which patent data are available; these firms typically have

more alliance partners, thus making the network more connected.

Network formation. The approach we use to estimate the network parameters pLs , pLd
and pNLnl is analogous to the one described in Section 4.2.1. We fix the model parameters

that we can directly measure from the data, namely the number of agents N = 5, 168,

the distribution of the node activities ai, and the distribution of number of partners m

per alliance event. We stop every computer simulation when the total number of formed

alliances equals the number of alliance events reported in the SDC dataset, E = 7, 417.

We vary the values of pLs , pLd and pNLnl in discrete steps spaced by 0.05, in the interval

(0, 1). The parameters pLs and pLd are bounded by the condition pLn = 1 − pLs − pLd ≥ 0,

meaning that their sum has to be smaller or equal to 1. This condition translates into

3, 249 points to explore in the 3-dimensional parameter space, for each of which we run 100

simulations (for a total of 324, 900 runs). We then consider the final aggregated network

resulting from each of the 324,900 computer simulations and we test it against the real

data with respect to three properties: average degree 〈k〉, average path length 〈l〉 and

global clustering coefficient C.

We find that also in the case of the R&D network with patent data, the simulated values

of 〈k〉, meanl and C – obtained by exploring the parameter space of the model – are

3For a more detailed definition and more empirical examples on agents’ activity in collaboration
networks see Chapter 3.

4For a rigorous definition of these measures, see Chapter 4.
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distributed around the empirical values. However, such distributions exhibit a fairly large

variance (as reported in the E). This testifies once again that our model well captures the

topology of the real network for a large set of free parameters, thus allowing a meaningful

exploration of the parameter space and a fine tuning of their values.

In order to identify which parameter combination is able to give the best match with the

real R&D network, we use a Maximum Likelihood approach. As we have argued in Section

4.2.1, instead of having a set of observations against which we can validate our model, we

only have one empirical point: the real R&D network. In particular, we cannot consider

the three measures 〈k〉, 〈l〉 and C as independent, therefore the Likelihood function L
reads as:

L(p|netOBS) = f(netOBS|p) (6.5)

where f(·) is the joint density function of all parameter combinations p resulting in a

network that is equivalent to the observed one netOBS. Both p and netOBS are vectors with

three components, expressing respectively the three model parameters p ≡ (pLs , p
L
d , p

NL
nl )

and the three global network measures netOBS ≡
(
〈k〉OBS, 〈l〉OBS, COBS

)
. Therefore, we need

to find the parameter combination (pLs , p
L
d , p

NL
nl ) maximizing the Likelihood L(p|netOBS)

to generate a network whose macroscopic properties are sufficiently similar to the real

network netOBS. By this, we mean that the relative errors from the observed values for the

average degree ε〈k〉, the average path length ε〈l〉 and the global clustering coefficient εC have

to be smaller than a certain threshold ε0. We empirically compute the Likelihood function

L for each point in the parameter space by counting the fraction of its 100 simulation

realizations that fulfill the criteria ε〈k〉 < ε0 ; ε〈l〉 < ε0 ; εC < ε0. This way, we obtain

values that can range from 0 (no realization of that parameter combination fulfills the

criteria) to 1 (all of its realizations fulfill the criteria).

For the choice of the error threshold ε0, as described in Section 4.2.1, we take a conservative

approach and use ε0 = 0.02, that ensures a good matching with the real R&D network,

without cutting out too many points in the parameters space. The corresponding Likeli-

hood scores are reported in Fig. 6.2 by means of a 3-dimensional color map, where the

color scale is representative of the Likelihood. To have a more detailed representation of

the likelihood scores, we also show one slice of the parameter space obtained by fixing the

parameter pLs to 0.45, corresponding to the highest likelihood score region, always using

the error threshold ε0 = 0.02. The 2-dimensional color map reported in Fig. 6.2 depict

the likelihood score as a function of the other two free parameters pLd and pNLnl .

Network formation parameters. We find that the point with the highest likelihood

score has the following coordinates in the parameter space: p∗Ls = 0.45, p∗Ld = 0.2 and

p∗NLnl = 0.1. This means that labeled nodes exhibit a fairly balanced alliance strategy, with

p∗Ls = 0.45, p∗Ld = 0.2, and consequently p∗Ln = 0.35, while the non-labeled nodes exhibit a

very strong tendency to connect to labeled nodes (p∗NLl = 0.9), as opposed to a low linking
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Figure 6.2: Likelihood scores for all points in the parameter space, for ε0 = 2%,
represented with a 3-dimensional color map (a). After fixing the value of pLs to 0.45 (b),
we report the Likelihood score as a function of pLd and pNLnl , using the same color scale.

Optimal simulated R&D network Real R&D network (with patents)

Model parameter Value Measure Value Measure Value

p∗Ls 0.45 〈k〉∗ 3.48± 0.01 〈k〉OBS 3.45

p∗Ld 0.2 〈l〉∗ 5.02± 0.08 〈l〉OBS 5.05

p∗Ln 0.35 C∗ 0.111± 0.007 COBS 0.109

p∗NL
nl 0.1

p∗NL
l 0.9

Table 6.2: Model parameter set p∗ defining the optimal simulated R&D network. The
average degree, average path length and global clustering coefficient of the 100 realizations
of the optimal R&D network are compared to their analogous empirical values.

probability with other non-labeled nodes (p∗NLnl = 0.1). We report in Table 6.2 the set

of parameter values maximizing the likelihood score, together with the values of average

degree, average path length and global clustering coefficient for the simulated and the real

R&D networks.

These results are in line with those we have presented in Chapter 4. However, the R&D

network with patent data exhibits an even stronger tendency to favor connections with

labeled nodes (i.e. incumbent firms). Due to the fact that our analysis in now restricted

only to firms for which patent data are available, one could expect either an increase

in the importance of network endogenous mechanisms – given that we are considering,

on the one hand, larger and more active firms – or an increase in the importance of

exogenous mechanisms – given that we are considering, on the other hand, firms for which

the technological dimension could be more relevant in the alliance formation strategy.

Our data confirm the first hypothesis, that is the increase in the relevance of network
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endogenous mechanisms, which results in higher probabilities for the agents to collaborate

with agents that are already part of the network, and therefore already labeled. This

behavior is present irrespectively of whether the alliance event is initiated by a labeled

or a non-labeled node: precisely, 65% of the collaborations initiated by labeled nodes

(p∗Ls + p∗Ld ), as well as 90% of the collaborations initiated by non-labeled nodes (p∗NLl ),

involve a labeled node as a partner.

6.2.2 Patent dataset and empirical findings

Methodology. In order to evaluate the position of real firms in a metric knowledge

space, we use the Patent Citations Data by the U.S.A. National Bureau of Economic

Research (NBER). The NBER dataset contains detailed information on about 5 million

patents granted in the U.S.A. and other contracting countries, from 1971 to present.

Obviously, we select only the entries that have a match with the SDC alliance dataset, both

with respect to assignees and time period, thus obtaining a total of around 1, 400, 000 listed

patents. Every patent is associated with one or more assignees and with an International

Patent Classification (IPC) class. Companies are associated with a unique identifier, and

a relatively big part of them (5,168 firms, precisely) are matched to the SDC alliance

dataset.

The approach we use to determine the knowledge position of a firm is to compute the shares

of its patents in a set of different IPC classes. The first consideration has to be made on

the number of classes we take into account, which will correspond to the dimensionality of

the knowledge space in which the firms are located. The IPC, introduced in 1971 by the

Strasbourg Agreement, is a hierarchical system of symbols for the classification of patents

according to the different areas of technology to which they pertain.5 A generic IPC

category consists of a letter, the so-called “section symbol”, followed by two digits, the

so-called “class symbol”, and a final letter, the “subclass”. This four-character term is

then followed by a group/subgroup indication, represented by additional digits. A typical

IPC term can be written as follows: B34H 6/99. The sections identified by the IPC are

historically stable and amount to 8, from A (human necessities) to H (electricity). The

lower levels are instead subject to more frequent revisions; the eighth and last IPC edition

consists of more than 120 classes, 600 subclasses, 7,000 main groups and 60,000 subgroups.

We intend to test our model on a broad set of firms, belonging to several industrial

sectors, and therefore exhibiting patent activities distributed across all sections, classes

and subclasses. Hence, our choice to consider only the section symbol (i.e. the first

letter) in our empirical patent classification. Choosing a class- or subclass-level division

would result in an excessive patent granularity, meaning a high dimensionality for the

5For more information on the International Patent Classification, see http://www.wipo.int/

classifications/ipc.
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corresponding knowledge space. However, for the sake of completeness, we have also

tested a division at a class level (i.e. the first letter plus two digits), obtaining a total of

74 classes; we find that the computational burden of operating in a 74-dimensional space

does not lead to any significant change in our results, as we show in Appendix E.

The titles of the 8 sections, as well as a patent count for each section in our dataset, is

reported in Table 6.3. We find that the number of patents in all sections reflects their

technological dynamism (Rosenkopf and Schilling, 2007); indeed, all sections are fairly

equally represented, and the two sections exhibiting the lowest patent counts are textiles,

paper and fixed constructions, two typical mature industries.

IPC Section Title Patents

A Human Necessities 152,974

B Performing Operations, Transporting 244,791

C Chemistry, Metallurgy 309,675

D Textiles, Paper 12,914

E Fixed Constructions 17,842

F Mechanical Engineering, Lighting, Heating, Weapons 119,581

G Physics 508,815

H Electricity 476,437

Table 6.3: International Patent Classification (IPC) sections and their description. The
last column reports the number of patents registered in our dataset for the corresponding
IPC section.

To ensure a match with our model representation, we define the knowledge position of a

firm xi ≡ (xiA, xiB, . . . , xiH) as the set of normalized patent counts xis in each section,

which in its turn equals:

xis ≡
Nis∑
sNis

s = A, . . . , H (6.6)

where Nis is the number of patents that the firm i has in a given IPC section s. In order

to compute knowledge distances between pairs of firms, we use the Euclidean metric,

similarly to Chapter 5. This means that the knowledge distance between two firms i and

j reads as:

|xi − xj| =

√√√√ H∑
s=A

(xis − xjs)2 (6.7)

Main empirical findings. Using the definitions provided in Eqs. 6.6 and 6.7, we now

compute two empirical measures that will be later used for the validation of our model,

namely (i) the knowledge positions of the 5,168 firms listed in our dataset at the beginning

of the observation period – i.e. in 1984 – and (ii) the distribution of the knowledge distances

between every pair of allied firms, at the moment of alliance formation. When computing

the empirical knowledge position of a firm xi at a given date t, we consider all the patents

for which the firm has applied in a given time window ∆t preceding such date t. In order
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to have a reliable and updated measurement, without losing at the same time too much

patent information due to a short time window, we use a length equal to 5 years. We

have tested different time windows, ranging from 1 to 10 years, and have found that this

causes only more missing observations or noise in the distributions, with no effect on our

results. The knowledge positions of the firms at the beginning of the observation period

is used as an input for our computer simulations, as we explain below. In Fig. 6.3 we

report the distribution of the knowledge distances between partner firms at the moment of

alliance formation – from now on, the “pre-alliance knowledge distances”. The minimum

observed value of knowledge distance is 0, while the maximum value of knowledge distance

equals
√

2, for normalization reasons. We find that the distribution is peaked around an

intermediate distance and left-skewed, i.e. shifted toward small values. This confirms the

findings that we have presented in Chapter 2, that is a preference for alliance partners

to exhibit small knowledge distances. In addition, we observe that the counts drop when

such preferred distance approaches zero, meaning that firms with the exact same patenting

activity tend not to form alliances.
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Figure 6.3: Empirical knowledge distance between every pair of partnered firms, as of
the day preceding the alliance formation.

We use the aforementioned distribution to validate our agent based model and estimate

the value of the knowledge exchange parameters, together with another empirical measure

carrying a second, important piece of information: the distribution of the knowledge

distances between every pair of allied firms, at the moment of alliance termination – from

now on, the “post-alliance knowledge distances”. However, as we have already explained in

Chapter 2, the SDC dataset does not report the ending date of any alliance. To overcome

this problem, during the validation of the model, we compute the empirical knowledge
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6.2. Validation on the pooled R&D network with a two-step procedure

distance between every pair of linked firms, after a time period equal to the value of the

parameter τ (in days) used in the corresponding simulation. The NBER patent dataset has

a time-granularity of 1 year, thus forcing us to use a minimum 1-year time window, even

when considering τ values smaller than 365 days. Nevertheless, we find that the length

of such time window does not affect our results. Precisely, we find that the shape of the

knowledge distance distribution appears to have the same shape, irrespectively of the time

period following the alliance formation when these distances are computed, even when

such time window is reduced to zero. This means that the distribution of post-alliance

knowledge distances resembles the one of pre-alliance distances. In Fig. 6.4 we report the

post-alliance knowledge distance distribution for different time windows of length 1, 3, 5

and 10 years.
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Figure 6.4: Empirical knowledge distance between every pair of partnered firms, com-
puted 1, 3, 5 and 10 years after the date of the alliance formation.

The fact that the distribution of post-alliance distances differs only slightly from the dis-

tribution of pre-alliance distances is in agreement with another, last empirical measure we

compute prior to the validation of our model. We calculate the variation of the knowledge

distance separating every pair of allied firms between the moments of alliance formation

and alliance termination – from now on, the “knowledge distance shift”. Again, we report

our results in Fig. 6.5 for four time windows of length equal to 1, 3, 5 and 10 years. We

find that the distribution of distance shifts is virtually independent of the chosen time

window, as we could already expect from the distribution of the post-alliance knowledge

distances. More importantly, the distribution of distance shifts is narrow and centered

around zero, confirming our previous finding that post-alliance knowledge distances are

subject to an overall weak change as a consequence of R&D alliances.
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Figure 6.5: Empirical shift of knowledge distance between every pair of partnered firms,
computed 1, 3, 5 and 10 years after the date of the alliance formation.

When looking at the knowledge distance shifts, we do indeed find that most of the R&D

alliances cause a null change in the knowledge distance between the two partners. However,

the distribution clearly exhibits tails on both sides, meaning that some alliances cause the

partners to significantly move closer in the knowledge space, whilst some other alliances

cause the partners to significantly move farther away. This is the result of the complex

interactions between the collaborating agents and, as we show through the validation of

our agent based model, it can be generated even by microscopic rules considering only

an approach of the agents in the knowledge space, provided that this is coupled with a

complex network dynamics.

6.2.3 Final model test

Exploring the knowledge exchange parameter space. We determine the values of

the knowledge exchange parameters by comparing the pre-alliance and the post-alliance

knowledge distance distributions in the empirical R&D network and the simulated net-

works generated by our model. Precisely, we fix all the network formation parameters to

the values resulting from the first validation step, described in Section 6.2.1. We then fix

the value of one knowledge exchange parameter that we can directly measure from the

data, namely the dimensionality D of the knowledge space. As we use the eight main sec-

tions of the IPC scheme, and considering that we measure the fractions – not the numbers

– of patents in each section, thus giving rise to one bounding condition, we assume D = 7.

Consequently, the 7 numbers identifying the knowledge position of every agent are free to

vary independently of each other in our simulations; the eighth component of the knowl-

edge position can be inferred from the bounding condition that the patent fractions in

every section have to sum up to 1. Obviously, each of the seven xis knowledge components
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we use in our simulations is bound to be smaller than 1. The initial knowledge positions

of the agents are assigned from the empirical data (see Section 6.2.2).

We then vary the values of the remaining knowledge exchange parameters, the agents’

approaching rate µ and the characteristic alliance life time τ . We consider the values

0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1 and 0.2 for the parameter µ and the values 5,

10, 20, 50, 100, 200, 300, 500, 700, 1000, 2000, 3000 and 5000 for the parameter τ , thus

having a total of 104 points to explore in the parameter space. The interpretation of the

parameter τ is straightforward: as explained in Section 6.1.1, we adjust the activation rate

of the agents in such a way that the length of a time step dt can be directly interpreted

as 1 day. Therefore, the value of τ , which is by design expressed in time steps, can be

thought of as the characteristic duration of a real alliance in days.

For each of the 104 parameter combinations, we run 100 simulations, for a total of 10, 400

runs in this second step of our validation procedure. We store the distributions of pre-

alliance knowledge distances, post-alliance knowledge distances and knowledge distance

shifts in each run. Similarly to the first step, we stop every computer simulation when the

total number of collaborations equals the number of alliance events reported in the SDC

dataset, E = 7, 417. Finally, we consider each of the collaboration networks resulting from

the simulations and compare it to the empirical R&D network, with respect to the first

two characteristic distributions, namely the pre-alliance and the post-alliance knowledge

distances. We do not use in our validation procedure the third distribution, i.e. the

knowledge distance shifts, because it strictly depends on the first two and does not carry

any additional information.

While the pre-alliance knowledge distances are unambiguously computable on both the

empirical and the simulated networks, the post-alliance knowledge distances are unam-

biguously computable only on the simulated networks – where every link comes to an

end after a definite time. However, alliance ending dates are not available on the real

R&D network. To overcome this problem, we compute the empirical knowledge distance

between every pair of linked firms after a time period equal to the value of the parameter

τ – in days – used in the corresponding simulation (see Section 6.1.2 for details).

Estimating the knowledge exchange parameters. We use two-sided Kolmogorov-

Smirnov (KS) tests to compare each simulated knowledge distance distribution with the

corresponding empirical one, and therefore assign a score to every parameter combination.

Precisely, we record the value of the resulting D statistics for every KS test we perform;

such a value expresses how close two distributions are, and decreases as the two distri-

butions under examination become more similar. We disregard the p−value of the KS

test, because we are not interested in statistically inferring the provenience of the two

distributions from a hypothetical common distribution. Our aim is instead to quantify

the similarity between pairs of distributions, a measure that is already fully captured by
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the D− statistics of a two-sided KS test.

For every simulation, we perform a two-sided KS test on the resulting pre-alliance knowl-

edge distance distribution and the corresponding empirical distribution. We repeat the

procedure for the post-alliance knowledge distance distribution, and sum the values of

the two resulting D−statistics, thus obtaining a goodness score for every simulation. The

lower such a score is, the closer the examined simulated R&D network is to the empirical

one. We finally average the 100 score values for all the simulations in all points of the

parameter space. Such goodness scores are presented in Fig. 6.6, where we make use of a

heatmap to summarize our results.
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Figure 6.6: Goodness score for every point in the parameter space, depicted by means
of a heatmap. The color scale corresponds to the score value; the lower the score, the
closer the simulated R&D network is to the empirical one.

We find that there exists an entire region of the explored bi-dimensional parameter space

maximizing the aforementioned goodness score. Such region is identified by low values of

the score, corresponding to the red points in Fig. 6.6. All these points are located in the

diagonal of the parameter space connecting the points having large µ values and low τ

values, with those having low µ values and large τ values. This confirms our empirical

finding that alliances exert a weak effect on the knowledge positions of firms.

Indeed, the presence of that “optimal” region in the main diagonal of our parameter

space clearly indicates that the two parameters are not independent. The product of the

two parameters appears to be constant: therefore, only the points with fast approaching

rates µ but short alliance life times τ or, on the contrary, with long alliance life times

τ but slow approaching rates µ, can generate simulated knowledge distance distributions

that correspond to reality. We argue that this is actually an important finding: in real

systems, agents do not significantly change their knowledge positions as a consequence of
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collaborations. They rather use the available information about their mutual knowledge

positions in order to establish new collaborations.

Although many parameter combinations exhibit a similar, low goodness score – i.e. they

are fairly equally able to reproduce the empirical pre-alliance and post-alliance knowledge

distance distributions – the best parameter sets can be quantitatively ranked. We find

that the parameter point yielding the best goodness score is identified by the following

coordinates: µ = 0.0005 and τ = 700. This means the optimal simulated collaboration

network exhibits a low approaching rate, and a characteristic alliance life time slightly

shorter than 2 years. This is not only consistent with previous theoretical and empirical

observations (Inkpen and Ross, 2001; Phelps, 2003), but it also is surprisingly close to

our previous assumption to terminate alliances after 3 years in the empirical network

representation we have used in Chapter 2. It is even more surprising if we consider that

we have obtained this result by using two different datasets and employing a complex

procedure such as the study of the effect of collaborations on knowledge positions through

an agent based model.

Additional model tests. The optimal simulated R&D network, as we have shown

above, is generated by the set of parameter values µ = 0.0005 and τ = 700. Similarly to

the approach adopted in Chapter 4, we now want to investigate how well our model, fed

with this optimal parameter set, is able to reproduce the knowledge distance distributions

of the real R&D network. To this purpose, we report in Fig. 6.7 and Fig. 6.8 the

distributions of pre-alliance and post-alliance knowledge distances, respectively. In every

plot we show, the blue circles correspond to the mean values and the error bars correspond

to the standard deviations of all the measures we study on the 200 realizations of the

optimal simulated R&D network.

As we have imposed an equivalence criterion through the KS test, we expect that the

empirical and the simulated distributions are fairly similar, which is what we find from our

analysis. However, the post-alliance distance distribution generated by our model performs

slightly better than the pre-alliance distance distribution. We argue that this is due to the

fact that our model does not include any self-motion term for the agents in the knowledge

space, as our focus is uniquely on the effect of collaborations on the agents’ knowledge

positions. Therefore, the pre-alliance distance distribution in our simulated network is

peaked around a larger value than the real system, and then – as a consequence of the

approach in the knowledge space – the post-alliance distance distribution is peaked around

a slightly lower value, having a slightly better overlap with the empirical distribution.

Obviously, in every collaboration network, the agents produce knowledge on their own and

explore new trajectories in the knowledge space even without being involved in collabo-

rations or alliances. However, we intentionally do not include this behavior in our agent

based model, in order not to over-complicate the microscopic rules and isolate the effects
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Figure 6.7: Empirical and simulated distances between firms at the moment of alliance
formation.
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Figure 6.8: Empirical and simulated distances between firms at the moment of alliance
deletion.

of collaboration formation on the positions of the agents.

Nevertheless, our model is able to reproduce one last empirical distribution – without

imposing it in the validation procedure – i.e. the knowledge distance shifts. This proves

that even an approach-only mechanism in a knowledge space is capable to generate positive

distance shifts, i.e. increased knowledge distances between two agents as a consequence of

a collaboration. We report in Fig. 6.9 both the empirical and the simulated distribution

of the knowledge distance shifts for every pair of connected agents.

We find that, similarly to the real system, the simulated distance shift distribution is

peaked around zero. For the reasons explained above, the collaborations in our model
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Figure 6.9: Empirical and simulated distance shifts between all allied firms.

have an overall null (or very weak) effect on the knowledge distances between agents.

However, given the complex network structure characterizing the system, we also find a

number of cases in which the two partners find themselves farther away in the knowledge

space than they were at the moment of the collaboration establishment. Remarkably,

our model can retrieve this positive right-tail of the knowledge distance shift distribution,

even if the microscopic rules do not include any drift, nor self-motion, nor distancing

mechanisms for the agents.

6.3 Network performance

Similarly to Chapter 5, we assume that the exploration of the knowledge space is beneficial

for the whole system, and can effectively represent its own performance. In the present

Section, we define such a performance indicator for our simulated networks. We do not

intend to match this indicator to any possible empirical counterpart, given that we already

perform our matching procedure based on empirical knowledge distance distributions. We

rather want to investigate whether the empirical R&D network corresponds to a simulated

network that is actually optimized with respect to this performance measure.

6.3.1 Introducing a collaboration performance indicator

Using the same notation introduced in Eq. 5.5, we define the knowledge path of an

agent Ki as the sum of all the distances that the agent travels in the knowledge space

during the entire simulation. Differently from the model introduced in Chapter 5, where

the motion of every agent was driven by only one partner at every time step, in the

145



Chapter 6. Toward a more general modeling framework

present model the agents are subject to a motion resulting from interactions with multiple

partners. Following this reasoning, and considering that we put the emphasis on the

consequences of collaborations, we define an indicator aimed at measuring the actual

effect of the collaborations in stimulating the agents’ knowledge exploration. We call this

indicator the collaboration performance C of the network and define it as:

C =

∫ Tmax

t=0

N−1 ·
∑N

i=1 |ẋi(t)|
N−1 ·

∑N
i=1 k

act
i (t)

dt =

∫ Tmax

t=0

∑N
i=1 |ẋi(t)|∑N
i=1 k

act
i (t)

dt (6.8)

The quantity at the numerator
∑

i |ẋi(t)| represents the total distance traveled by all

agents in the network at time t. The measure kact
i (t) is defined as the number of active

links incident on an agent i. In this regard, we remember that not all collaborations are

active at a given time t; some are terminated and become inactive, after a characteristic

time τ . The quantity kact
i (t) measures exactly the number of active collaboration in which

an agent i is involved at time t. Therefore, the ratio of the two quantities expresses the

total distance traveled by the agents in the network per active link, at a given time step

t, i.e. a sort of instantaneous collaboration performance of the network. This measure is

then integrated over the duration Tmax of the simulation, to obtain the overall collaboration

performance C of the network. The quantity at the denominator of Eq. 6.8 can be thought

of as the number of active links in the network at time t, which we indicate with Mact(t),6

multiplied by a factor 2. By plugging this into Eq. 6.8, we obtain:

C =

∫ Tmax

t=0

∑N
i=1 |ẋi(t)|

2 ·Mact(t)
dt (6.9)

We use Eq. 6.9 to compute the collaboration performance C in every network we generate

through the exploration of our parameter space. We report our results in Fig. 6.10, by

making use of a heatmap to nicely visualize the average performance C for every parameter

combination.

6.3.2 Optimality of the real R&D network

We find that the configurations having the highest collaboration performance are located in

one region of the parameter space, exhibiting high approach rates and short characteristic

alliance life times. This means that an optimized network, in terms of collaboration

performance C, exhibits links with (i) a short characteristic life time and (ii) allowing for

a fast knowledge transfer between the involved partners – and thus a fast approach in the

knowledge space. While the dependence of the performance C on the approach rate µ is

6From network theory, we know that at any given time t, the sum of all node degrees ki equals the
number of links M multiplied by two, i.e.

∑
i ki(t) = 2 ·M(t)
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Figure 6.10: Collaboration performance of the simulated networks, as a function of the
characteristic alliance duration and the approach rate. The green square in the parameter
space represents the position occupied by the closest simulated networks to the real data.

easily predictable, the effect of the collaboration life time τ is not trivial, given all the

complex interdependencies between the network dynamics and the motion of the agents

in the knowledge space.

We argue that a short collaboration life time is beneficial for the performance C of the

collaboration network, because a reduced number of collaborations allows an agent to move

efficiently along one or a few directions in the knowledge space. When the characteristic

life time τ increases, more links are active at the same time, thus forcing the agents to cope

with the effect of multiple partnerships; this results in a reduced motion – i.e. a reduced

exploration – in the knowledge space. In other words, the density of the collaboration

network increases with τ and, after a certain threshold, the addition of a new link has

a negative marginal effect on the overall exploration of the knowledge space. Such non-

trivial effect, which we could detect only through the implementation and development

of our agent-based model, has several implications for policies aimed at optimizing real

systems.

Indeed, we have found that the empirical configuration of the real R&D network is gener-

ated by parameter sets [µ; τ ] which are located along the main diagonal of the parameter

space, as we show in Fig 6.6. This means that it is possible to obtain a configuration that

is both realistic and optimized with respect to the collaboration performance. Therefore,

effective policies to obtain an improved collaboration network would incentivize shorter

R&D alliances and higher knowledge exchange rates, for instance including rewards for

quick co-patenting by allied firms.
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Figure 6.11: Evolution of the instantaneous knowledge path during one computer
simulation. We report this quantity for 4 representative parameter sets, plus the parameter
combination reproducing the real R&D network.

6.4 Discussion

In this Chapter we have developed an agent-based model that is able to reproduce both

the link formation and the knowledge exchange process in a collaboration network. We

have used a novel approach, by combining our previous results on knowledge exchange and

collaboration network growth. In this new modeling framework, agents form links based on

their network features and then exchange knowledge with their partners, thus approaching

in a metric knowledge space. Our agents are endowed with three key attributes: an

activity (representing their propensity to engage in new alliances), a label (representing

their membership in a given circle of influence), and a position in a metric knowledge space

defined by a vector (which can be thought of as the fractions of the agent’s knowledge in

several fields).

The microscopic interaction rules are divided in two phases. In the first phase, the agents

form new collaborations based on their membership attribute, i.e. their label. Similarly

to our network formation model introduced in Chapter 4, Such attribute can be propa-

gated to other agents as a consequence of an alliance, thus defining the so called circles

of influence (groups of agents sharing the same membership attribute). The model in-

cludes different link formation probabilities depending on both the alliance initiator’s and

its future partners’ membership attributes. In the second phase, all pairs of connected
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agents exchange knowledge and approach each other in a D-dimensional knowledge space,

with a characteristic rate µ. The collaborations have a characteristic life time τ ; after

a collaboration is terminated, the approach of the involved partners ceases. The linking

probabilities constitute the network formation parameters, while the approach rate µ, the

collaboration characteristic life time τ and the dimensionality D of the knowledge space

represent the knowledge exchange parameters of our model.

The validation of our model against real data has been performed through a novel two-step

approach as well. By means of the SDC alliance dataset, we estimate the network for-

mation parameters, thus reproducing the topology of the resulting collaboration network.

Subsequently, through the NBER dataset (on firm patents), we estimate the knowledge

exchange parameters, thus evaluating the rate at which firms exchange knowledge and the

duration of the R&D alliances themselves. The underlying knowledge space we consider

in our real example is defined by IPC patent classes, allowing for a precise quantification

of every firm position.

By running extensive computer simulations, we have identified the set of linking proba-

bilities generating the closest network to the real R&D network, with respect to average

degree, global clustering coefficient and average path length. As summarized in Table 6.2,

when the initiator of the alliance is a labeled node (i.e. an incumbent firm), it connects

to a node having the same label with probability pLs = 0.45, to a node having a different

label with probability pLd = 0.2 and, consequently, to a non-labeled node (i.e. a newcomer

firm) with probability pLn = 0.35. When the alliance is initiated by a non-labeled node

(a newcomer), it connects to a labeled node with probability p∗NLl = 0.9 or to another

non-labeled node with probability p∗NLnl = 0.1.

These results are in line with those we have presented in Chapter 4. However, the R&D

network with patent data exhibits an even stronger tendency to favor connections with

labeled nodes (i.e. incumbent firms). Due to the fact that our analysis in now restricted

to firms for which patent data are available, we find an increase in the importance of

network endogenous mechanisms, given that we are considering larger – and therefore more

network-active – firms. The tendency to connect to labeled nodes is present irrespectively

of whether the alliance event is initiated by a labeled or a non-labeled node: precisely, 65%

of the collaborations initiated by labeled nodes (p∗Ls + p∗Ld ), as well as a surprising 90%

of the collaborations initiated by non-labeled nodes (p∗NLl ), involve a labeled node as a

partner. In this regard, the validation of our model brings additional support to the theory

of the importance of existing network structures in the formation of new collaborations.

As for the knowledge exchange parameters, we find that the real R&D network is best

reproduced by a configuration exhibiting a relatively low approach rate (µ = 0.0005) and

a characteristic duration of around two years (τ = 700 days). Both the test of our agent

based model and our empirical analysis, indeed, show that collaborations exert an overall

weak effect on the partners’ knowledge position. However, by examining the distribution
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of the knowledge distance shifts between every pair of connected agents, we find both a

positive and a negative tail. Despite the overall weak effect, some collaborations can cause

extreme shifts: some bring the partners closer, while some others push them farther in the

metric knowledge space.

The finding of a typical life time τ of around 2 years is consistent with our previous

theoretical assumptions and a number of previous studies (see Chapter 2). It should

be noted that the real R&D network can be reproduced by a whole set of parameter

combinations, lying on the main diagonal of the parameter space formed by µ and τ .

Precisely, these points exhibit large µ values and low τ values, or low µ values and large τ

values, thus confirming the weak effect of real collaborations on knowledge positions: the

faster the approach rate is, the shorter the characteristic alliance life time has to be to

generate a system corresponding to reality, and vice-versa.

This suggests that in real systems agents do not significantly change their knowledge po-

sitions as a consequence of their collaborations. They rather use the available information

about their mutual knowledge positions in order to establish new collaborations. In the

case of the real R&D network, a firm’s position, evaluated through its patents, is more a

determinant than a consequence of its R&D alliances.

Finally, we have investigated the performance of our generated collaboration networks

with respect to a new performance indicator. We call such indicator the collaboration

performance C of the network, and define it as the distance traveled by all agents per

active link (we dynamically compute this measure at every time step and then perform a

complete exploration of the parameter space in order to find the optimal network). We

find that the configuration exhibiting the highest performance C has the shortest possible

characteristic alliance duration τ , and the largest possible approach rate µ. This new,

non-trivial result has some implications for policies aimed at optimizing real systems.

Indeed, we have found that the real R&D network is generated by parameter sets [µ; τ ]

which are located along the main diagonal of the parameter space. This means that it

is possible to obtain a configuration that is both realistic and optimized with respect to

the collaboration performance. In the case of real R&D alliances, obviously, it would be

impossible to require alliance durations as short as 5 or 10 days; moreover, it is not easy

to directly enforce a fast approach or learning rate between real companies. However, the

results of our simulations suggest that effective policies to obtain a collaboration-performing

network would incentivize shorter R&D alliances and higher knowledge exchange rates.

Such policies could include, for instance, rewards for co-patenting activities from partner

companies, when these are carried out the earliest possible after the establishment of an

R&D alliance. The goal is to push companies to always explore new knowledge positions

with new partners, although limiting the duration of a single alliance, and avoiding having

too many active collaborations at the same time.
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To sum up, our model can successfully reproduce the network topology and the distribution

of the agents’ knowledge positions in a real collaboration network, while providing at

the same time a unique methodology to estimate an indicator of network performance.

Although we limit its validation to the domain of R&D networks, we argue that our

model is flexible and extendable to other collaboration networks, whose nodes can be

unequivocally positioned in a knowledge space. For the moment, we have been forced to

skip the validation on co-authorship networks, because of the lack of a clear methodology

to locate their nodes (i.e. the authors) in a knowledge space – unfortunately, the typical

knowledge classifications are instead applied to the links of the network (i.e. the papers).

In conclusion, we argue that – to the best of our knowledge – the novel modeling framework

we have developed in the present Chapter offers the most complete and straightforward

interpretation of the effects of knowledge exchange in a dynamically evolving collaboration

network.
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Chapter 7

Discussion and conclusions

7.1 Our contributions

In this thesis we have studied the formation and evolution of collaboration networks using a

complex systems perspective. Precisely, we have focused on those collaboration networks in

which every link formation event involves a knowledge flow. We have started our analysis

by selecting two prominent examples of such systems, namely R&D and co-authorship

networks, and thoroughly studied them from an empirical point of view.

Next, we set the goal to understand the microscopic rules leading to link formation and dis-

solution between individual agents, how they affect the aggregate performance generated

by these systems, and whether it is possible to optimize real systems with respect to such

performance. All of these questions have been addressed by means of agent-based models.

Our findings can be summarized along two lines: purely empirical and model-driven.

7.1.1 Empirical findings

Chapter 2. The analysis carried out in Chapter 2 on R&D networks has several impli-

cations. Rather than focusing on sectoral-related differences, our results provide strong

support to the hypothesis that many R&D network properties are robust across several

manufacturing and service sectors. These properties are also invariant across two differ-

ent scales of aggregation. That is, they are the same if one considers the R&D alliances

irrespectively of the sectors to which the firms belong (pooled network), or if one consid-

ers only alliances centered on a sector (sectoral networks). These properties span from

basic network characteristics such as size, density, degree distributions, to more complex

features such as the presence of small worlds and core-periphery architectures.

Remarkably, this reflects the similarities present at the microscopic level in the rules

determining alliance formation. Through our econometric model in 2.4, we have shown
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that alliance preferences between firms with small geographical, sectoral, technological

and network distances are stable and robust across sectors.

Nevertheless, our results also show that not all properties of the network are invariant

across different scales of aggregation. We have found that sectoral R&D networks are

disassortative, i.e. characterized by a negative correlation across node degrees, whereas the

pooled network is assortative. This transition from disassortative to assortative networks

is a new fresh stylized fact, that we have not further investigated in this dissertation, but

that should be taken into account in the theoretical explanations of R&D networks.

This instability of degree-degree correlations in R&D networks is reflected in our findings

at the microscopic level as well. While in the pooled R&D network the firms most likely

to form an alliance exhibit a strong centrality disparity, in sectoral R&D networks this

tendency disappears to be replaced by sectoral specific behaviors. This finding also stresses

the importance of using agent-based models to better understand and interpret certain

stylized facts. Despite the fact that firms with a high centrality disparity (i.e. showing

local disassortativity) are more likely to form new links in the network, the resulting

pooled R&D network is generally assortative. As already mentioned, we leave the study of

assortativity and disassortativity in collaboration networks to our future research; however,

this phenomenon and its emerging consequences deserve further attention.

Next, the result that both the pooled and sectoral networks are organized into core-

periphery architectures – nested structures in particular – supports the predictions of

the recent theoretical literature (e.g. Goyal and Joshi, 2003; Westbrock, 2010), and more

precisely of the knowledge-recombination model of König et al. (2012). In this model,

in case of relatively costly partnerships, the resulting efficient R&D network exhibits the

nested structure that we observe empirically.

These findings are further supported by our econometric approach, which shows – inter-

estingly – that alliances are more likely to be observed if they maximize the change in

some aggregate network measures, i.e. eigenvalue of the connected component to which

the firms belong (König et al., 2012) or the harmonic average path length of the network

(Jackson and Wolinsky, 1996, e.g.), rather the increase of the single firm centralities. The

network topology resulting from this behavior, again, is compatible with the observed

nested architectures. Most likely, this does not mean that firms are not concerned with

the improvement of their own network centrality when establishing new alliances. We

argue instead that firms do try to maximize their expected return, but this may depend

on both network-related and network-unrelated factors. The complex interdependencies

between firm decisions and the actual alliance formation give rise to a network growth

process where the newly formed links tend to maximize some aggregate network indica-

tors rather than individual firm centralities. The result is the observed coefficient sign in

our econometric model.
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Similarly, the data do not show any evidence of another theoretical aspect, i.e. costly

R&D alliances: firm dyads engaged in more distinct alliances are more likely to form one

additional alliance themselves, thus not showing any limitation effect in the number of

newly established R&D alliances. Again, this might be an effect of the complex interde-

pendencies above mentioned; only the use of an agent based model – that we investigate

in the next chapters – will be able to give us further insights.

Another important empirical finding is that previous network structures, along with poten-

tial network structure changes, matter in the alliance formation, as testified by the broad

and right-skewed degree distribution in all R&D networks, as well as by our econometric

approach. Even though the network-unrelated variables alone have a slightly better pre-

dictive power than network-related variables alone, we have shown that a model including

both types of variables has the highest possible goodness of fit when explaining the for-

mation of R&D alliances. In addition, the analysis of the predictor coefficients allows us

to identify an additional set of invariant and sectoral-robust features at the microscopic

level. Namely, alliances are more likely to be established if the potential partners belong

to the same country and sector, and exhibit a small technological distance; if they have

already engaged in many alliances with other distinct firms; if they are already – directly

or indirectly – connected by a path in the R&D network; if the formation of the considered

link leads to a small increase in the individual firm centralities, but a large increase in a

set of aggregate network centrality indicators, as already discussed.

Going further, our results show that the rise and fall of R&D networks has been mainly

driven by the entry and exit of firms participating into alliance activities (see Section 2.3.1).

Our interpretation is that the sheer number of firms participating in R&D alliances – as

well as the number of scientists writing papers, to mention our next example – is an

exogenous factor with respect to the network. Moreover, the entry/exit dynamics of

agents plays a significant role in the network formation and evolution. This means that

the observed rise-and-fall trends in R&D networks are a consequence of the exceptional

firm activity in the mid-nineties, fueled by the IT-bubble and subsequently continued by

the bio-tech revolution; this is in agreement with Schilling (2009), that has detected the

same mid-nineties peak in several alliance dataset, also across countries and sectors.

However, this does not change the relevance of our results. The fact that such rise-and-

fall trend characterizes many network properties means that the collaboration network

organizes itself in a very peculiar way, which is the true object of our study. Therefore,

our analysis answers the question: given certain exogenous factors that cause more or

fewer firms to be part of a network, how do they self-organize their collaborations? And

what is the structure of the emerging network?

The answer is that R&D networks are able to self-organize into components having com-

plex characteristics, namely small-world, core-periphery and nested architectures. And

these structures emerge as a consequence of the microscopic behaviors that we have tried
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to identify with our econometric model – mainly, tendency to close network paths and to

maximize the overall network connectedness. In this respect, we extend the results of Gu-

lati et al. (2012) – that has observed one of the complex features (small world properties) in

one sector (computer industry) – to many industrial sectors, not limited to manufacturing.

Chapter 3. In Chapter 3 we have extended the investigation of network trends and

patterns from R&D to co-authorship networks in scientific disciplines. We find that co-

authorship networks are characterized by similar network structures to the R&D networks,

i.e. the emergence of giant connected components, heterogeneous degree distributions

and small world properties. Differently from R&D networks, co-authorship networks are

characterized by a positive degree assortativity coefficient and do not exhibit any rise-and-

fall trend. On the contrary, they are characterized by generally rising trends over the last

three decades, associated with fluctuating trends for degree heterogeneity across nodes,

assortativity and small world properties.

As already mentioned for the R&D networks, we believe that the unprecedented growth

that has characterized every scientific field – and the corresponding publication rates –

in the recent years is an exogenous event with respect to the network formation and evo-

lution. Therefore, we do not aim at explaining this factor. However, the emergence of

similar network features (i.e. heterogeneous and right-skewed degree distribution, assor-

tativity and small world properties) suggests the existence of some invariant mechanisms,

albeit associated with domain-related specificities, determining the self-organization and

the evolution of collaboration networks.

Considering that our aim is to identify the minimal set of microscopic rules able to re-

produce the topology of such networks, we have investigated a different set of features,

more elementary and primitive than the ones studied in Chapter 2, thus representing more

suitable basic blocks for an agent-based model. The features that we have studied are: i.

the size of collaboration events (i.e. firms per alliance or authors per paper), ii. the agents’

activity (i.e. their propensity to engage in a collaboration) and iii. structural communities

in the network (beyond the agents’ sectoral or geographical positions).

The distribution of agents per collaboration is broad and right-skewed for all R&D and

co-authorship networks, even though the co-authorship networks exhibit a higher degree

of variability across fields. The number of agents per collaboration event spans from 2 (the

vast majority in all networks) to 55 (in the relativity and gravitation co-authorship net-

work). The agents’ activities distribution are dispersed and right-skewed as well, spanning

several orders of magnitude. Differently from many networks indicators, the activities are

stable and can effectively model the propensity of every agent to engage in a collabora-

tion event, thus making them viable candidates for an agent attribute in our model. In

addition, this study represents the first example of empirical activity computation in an

economic network.
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Next, we have detected the presence of modular structures in all collaboration networks,

through a well-known community detection algorithm (Infomap). Such finding is signifi-

cant and robust across domains. However, being it a complex and emerging topological

property of the network, we decide to use it as a validity test, and not as a building block

of our model. Such network clusters are a network-topology-based feature, and are not

explained by the belonging of the agents to same country or sector: we rather argue that

the modular structures are indicative of some microscopic rules of strategic link formation,

that involve the presence of a latent membership attribute. The existence of this attribute,

together with specific rules of propagation during the establishment of collaborations, is

at the basis of our the agent-based model that we develop in Chapter 4.

7.1.2 Model-driven findings

Chapter 4. Inspired by our empirical findings, especially on R&D networks, we have de-

signed a model where the agents, representing real collaborating agents, are endowed with

two key attributes: an activity (representing their propensity to engage in new alliances)

and a label (representing their membership in a given circle of influence).

The simple yet effective set of microscopic rules that we have proposed includes both

network-endogenous and network-exogenous mechanisms for link formation. Our model

is centered around the assumption that the agents have a membership attribute, that

we call label. Such attribute can be propagated to other agents as a consequence of a

collaboration, thus defining the so called circles of influence (groups of nodes sharing the

same membership attribute). The model includes different link formation probabilities,

that depend on both the collaboration initiator’s and its partners’ membership attributes.

We have first tested our model against the SDC Platinum alliance dataset. By running

extensive computer simulations, we have identified the set of linking probabilities that

generates the closest network to the empirical pooled R&D network, with respect to av-

erage degree, global clustering coefficient and average path length. We have found that

a labeled node (i.e. an incumbent firm) connects to a node having the same label with

probability p∗Ls = 0.3, to a node having a different label with probability p∗Ld = 0.3 and,

consequently, to a non-labeled node (i.e. a newcomer firm) with probability p∗Ln = 0.4.

A non-labeled node (a newcomer), when initiating a collaboration, connects instead to a

labeled node with probability p∗NLl = 0.75 and to another non-labeled node with probabil-

ity p∗NLnl = 0.25. The optimal simulated network generated by our model exhibits network

measures that deviate from the empirical values by less than 2%.

Given that 60% of the alliances initiated by incumbents, and 75% of the alliances initiated

by newcomers, are directed towards incumbents, we confirm the importance of the endoge-

nous mechanisms over the exogenous ones in the formation of new collaborations. This

result is confirmed in all sectoral R&D networks and all co-authorship networks: alliances
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initiated by incumbents are preferably directed towards other incumbents, with a prefer-

ence for nodes in the same circle of influence. However, in the totality of co-authorship

networks, newcomers tend instead to form their first alliance with other newcomer nodes.

Next, we have performed further tests to check whether the model is able to reproduce a

set of microscopic network properties, even without imposing any equivalence in the vali-

dation procedure. For all examined collaboration networks, we have obtained a surprising

agreement with the empirical data. Our model, fed with the optimal parameter combi-

nations, is able to reproduce the distributions of degrees, path lengths, local clustering

coefficients and network component sizes. We have also retrieved the distribution of path

lengths between every pair of nodes at the moment of link formation, especially including

the counts for path lengths 1 (i.e. repeated collaborations) and 2 (i.e. triadic closures).

This strongly supports the goodness of our model microscopic rules.

In addition, we have found a remarkable overlap between the network partition defined

by a widely used community detection algorithm (Infomap) and the one defined by our

node labels (i.e. membership attributes). Such overlap, measured through a normalized

mutual information criterion, is around 90% for all collaboration networks. We argue

that our label propagation mechanism models the formation of network clusters in an

efficient fashion: this result is remarkable if we consider that the Infomap algorithm detects

structural clusters based on the probability flow of random walks in the network (Rosvall

and Bergstrom, 2008), while our label propagation mechanism consists of an assignment

of a fixed membership attribute – which is easier to map to a real phenomenon.

Chapter 5. We have developed an agent based model of dynamic collaboration forma-

tion and knowledge exchange, and introduced a novel network performance measure. By

studying the interactions of the agents in a metric knowledge space, and assuming that

collaborations bring agents closer in this space, we have found that the system follows a

non-trivial dynamics and reaches a steady state in which the agents cluster around a set

of emerging attractors.

The two model parameters we vary are the interaction radius between the agents ε and

the alliance rewiring rate λ in the network. We have found that the number of knowledge

clusters decreases by increasing the threshold interaction radius ε, because the agents

are able to collaborate with partners located farther away in the knowledge space, thus

converging all together towards one position. When the knowledge regime is strongly tacit

or strongly explicit, the number of knowledge clusters depends only on ε itself, and not on

the alliance rewiring rate λ. The most interesting case occurs for intermediate knowledge

regimes, in which the number of knowledge clusters increases with λ. Small rewiring rates

lead to the emergence of only one knowledge cluster, which is dispersed in the knowledge

space and does not clearly exhibit the presence of a knowledge attractor in it. A faster

alliances rewiring leads the agents to potentially have collaborations with more partners,

allowing the emergence of a larger number of knowledge clusters; in this case, the presence
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of knowledge attractors, around which the firms eventually cluster, is clearly visible.

More importantly, we have found that the nodes, as a result of their interactions, explore

a certain distance in the knowledge space 〈K〉, which we consider as the performance

measure of the collaboration network. We have found that there exists a specific parameter

combination maximizing such indicator of performance, specifically intermediate values of

both the rewiring rate λ and the interaction radius ε. In particular, if we focus on the

dependence of 〈K〉 on λ, given a fixed ε, we find that there exists an optimal value

λ∗ maximizing 〈K〉. Such optimal rewiring rate λ∗ exhibits a weak dependence on ε;

namely, it slightly decreases when ε increases (but only for intermediate values of ε). This

is consistent with the empirical study by Rosenkopf and Schilling (2007), that shows a

varying alliance formation rate across industrial sectors.

Similarly, we have found that, given a fixed alliance rewiring rate, there exists an optimal

interaction radius ε∗ maximizing the mean knowledge path 〈K〉. In conclusion, we have

identified through this model a mechanism of volatile alliances to help the collaborating

agents better explore the knowledge space.

Chapter 6. We have developed an agent-based model that is able to reproduce both

the link formation and the knowledge exchange processes in a collaboration network, by

combining our previous agent-based models. In this new modeling framework, agents form

links based on their network features and then exchange knowledge with their partners,

thus approaching in a metric knowledge space. Our agents are endowed with three key

attributes: an activity (representing their propensity to engage in new alliances), a label

(representing their membership in a given circle of influence), and a position in a metric

knowledge space defined by a vector (which can be thought of as the fractions of the agent’s

knowledge in some categories).

The microscopic interaction rules are divided in two phases. In the first phase, the agents

form new collaborations based on their membership attribute, i.e. their label, following

the same rules as our network formation model, explained in Chapter 4, including different

link formation probabilities depending on both the alliance initiator’s and its future part-

ners’ membership attributes. In the second phase, all pairs of connected agents exchange

knowledge and approach each other in a D-dimensional knowledge space, with a charac-

teristic rate µ. The collaborations have a characteristic life time τ ; after a collaboration is

terminated, the approach of the involved partners ceases. The linking probabilities con-

stitute the network formation parameters, while the approach rate µ, the collaboration

characteristic life time τ and the dimensionality D of the knowledge space represent the

knowledge exchange parameters of our model.

We estimate the network formation parameters through the SDC alliance dataset and

the knowledge exchange parameters through the NBER dataset on firm patents, thus

quantifying the rate at which firms exchange knowledge and the duration of the R&D
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alliances themselves. The underlying knowledge space we consider in our real example is

defined by IPC patent classes, allowing for a precise quantification of every firm position.

The results we have found for the network formation parameters are in line with those

of Chapter 4. The R&D network with patent data exhibits an even stronger tendency

to favor connections with labeled nodes (i.e. incumbent firms), irrespectively of whether

the alliance event is initiated by a labeled or a non-labeled node. Precisely, 65% of the

collaborations initiated by incumbents, as well as a surprising 90% of the collaborations

initiated by newcomers, involve an incumbent as a partner. In this regard, the validation

of our model brings additional support to the theory of the importance of existing network

structures in the formation of new collaborations, even in a collaboration network where

the technological positions of the agents play an important role.

As for the knowledge exchange parameters, we find that the real R&D network is best

reproduced by a configuration exhibiting a relatively low approach rate, µ = 0.0005. Both

the test of our agent based model and our empirical analysis, indeed, show that collabo-

rations have an overall weak effect on the partners’ knowledge position: this suggests that

a firm’s position – evaluated through its patents – is rather a determinant than a conse-

quence of its R&D alliances, in agreement with Sampson (2007). However, by examining

the distribution of the knowledge distance shifts between every pair of connected agents,

we find both a positive and a negative tail. This indicates that some R&D collaborations

can have extreme effects on the distance between the involved agents, by bringing them

much closer or much farther in the knowledge space.

We have then found that the typical life time τ for an R&D alliance is around 2 years,

precisely 700 days. This is consistent with our previous theoretical assumptions and a

number of previous studies (see Chapter 2), e.g. Phelps (2003). It should be mentioned

that the real R&D network can actually be reproduced by a whole set of parameter combi-

nations, lying on the main diagonal of the parameter space formed by µ and τ . Precisely,

we refer to those points having large µ values and low τ values, or low µ values and large

τ values. Again, this is consistent with the finding that collaborations have a weak effect

on the agents’ knowledge positions.

Finally, we have investigated our simulated collaboration networks with respect to a new

indicator, that we call the collaboration performance C. We define it as the distance trav-

eled by all agents, divided by the number of active links in the network, dynamically

computed at each time step. The configuration exhibiting the highest performance C has

the shortest possible characteristic alliance duration τ , and the largest possible approach

rate µ. This new, non-trivial result has some implications for policies aimed at optimizing

real systems. Indeed, considering that the real R&D network is generated by parameter

sets having high µ and low τ , or vice-versa, this means that the system can be steered to-

wards a configuration that is both realistic and optimized with respect to the collaboration

performance, with short alliance duration and high knowledge exchange rate.
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7.2 Applications

From a general empirical perspective, our results generalize previous findings in the litera-

ture, that were limited to the analysis of few industrial sectors or scientific research fields.

From a theoretical perspective, the fact that many properties of collaboration networks

hold irrespectively of the domain, or the scale of aggregation, opens up the fascinating

possibility that the same universal mechanisms are responsible for the emergence of those

features.

Indeed, we believe that the major contribution of our study is to provide a straightfor-

ward and universal methodology to study collaboration networks, while at the same time

assessing their performance.

7.2.1 Methodology to systematically characterize networks

The use of the agent-based models that we have developed in Chapters 4 and 6 can be in

principle extended to any collaboration system for which a series of time-stamped links or

alliances are available. We argue that the predictive power of our model lies in the simplic-

ity of its label propagation rules and the flexibility of its linking probabilities. Moreover,

the agent activity encodes in an effective and simple fashion a big deal of information on

the system under examination, including the naturally heterogeneous propensity of the

agents to engage in new collaborations, and the entry of newcomers in the network (a

first-time agent activation can be equally considered as an entry to the network).

The linking probabilities deriving from the subsequent validation procedure on the dataset

at hand can give precise insights into the strategies pursued by the collaborating agents.

For instance, if we take the linking probabilities estimated for the pooled R&D network, our

findings suggest that incumbent firms tend to have a preference towards other incumbent

firms: 60% of their alliances belong to this category, split between a 30% probability to

connect to a node in the same circle of influence and a 30% probability to connect to a

node in a different circle of influence. In the remaining 40% of the cases, incumbents form

alliances with newcomers: these alliances are driven only by exogenous factors, since there

cannot be any network endogeneity affecting nodes that are not part of the network yet.

On the other hand, newcomers link to incumbent firms in 75% of the cases. Such alliances

are driven by network endogenous factors, namely the newcomers’ motivation to join the

R&D network by partnering with firms that are already part of it. However, a fraction

(25%) of alliances initiated by newcomers are directed to other newcomers. The reasons

behind these alliances are related to exogenous factors such as the firms’ commercial or

technological capital. Some newcomers prefer to join the R&D network by partnering with

other newcomers with no network experience – for instance, small start-up companies in
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highly technologically dynamic environments – rather than with an incumbent firm.

The extended validation procedure on sectoral R&D networks as well as co-authorship

networks has given us further insights, which are very informative about the nature of

the system under examination. Fox example, in both R&D and co-authorship networks,

labeled nodes (incumbents) tend to form links with other labeled nodes. Besides, when

forming a link with another labeled node, the collaboration initiator tends to select a node

having the same label, i.e. belonging to the same circle of influence; this tendency is less

pronounced in the pooled R&D network and the sectoral R&D networks characterized by

high technological dynamism, where incumbents exhibit a balanced alliance strategy, and

is instead much stronger in the totality of co-authorship networks, where the circles of

influence drive the formation of links between incumbents. In all co-authorship networks,

plus the sectoral network of R&D, laboratory and testing (again, a highly technologically

dynamic sector), non-labeled nodes – i.e. newcomers – tend to form their first links with

other non-labeled nodes. For the rest the sectoral R&D networks, instead, non-labeled

nodes (newcomers) tend to enter the network by forming a link with labeled nodes, i.e.

incumbents.

The last finding, we argue, highlights the existence of higher entry barriers in economic

systems than in academic environments. This result is consistent with empirical evidence:

unlike newcomer firms, which join the R&D network for the first time by partnering with

incumbent firms, a young scientist writes his/her first paper mostly with other young

scientists, and only a small part of the co-authors are expert scientists (typically, one

post-doctoral researcher or the professor in the same group).

So far, the fine tuning of our model has suggested that, in most cases, endogenous mecha-

nisms for network formation are predominant over the exogenous ones, or – in other words

– the existing network structures explain most of the newly formed links. We envision

a broad range of application for this model on several collaboration networks, possibly

in other domains such as open source software projects, online social networks, political

networks; the model validation and fine tuning could extending our current findings or

disprove them in some of the examined systems.

7.2.2 Design of optimal collaboration networks

The more general modeling framework that we have developed in Chapter 6 not only

could successfully reproduce the topology and the distribution of the agents’ knowledge

positions in a real collaboration network, but could also provide a unique methodology to

estimate an indicator of network performance. However, this leaves some open questions

that need to be further investigated. While the network topology can be unequivocally

matched between real data and simulations, the network performance involves a more

arbitrary definition.
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In the case of the pooled R&D network with patents, we have used a measure of knowledge

exploration as performance indicator. Precisely, we have defined a collaboration perfor-

mance C defined as the distance traveled by all agents in the knowledge space, divided by

the number of active links. This definition reflects the concepts presented in Cowan and

Jonard (2004); however, it could be argued that other measures could give different (if

not better) indications. For instance, one could employ the sheer number of patents (or

publications) in the computation of the performance (Jaffe and Trajtenberg, 2002), or a

uniquely network-related measure, such as some aggregate connectedness measure (König

et al., 2012, e.g.).

The results based on our collaboration performance C suggest that effective policies to

improve a real R&D network would incentivize shorter R&D alliances and higher knowl-

edge exchange rates. Such policies could include, for instance, rewards for co-patenting

activities from partner companies, when these are carried out the earliest possible after the

establishment of an R&D alliance. The goal is to encourage companies to always explore

knowledge positions with new partners, although limiting the duration of a single alliance,

and avoiding having too many active collaborations at the same time.

We believe that a knowledge exploration-related indicator captures in a better and less

biased way the performance of such a system, because it takes into account the real

knowledge trajectories of the agents. The sheer number of patents and citations for R&D

networks – or, even worse, the number of publications and citations in co-authorship

networks – would exhibit a strong time dependence and does not necessarily reflect the

goodness of the produced knowledge.

However, we do envision the inclusion of network-related measures to better capture the

knowledge diffusion properties of the collaboration systems. In agreement with the mod-

els proposed by König et al. (2012) or Jackson and Wolinsky (1996), we believe that a

higher network connectedness is beneficial for a faster knowledge diffusion. In this regard,

some preliminary results — that we do not show in this dissertation — indicate that the

knowledge diffusion speed increases with the small world properties of the collaboration

network. If this were confirmed by further analyses, it would mean that we can improve

the performance of the network by tuning the microscopic parameters in such a way that

its average path length decreases and its clustering coefficient increases.

In terms of linking probabilities (see Chapters 4 and 6), this would correspond to incen-

tivize alliances between incumbents in the same circle of influence, at the expense of nodes

from different circles. At the same time, the newcomer nodes should form more links with

each other, with a small part of collaborations directed to incumbent nodes. Remarkably,

these strategic linking probabilities resemble the ones that we have observed in most of

the co-authorship networks, meaning that these networks are somehow already optimized

with respect to knowledge spreading. However, as already mentioned, these results are

still preliminary and need to be integrated with some objective performance measure of
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the collaboration networks under examination.

Although we limit its validation to the domain of R&D networks in this dissertation,

we argue that our modeling framework is flexible and extendable to other collaboration

networks, whose nodes can be unequivocally positioned in a knowledge space. Provided

that a clear methodology to locate the nodes in a knowledge space and an appropriate

performance measure of the network are unequivocally defined, our modeling framework

offers the most complete and straightforward interpretation of the effects of knowledge

exchange in a dynamically evolving collaboration network.

7.3 Future research

Even though our study answers all research questions that we have posed in Chapter 1,

it inevitably leaves us with some other open questions. From a conceptual point of view,

the first possible extension to our study would be to endogenize the rise-and-fall trend

observed in R&D networks into our models.

As argued in Gulati et al. (2012), the rise and fall of R&D networks could be the sheer

outcome of a knowledge recombination process, associated with the embeddedness into

a network. Indeed, the possibility of knowledge recombination fuels the growth of the

network, either by combining heterogeneous knowledge bases (e.g. Cowan and Jonard,

2004) or by granting access to multiple paths through which knowledge can reach the firm

(König et al., 2011). The same process of knowledge recombination may however set the

the premises for the subsequent breakdown of the network. This is because recombination

brings homogeneity into knowledge bases, consequently reducing the incentive for knowl-

edge exchange and thus for alliance formation (Cowan and Jonard, 2004; Gulati et al.,

2012). Likewise, in a large network, the number of additional paths to which a firm gets

access with an alliance is higher if the alliance is created with a firm which is already

part of its component. In a situation where alliances are costly, this reduces the incen-

tives to maintain bridging ties, thus contributing to the fragmentation of the network into

many disconnected components (see König et al., 2011, for a model generating a similar

dynamics).

Next, although our network formation model captures many features of empirical collab-

oration networks, it can be further improved to account for other real world observations.

One of the limitations is assuming fixed node labels; this condition could be relaxed by

introducing a label decay, representing the exit of a firm from its circle of influence. Such

an extension might be useful especially when validating a dataset with a longer time ex-

tension. A second limitation is that the alliance partners chosen by the initiators have no

power in accepting this invitation; such a realistic attachment rule could be included in

the model, at the price of requiring more parameters. In addition, a linking preference
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towards partners of partners could be added to the model, to better reproduce the ob-

served effects of triadic closure in collaboration networks. Finally, we could include the

study of assortativity and nestedness in the networks generated by our model: again, at

the expense of adding more parameters or requiring more computational power, it would

be possible to reproduce these even more sophisticated network properties.

With respect to our general modeling framework, a first extension is represented by the

addition of a preferred knowledge distance for the agents to initiate a new collaboration, in

agreement with theoretical arguments (Cohen and Levinthal, 1990) and with our empirical

findings. To reproduce reality even better, at the expense of requiring more parameters, we

could incorporate additional drift, self-motion or distancing mechanisms for the agents in

the knowledge space. However, our results have shown that an approach mechanisms alone,

coupled with a complex network dynamics, is already capable of reproducing both the left

and the right tail of the knowledge distance shifts as a consequence of collaborations.

Another valid extension would be represented by the merger of our two-step validation

procedure into a broader, more complex one-step procedure. This means that the network

formation parameters and the knowledge exchange parameters would be estimated at the

same time, by imposing both the network topology and the knowledge positions of the

nodes. Such a procedure is formally more correct, because it would fully take into account

the interdependencies between the network topology and the knowledge positions. On the

other hand, varying all the parameters at the same time increases the dimensionality of

the parameter space and requires more computational power.

As a logical consequence, this means that the study of the collaboration network perfor-

mance would be more complete, as it would be expressed as a function of not only the

knowledge exchange parameters, but also the topological network parameters. Moreover,

the definition of the performance itself could be improved, or changed, by including other

network-related measures that quantify the speed and/or efficiency of diffusion mechanisms

on the network.

The definition of a comprehensive performance indicator, that takes into account the net-

work connectedness, has several implications for quantifying the vulnerability and the

systemic risk to which such systems are subject. As mentioned in Chapter 1, the inter-

dependence between the network performance and the microscopic parameters is in most

cases not trivial. A small change in the linking probabilities, for instance, can lead the

system to a state that experiences a sudden drop in network connectedness, i.e. a state in

which the removal of one single node can possibly cause a network breakdown.

Our work paves the way to a series of studies on performance, vulnerability and systemic

risk in collaboration networks, which are necessary to understand the conditions leading

to the systems’ performance, as a function of both knowledge-related and network-related

microscopic parameters.
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Appendix A

Supplementary material to Chapter 2

Modularity in the pooled R&D network We report in Table A.1 the relative con-

nectivities cij between the 18 largest industrial sectors that we have analyzed in our study.

The pooled R&D network in the year 1995 has been used to compute these values.

The quantity cij indicates the ratio between the observed and the expected fraction of

alliances connecting a firm in sector i to a firm in sector j. Values of cij greater than 1

suggest that the alliance probability between a firm in sector i and a firm in sector j is

higher than one would expect with a random partner choice. On the contrary, when cij
is smaller than 1, a firm in sector i forms alliances with firms in sector j with a smaller

probability than a random partner choice.

283 737 873 367 357 384 366 679 481 822 382 371 874 281 372 871 131 504

Pharmaceuticals (283) 6.5 0.1 3.1 0.1 0.1 2.2 0.2 1.0 0.1 3.6 1.6 0.2 0.4 2.4 0.0 0.0 0.0 0.8

Computer Software (737) 0.1 3.4 0.5 1.3 2.2 0.2 1.4 1.4 1.5 0.6 1.3 0.5 3.0 0.6 0.6 1.0 0.1 2.2

R&D, Lab and Testing (873) 3.1 0.5 7.7 0.3 0.2 2.1 0.2 2.1 0.9 4.0 2.8 0.9 4.3 2.3 0.0 2.3 0.0 1.7

Electronic Components (367) 0.1 1.3 0.3 5.0 3.2 1.0 3.3 1.7 0.8 0.7 1.3 0.0 0.8 0.6 0.0 3.3 0.0 1.8

Computer Hardware (357) 0.1 2.2 0.2 3.2 3.5 0.4 2.2 0.9 1.2 0.4 0.5 0.5 1.1 0.4 0.2 0.4 0.0 3.0

Medical Supplies (384) 2.2 0.2 2.1 1.0 0.4 29.4 0.2 1.8 0.0 1.3 2.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0

Communications Equipment (366) 0.2 1.4 0.2 3.3 2.2 0.2 7.2 1.4 2.4 0.2 2.1 0.4 0.0 0.0 0.9 1.8 0.0 2.0

Investment Companies (679) 1.0 1.4 2.1 1.7 0.9 1.8 1.4 9.1 1.0 1.1 2.1 2.4 2.2 3.1 0.8 6.2 3.8 0.0

Telephone Communications (481) 0.1 1.5 0.9 0.8 1.2 0.0 2.4 1.0 14.9 0.8 1.0 0.4 4.7 0.0 0.6 0.0 2.0 0.0

Universities (822) 3.6 0.6 4.0 0.7 0.4 1.3 0.2 1.1 0.8 6.9 3.5 4.4 0.0 1.9 1.9 0.0 3.5 1.1

Laboratory Apparatus (382) 1.6 1.3 2.8 1.3 0.5 2.7 2.1 2.1 1.0 3.5 10.7 0.0 0.0 3.9 7.8 0.0 0.0 0.0

Motor Vehicles (371) 0.2 0.5 0.9 0.0 0.5 0.8 0.4 2.4 0.4 4.4 0.0 60.8 0.0 0.0 4.9 13.1 2.0 0.0

Management, Consulting, PR (874) 0.4 3.0 4.3 0.8 1.1 0.0 0.0 2.2 4.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Inorganic Chemicals (281) 2.4 0.6 2.3 0.6 0.4 0.0 0.0 3.1 0.0 1.9 3.9 0.0 0.0 85.3 4.3 0.0 5.1 0.0

Aircrafts and parts (372) 0.0 0.6 0.0 0.0 0.2 0.0 0.9 0.8 0.6 1.9 7.8 4.9 0.0 4.3 76.7 25.6 2.6 0.0

Engineer.,Architec.,Survey (871) 0.0 1.0 2.3 3.3 0.4 0.0 1.8 6.2 0.0 0.0 0.0 13.1 0.0 0.0 25.6 0.0 5.1 0.0

Crude Oil and Gas (131) 0.0 0.1 0.0 0.0 0.0 0.0 0.0 3.8 2.0 3.5 0.0 2.0 0.0 5.1 2.6 5.1 118.1 0.0

Profess. Equipment Wholesale (504) 0.8 2.2 1.7 1.8 3.0 0.0 2.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.4

Table A.1: Relative connectivities between the 18 largest sectors.

As reported in Table A.1, most of the connectivity values in the main diagonal cii, that

we define as the intra-sector connectivities, are greater than 1. On the contrary, the

elements cij outside the main diagonal, that we define as the inter-sector connectivities,

are instead smaller than 1, or anyway smaller than the corresponding diagonal element. In

other words, most of the alliances we have tracked in the pooled R&D network occur within

sectors rather than between different sectors. There are only two exceptions: Management-

Consulting-PR and Engineering-Architecture-Survey, that – being service sectors – have
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a natural bias towards inter-sectoral alliances, rather than intra-sectoral alliances.

It is important to stress that we have not performed this analysis in order to maximize

the modularity coefficient or any other indicator. Our aim was to assess the goodness

of one possible partition of the R&D network (in this case, using the industrial sectors

as communities) to study the evolution of the modularity coefficient computed on top

of this partition over time. However, such cross-sector investigation sheds light on the

alliance activity of the firms. Most of the alliances, being intra-sectoral, are characterized

by homophily. But the existence of inter-sectoral alliances is further evidence that some

firms serve as bridges between two or more different sectors, as we have already shown in

Section 2.3.3 with respect to the assortativity.

Additional results for our econometric model The following tables report the com-

plete results for our econometric model on the seven representative sectoral R&D networks

that we have analyzed in Chapter 2, i.e. Pharmaceuticals (Table A.2), Computer Hard-

ware (Table A.3), Communications Equipment (Table A.4), Electronic Components (Table

A.5), Medical Supplies (Table A.6), Computer Software (Table A.7) and R&D, Laboratory

and Testing (Table A.8).
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A B C AB AC BC ABC

(Intercept) −4.966∗∗∗ −6.271∗∗∗ −4.781∗∗∗ −5.347∗∗∗ −4.060∗∗∗ −5.240∗∗∗ −4.467∗∗∗

(0.192) (0.183) (0.291) (0.206) (0.301) (0.323) (0.341)

newlinks 0.508∗∗∗ 0.472∗∗∗ 0.494∗∗∗ 0.483∗∗∗ 0.508∗∗∗ 0.471∗∗∗ 0.481∗∗∗

(0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010)

same nation 0.224∗∗∗ 0.163∗ 0.222∗∗ 0.169∗

(0.068) (0.068) (0.068) (0.068)

same sic 0.371∗∗∗ 0.448∗∗∗ 0.383∗∗∗ 0.454∗∗∗

(0.079) (0.079) (0.079) (0.079)

past alliances 0.273∗∗∗ 0.139 0.263∗∗∗ 0.128

(0.061) (0.098) (0.063) (0.101)

tech distance −2.668∗∗∗ −2.103∗∗∗ −2.618∗∗∗ −2.095∗∗∗

(0.137) (0.139) (0.138) (0.139)

inverse shortest pl 2.920∗∗∗ 2.189∗∗∗ 2.910∗∗∗ 2.218∗∗∗

(0.127) (0.143) (0.132) (0.146)

closeness aritm mean −0.507∗∗∗ −0.443∗∗ −0.684∗∗∗ −0.674∗∗∗

(0.151) (0.156) (0.171) (0.179)

closeness difference 0.604∗∗∗ 0.535∗∗∗ 0.684∗∗∗ 0.549∗∗∗

(0.100) (0.105) (0.163) (0.162)

delta closeness −0.860∗∗∗ −0.533∗∗ −0.622∗∗ −0.435∗

(0.162) (0.165) (0.203) (0.204)

delta eigenvalue 0.026 0.013 0.050∗ 0.036

(0.019) (0.019) (0.022) (0.022)

delta harmonic aspl 0.051 −0.083 −0.092 −0.200∗

(0.082) (0.082) (0.099) (0.095)

AIC 9166.072 9336.770 9744.345 8941.128 9153.738 9329.115 8935.185

BIC 9432.478 9592.519 10000.095 9239.502 9452.113 9616.833 9265.528

Log Likelihood -4558.036 -4644.385 -4848.173 -4442.564 -4548.869 -4637.557 -4436.593

Deviance 9116.072 9288.770 9696.345 8885.128 9097.738 9275.115 8873.185

Num. obs. 313709 313709 313709 313709 313709 313709 313709
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, ·p < 0.1

Table A.2: Econometric model ABC (including all variable groups) for the Pharmaceu-
ticals sectoral R&D network. The coefficients with p-value smaller than 0.01 are reported
in bold character.
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A B C AB AC BC ABC

(Intercept) −5.102∗∗∗ −5.712∗∗∗ −4.284∗∗∗ −5.345∗∗∗ −4.118∗∗∗ −4.854∗∗∗ −4.588∗∗∗

(0.190) (0.184) (0.205) (0.197) (0.211) (0.225) (0.234)

newlinks 0.219∗∗∗ 0.199∗∗∗ 0.223∗∗∗ 0.197∗∗∗ 0.216∗∗∗ 0.200∗∗∗ 0.199∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

same nation 0.675∗∗∗ 0.651∗∗∗ 0.702∗∗∗ 0.648∗∗∗

(0.056) (0.056) (0.056) (0.056)

same sic 0.365∗∗∗ 0.332∗∗∗ 0.361∗∗∗ 0.329∗∗∗

(0.067) (0.067) (0.067) (0.067)

past alliances 0.208∗∗∗ 0.111∗∗ 0.179∗∗∗ 0.116∗∗

(0.032) (0.037) (0.033) (0.037)

tech distance −1.585∗∗∗ −1.334∗∗∗ −1.449∗∗∗ −1.298∗∗∗

(0.109) (0.110) (0.109) (0.110)

inverse shortest pl 1.930∗∗∗ 1.519∗∗∗ 1.981∗∗∗ 1.569∗∗∗

(0.126) (0.128) (0.124) (0.127)

closeness aritm mean 0.179· 0.179∗ −0.047 −0.042

(0.093) (0.090) (0.101) (0.099)

closeness difference 0.219∗∗∗ 0.162∗∗ 0.291∗ 0.246·

(0.056) (0.055) (0.131) (0.130)

delta closeness −1.228∗∗∗ −1.061∗∗∗ −0.775∗∗∗ −0.733∗∗∗

(0.144) (0.140) (0.193) (0.189)

delta eigenvalue 0.118∗∗∗ 0.105∗∗∗ 0.117∗∗∗ 0.105∗∗∗

(0.023) (0.023) (0.022) (0.022)

delta harmonic aspl −1.410∗∗∗ −1.229∗∗∗ −1.295∗∗∗ −1.170∗∗∗

(0.227) (0.220) (0.222) (0.220)

AIC 11497.060 11613.424 11809.827 11248.290 11348.919 11538.025 11184.447

BIC 11749.789 11856.044 12052.448 11531.347 11631.976 11810.973 11497.831

Log Likelihood -5723.530 -5782.712 -5880.914 -5596.145 -5646.459 -5742.013 -5561.223

Deviance 11447.060 11565.424 11761.827 11192.290 11292.919 11484.025 11122.447

Num. obs. 181529 181529 181529 181529 181529 181529 181529
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, ·p < 0.1

Table A.3: Econometric model ABC (including all variable groups) for the Computer
Hardware sectoral R&D network. The coefficients with p-value smaller than 0.01 are
reported in bold character.
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A B C AB AC BC ABC

(Intercept) −5.078∗∗∗ −5.561∗∗∗ −3.463∗∗∗ −5.431∗∗∗ −3.504∗∗∗ −4.694∗∗∗ −4.636∗∗∗

(0.199) (0.206) (0.223) (0.220) (0.227) (0.273) (0.281)

newlinks 0.259∗∗∗ 0.238∗∗∗ 0.260∗∗∗ 0.237∗∗∗ 0.254∗∗∗ 0.237∗∗∗ 0.237∗∗∗

(0.005) (0.006) (0.005) (0.006) (0.005) (0.006) (0.006)

same nation 0.736∗∗∗ 0.715∗∗∗ 0.744∗∗∗ 0.695∗∗∗

(0.059) (0.059) (0.059) (0.059)

same sic 0.512∗∗∗ 0.464∗∗∗ 0.497∗∗∗ 0.448∗∗∗

(0.074) (0.075) (0.074) (0.075)

past alliances 0.047 −0.143∗ −0.009 −0.157∗

(0.061) (0.069) (0.063) (0.070)

tech distance −1.386∗∗∗ −1.067∗∗∗ −1.244∗∗∗ −1.077∗∗∗

(0.120) (0.122) (0.120) (0.122)

inverse shortest pl 1.442∗∗∗ 1.130∗∗∗ 1.626∗∗∗ 1.315∗∗∗

(0.126) (0.130) (0.129) (0.133)

closeness aritm mean 0.340∗∗∗ 0.345∗∗∗ 0.192∗∗ 0.203∗∗

(0.071) (0.069) (0.074) (0.073)

closeness difference 0.000 −0.021 −0.114 −0.130

(0.050) (0.051) (0.104) (0.105)

delta closeness −0.904∗∗∗ −0.827∗∗∗ −0.350∗∗ −0.329∗∗

(0.094) (0.091) (0.125) (0.125)

delta eigenvalue 0.090∗∗∗ 0.091∗∗∗ 0.139∗∗∗ 0.132∗∗∗

(0.019) (0.019) (0.019) (0.019)

delta harmonic aspl −1.049∗∗∗ −0.939∗∗∗ −0.825∗∗∗ −0.747∗∗∗

(0.185) (0.181) (0.182) (0.179)

AIC 9345.886 9412.960 9537.443 9124.595 9190.386 9341.452 9061.810

BIC 9587.563 9644.970 9769.453 9395.274 9461.064 9602.463 9361.489

Log Likelihood -4647.943 -4682.480 -4744.722 -4534.298 -4567.193 -4643.726 -4499.905

Deviance 9295.886 9364.960 9489.443 9068.595 9134.386 9287.452 8999.810

Num. obs. 116668 116668 116668 116668 116668 116668 116668
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, ·p < 0.1

Table A.4: Econometric model ABC (including all variable groups) for the Communi-
cations Equipment sectoral R&D network. The coefficients with p-value smaller than 0.01
are reported in bold character.
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A B C AB AC BC ABC

(Intercept) −5.266∗∗∗ −5.951∗∗∗ −3.801∗∗∗ −5.696∗∗∗ −3.697∗∗∗ −4.995∗∗∗ −4.852∗∗∗

(0.181) (0.197) (0.231) (0.210) (0.236) (0.281) (0.288)

newlinks 0.238∗∗∗ 0.213∗∗∗ 0.238∗∗∗ 0.212∗∗∗ 0.231∗∗∗ 0.212∗∗∗ 0.212∗∗∗

(0.005) (0.005) (0.004) (0.005) (0.005) (0.005) (0.005)

same nation 0.804∗∗∗ 0.767∗∗∗ 0.815∗∗∗ 0.761∗∗∗

(0.054) (0.055) (0.055) (0.055)

same sic 0.375∗∗∗ 0.354∗∗∗ 0.380∗∗∗ 0.348∗∗∗

(0.067) (0.068) (0.067) (0.068)

past alliances 0.175∗∗∗ −0.002 0.123∗ −0.020

(0.048) (0.062) (0.051) (0.064)

tech distance −1.534∗∗∗ −1.255∗∗∗ −1.413∗∗∗ −1.234∗∗∗

(0.119) (0.120) (0.119) (0.120)

inverse shortest pl 1.710∗∗∗ 1.354∗∗∗ 1.877∗∗∗ 1.523∗∗∗

(0.119) (0.123) (0.121) (0.125)

closeness aritm mean 0.532∗∗∗ 0.542∗∗∗ 0.300∗ 0.333∗∗

(0.114) (0.111) (0.125) (0.123)

closeness difference 0.138· 0.070 −0.083 −0.157

(0.073) (0.073) (0.146) (0.146)

delta closeness −1.134∗∗∗ −1.052∗∗∗ −0.384∗ −0.332·

(0.149) (0.146) (0.183) (0.181)

delta eigenvalue 0.054∗∗ 0.056∗∗ 0.109∗∗∗ 0.102∗∗∗

(0.020) (0.020) (0.019) (0.019)

delta harmonic aspl −1.004∗∗∗ −0.905∗∗∗ −0.899∗∗∗ −0.813∗∗∗

(0.161) (0.159) (0.167) (0.164)

AIC 11644.651 11715.646 11934.436 11354.304 11488.450 11656.961 11304.548

BIC 11898.437 11959.280 12178.071 11638.544 11772.690 11931.050 11619.243

Log Likelihood -5797.325 -5833.823 -5943.218 -5649.152 -5716.225 -5801.481 -5621.274

Deviance 11594.651 11667.646 11886.436 11298.304 11432.450 11602.961 11242.548

Num. obs. 189365 189365 189365 189365 189365 189365 189365
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, ·p < 0.1

Table A.5: Econometric model ABC (including all variable groups) for the Electronic
Components sectoral R&D network. The coefficients with p-value smaller than 0.01 are
reported in bold character.
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A B C AB AC BC ABC

(Intercept) −4.380∗∗∗ −6.262∗∗∗ −2.416∗∗ −5.155∗∗∗ −3.500∗∗∗ −3.978∗∗ −2.634∗

(0.769) (0.735) (0.836) (0.799) (0.863) (1.254) (1.289)

newlinks 0.875∗∗∗ 0.971∗∗∗ 0.963∗∗∗ 0.930∗∗∗ 0.969∗∗ 0.989∗∗∗ 0.941∗∗∗

(0.075) (0.076) (0.077) (0.075) (0.074) (0.079) (0.077)

same nation −0.102 −0.016 0.050 −0.004

(0.241) (0.242) (0.414) (0.250)

same sic 0.595∗ 0.796∗∗ 0.375∗∗ 0.752∗∗

(0.279) (0.279) (0.146) (0.282)

past alliances 0.371∗ 0.232 0.295∗ 0.222

(0.174) (0.255) (0.150) (0.249)

tech distance −3.326∗∗∗ −2.636∗∗∗ −2.812∗∗∗ −2.721∗∗∗

(0.529) (0.532) (0.551) (0.543)

inverse shortest pl 3.071∗∗∗ 2.474∗∗∗ 2.703∗∗∗ 2.089∗∗∗

(0.348) (0.362) (0.382) (0.393)

closeness aritm mean 0.013 0.016 −0.031 −0.031

(0.017) (0.017) (0.029) (0.027)

closeness difference 0.007 0.012 0.027 0.032

(0.014) (0.014) (0.021) (0.021)

delta closeness −0.149∗∗∗ −0.146∗∗∗ −0.094∗ −0.099∗

(0.025) (0.022) (0.046) (0.045)

delta eigenvalue −0.116 −0.113 −0.131 −0.088

(0.085) (0.079) (0.100) (0.102)

delta harmonic aspl 0.009 0.008 −0.024 −0.051

(0.198) (0.310) (0.227) (0.234)

AIC 655.193 663.227 695.624 609.758 630.024 658.479 605.090

BIC 838.657 839.353 871.749 815.237 835.504 856.620 832.585

Log Likelihood -302.597 -307.614 -323.812 -276.879 -307.012 -302.239 -271.545

Deviance 605.193 615.227 647.624 553.758 647.024 604.479 543.090

Num. obs. 11368 11368 11368 11368 11368 11368 11368
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, ·p < 0.1

Table A.6: Econometric model ABC (including all variable groups) for the Medical Sup-
plies sectoral R&D network. The coefficients with p-value smaller than 0.01 are reported
in bold character.
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A B C AB AC BC ABC

(Intercept) −4.971∗∗∗ −5.939∗∗∗ −4.598∗∗∗ −5.316∗∗∗ −4.102∗∗∗ −5.229∗∗∗ −4.647∗∗∗

(0.192) (0.189) (0.206) (0.200) (0.212) (0.225) (0.234)

newlinks 0.196∗∗∗ 0.178∗∗∗ 0.206∗∗∗ 0.173∗∗∗ 0.194∗∗∗ 0.180∗∗∗ 0.175∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

same nation 0.517∗∗∗ 0.506∗∗∗ 0.544∗∗∗ 0.496∗∗∗

(0.055) (0.056) (0.055) (0.056)

same sic 0.401∗∗∗ 0.361∗∗∗ 0.399∗∗∗ 0.349∗∗∗

(0.067) (0.067) (0.067) (0.067)

past alliances −0.112 −0.252∗ −0.156 −0.241∗

(0.099) (0.111) (0.103) (0.112)

tech distance −1.893∗∗∗ −1.652∗∗∗ −1.807∗∗∗ −1.630∗∗∗

(0.105) (0.106) (0.105) (0.106)

inverse shortest pl 1.926∗∗∗ 1.592∗∗∗ 2.188∗∗∗ 1.833∗∗∗

(0.118) (0.117) (0.119) (0.120)

closeness aritm mean 0.538∗∗∗ 0.503∗∗∗ 0.189 0.149

(0.120) (0.116) (0.123) (0.122)

closeness difference 0.338∗∗∗ 0.295∗∗∗ 0.425∗ 0.439∗∗

(0.073) (0.072) (0.170) (0.170)

delta closeness −1.232∗∗∗ −1.073∗∗∗ −0.843∗∗∗ −0.847∗∗∗

(0.168) (0.162) (0.239) (0.240)

delta eigenvalue 0.074∗∗∗ 0.064∗∗∗ 0.123∗∗∗ 0.109∗∗∗

(0.019) (0.019) (0.016) (0.016)

delta harmonic aspl −1.580∗∗∗ −1.415∗∗∗ −1.137∗∗∗ −1.047∗∗∗

(0.237) (0.232) (0.240) (0.239)

AIC 12297.023 12425.920 12721.241 11968.114 12169.407 12342.446 11900.390

BIC 12554.659 12673.250 12968.572 12256.666 12457.959 12620.693 12219.859

Log Likelihood -6123.511 -6188.960 -6336.620 -5956.057 -6056.703 -6144.223 -5919.195

Deviance 12247.023 12377.920 12673.241 11912.114 12113.407 12288.446 11838.390

Num. obs. 220896 220896 220896 220896 220896 220896 220896
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, ·p < 0.1

Table A.7: Econometric model ABC (including all variable groups) for the Computer
Software sectoral R&D network. The coefficients with p-value smaller than 0.01 are re-
ported in bold character.
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A B C AB AC BC ABC

(Intercept) −4.496∗∗∗ −6.123∗∗∗ −3.890∗∗∗ −4.825∗∗∗ −3.332∗∗∗ −5.489∗∗∗ −4.537∗∗∗

(0.179) (0.185) (0.292) (0.202) (0.296) (0.415) (0.410)

newlinks 0.341∗∗∗ 0.309∗∗∗ 0.359∗∗∗ 0.309∗∗∗ 0.338∗∗∗ 0.309∗∗∗ 0.307∗∗∗

(0.008) (0.009) (0.008) (0.009) (0.009) (0.009) (0.009)

same nation 0.236∗∗∗ 0.206∗∗ 0.225∗∗∗ 0.206∗∗

(0.066) (0.067) (0.066) (0.067)

same sic 0.718∗∗∗ 0.701∗∗∗ 0.734∗∗∗ 0.700∗∗∗

(0.075) (0.076) (0.075) (0.076)

past alliances 0.123· 0.059 0.108 0.060

(0.073) (0.087) (0.076) (0.088)

tech distance −2.989∗∗∗ −2.578∗∗∗ −2.903∗∗∗ −2.576∗∗∗

(0.135) (0.139) (0.136) (0.139)

inverse shortest pl 2.644∗∗∗ 1.633∗∗∗ 2.681∗∗∗ 1.721∗∗∗

(0.123) (0.134) (0.126) (0.137)

closeness aritm mean 0.165 0.309 0.197 0.326

(0.242) (0.238) (0.330) (0.321)

closeness difference 0.455∗∗ 0.281· 0.197 0.002

(0.156) (0.160) (0.198) (0.198)

delta closeness −1.578∗∗∗ −0.835∗∗∗ −0.431· −0.098

(0.217) (0.206) (0.241) (0.234)

delta eigenvalue 0.006 −0.013 0.089∗∗∗ 0.063∗

(0.022) (0.022) (0.025) (0.025)

delta harmonic aspl 0.077 −0.099 −0.033 −0.139

(0.087) (0.087) (0.093) (0.095)

AIC 9536.689 10000.926 10392.194 9347.891 9503.648 9993.217 9344.910

BIC 9801.499 10255.143 10646.410 9644.477 9800.234 10279.211 9673.273

Log Likelihood -4743.345 -4976.463 -5172.097 -4645.945 -4723.824 -4969.609 -4641.455

Deviance 9486.689 9952.926 10344.194 9291.891 9447.648 9939.217 9282.910

Num. obs. 294304 294304 294304 294304 294304 294304 294304
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, ·p < 0.1

Table A.8: Econometric model ABC (including all variable groups) for the R&D, Lab
and Testing sectoral R&D network. The coefficients with p-value smaller than 0.01 are
reported in bold character.
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Appendix B

Supplementary material to Chapter 3

Network visualization and emergence of communities We report here the visual

network representations and the cluster size distributions for five sectoral R&D networks

– Computer Hardware (Fig. B.1), Communications Equipment (Fig. B.2), Electronic

Components (Fig. B.3), Computer Software (Fig. B.4) and R&D, Laboratory and Testing

(Fig. B.5) – as well as five co-authorship networks – quantum mechanics, field theories

and special relativity (Fig. B.6), general relativity and gravitation (Fig. B.7), optics (Fig.

B.8), electronic transport in condensed matter (Fig. B.9) and superconductivity (Fig.

B.10).
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Figure B.1: (a) Visual representation of the computer hardware sectoral R&D network.
(b) Size distribution of the network clusters.
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Figure B.2: (a) Visual representation of the communications equipment sectoral R&D
network. (b) Size distribution of the network clusters.
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Figure B.3: (a) Visual representation of the electronic components sectoral R&D net-
work. (b) Size distribution of the network clusters.
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Figure B.4: (a) Visual representation of the computer software sectoral R&D network.
(b) Size distribution of the network clusters.
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Figure B.5: (a) Visual representation of the R&D, laboratory & testing sectoral R&D
network. (b) Size distribution of the network clusters.
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Chapter B. Supplementary material to Chapter 3
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Figure B.6: (a) Visual representation of the co-authorship network in quantum me-
chanics, field theories and special relativity. (b) Size distribution of the network clusters.
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Figure B.7: (a) Visual representation of the co-authorship network in general relativity
and gravitation. (b) Size distribution of the network clusters.
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Figure B.8: (a) Visual representation of the co-authorship network in optics. (b) Size
distribution of the network clusters.
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Figure B.9: (a) Visual representation of the co-authorship network in electronic trans-
port in condensed matter. (b) Size distribution of the network clusters.
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Figure B.10: (a) Visual representation of the co-authorship network in superconduc-
tivity. (b) Size distribution of the network clusters.
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Appendix C

Supplementary material to Chapter 4

Numerical simulations results For each of the 684,000 computer simulations we run,

we test the resulting generated R&D network with respect to three properties: average

degree 〈k〉, average path length 〈l〉 and global clustering coefficient C. In Fig. C.1 we

show how these three quantities are distributed across all the 684,000 realizations and we

compare them with the observed values 〈k〉OBS, 〈l〉OBS and COBS.
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Figure C.1: Distributions of average degree 〈k〉, average path length 〈l〉 and global
clustering coefficient C across all 684,000 runs of our model (each of the 3,420 points in
the parameter space has been explored 200 times). The vertical red lines represent the
observed values 〈k〉OBS, 〈l〉OBS and COBS in the empirical R&D network.

We find that the global clustering coefficient and the average path length distributions

are peaked around the observed values. However, the average degree distribution does not

display any peak, despite being relatively narrow and centered around the real value (note

the values on the x-axis in Fig. C.1). The fact that these three distributions are centered

around the real values testifies that our model well captures the topology of the observed

network for a large set of free parameters, despite we have imposed only a few features of

the network (number of nodes N and alliances E, and the distributions of node activities

ai and partners per alliance m). At the same time, the distributions of 〈k〉, 〈l〉 and C are
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not excessively narrow, showing that the we can meaningfully perform an exploration –

and consequently a fit – of the free parameters of our model.

(a) (b) (c)

(d) (e) (f)

Figure C.2: Likelihood scores for all points in the parameter space, for ε0 equal to 10%
(a), 8% (b), 5% (c), 3% (d), 2% (e) and 1% (f).

The error threshold value ε0 we impose for the computation of the Likelihood score in-

fluences the number of points in the parameter space that fulfill our matching criteria.

Obviously, by decreasing ε0, we observe a smaller number of points displaying high like-

lihood scores, as we could expect, because a better representation of reality is required.

In Fig. C.2 we show the Likelihood scores of every point in the parameter space for six

different values of ε0, ranging from 1% to 10%. For our analysis, we take a conservative

approach and fix ε0 = 2%.

Microscopic measures on all tested collaboration networks We report all the mi-

croscopic features that our agent-based mode is able to reproduce, for all the collaboration

networks under examination.
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Figure C.3: Computer hardware R&D network (SIC code 357). Distributions of node
degrees (a), path lengths (b), local clustering coefficients (c) and component sizes (d) for
the real and the optimal simulated networks.
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Figure C.4: Computer hardware R&D network (SIC code 357). (a) Visual represen-
tation of one realization of the optimal simulated network. (b) Size distribution of i. the
circles of influence in all realizations of the optimal simulated network, ii. the Infomap
clusters in all realizations of the optimal simulated network and iii. the Infomap clusters
in the empirical network.
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Figure C.5: Computer hardware R&D network (SIC code 357). (a) Distribution of
link types for empirical and simulated networks. (b) Distribution of path lengths at the
moment of link formation (only for nodes belonging to the same connected component).
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Figure C.6: Communications equipment R&D network (SIC code 366). Distributions
of node degrees (a), path lengths (b), local clustering coefficients (c) and component sizes
(d) for the real and the optimal simulated networks.
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Figure C.7: Communications equipment R&D network (SIC code 366). (a) Visual
representation of one realization of the optimal simulated network. (b) Size distribution
of i. the circles of influence in all realizations of the optimal simulated network, ii. the
Infomap clusters in all realizations of the optimal simulated network and iii. the Infomap
clusters in the empirical network.
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Figure C.8: Communications equipment R&D network (SIC code 366). (a) Distribution
of link types for empirical and simulated networks. (b) Distribution of path lengths at the
moment of link formation (only for nodes belonging to the same connected component).
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Figure C.9: Electronic components R&D network (SIC code 367). Distributions of
node degrees (a), path lengths (b), local clustering coefficients (c) and component sizes
(d) for the real and the optimal simulated networks.
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Figure C.10: Electronic components R&D network (SIC code 367). (a) Visual repre-
sentation of one realization of the optimal simulated network. (b) Size distribution of i.
the circles of influence in all realizations of the optimal simulated network, ii. the Infomap
clusters in all realizations of the optimal simulated network and iii. the Infomap clusters
in the empirical network.
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Figure C.11: Electronic components R&D network (SIC code 367). (a) Distribution of
link types for empirical and simulated networks. (b) Distribution of path lengths at the
moment of link formation (only for nodes belonging to the same connected component).
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Figure C.12: Computer software R&D network (SIC code 737). Distributions of node
degrees (a), path lengths (b), local clustering coefficients (c) and component sizes (d) for
the real and the optimal simulated networks.
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Figure C.13: Computer software R&D network (SIC code 737). (a) Visual represen-
tation of one realization of the optimal simulated network. (b) Size distribution of i. the
circles of influence in all realizations of the optimal simulated network, ii. the Infomap
clusters in all realizations of the optimal simulated network and iii. the Infomap clusters
in the empirical network.
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Figure C.14: Computer software R&D network (SIC code 737). (a) Distribution of
link types for empirical and simulated networks. (b) Distribution of path lengths at the
moment of link formation (only for nodes belonging to the same connected component).
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Figure C.15: R&D, laboratory and testing R&D network (SIC code 873). Distributions
of node degrees (a), path lengths (b), local clustering coefficients (c) and component sizes
(d) for the real and the optimal simulated networks.
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Figure C.16: R&D, laboratory and testing R&D network (SIC code 873). (a) Visual
representation of one realization of the optimal simulated network. (b) Size distribution
of i. the circles of influence in all realizations of the optimal simulated network, ii. the
Infomap clusters in all realizations of the optimal simulated network and iii. the Infomap
clusters in the empirical network.
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Figure C.17: R&D, laboratory and testing R&D network (SIC code 873). (a) Dis-
tribution of link types for empirical and simulated networks. (b) Distribution of path
lengths at the moment of link formation (only for nodes belonging to the same connected
component).
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Figure C.18: Quantum mechanics, field theories and special relativity co-authorship
network (PACS number 03). Distributions of node degrees (a), path lengths (b), local
clustering coefficients (c) and component sizes (d) for the real and the optimal simulated
networks.
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Figure C.19: Quantum mechanics, field theories and special relativity co-authorship
network (PACS number 03). (a) Visual representation of one realization of the optimal
simulated network. (b) Size distribution of i. the circles of influence in all realizations of
the optimal simulated network, ii. the Infomap clusters in all realizations of the optimal
simulated network and iii. the Infomap clusters in the empirical network.
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Figure C.20: Quantum mechanics, field theories and special relativity co-authorship
network (PACS number 03). (a) Distribution of link types for empirical and simulated
networks. (b) Distribution of path lengths at the moment of link formation (only for nodes
belonging to the same connected component).
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Figure C.21: General relativity and gravitation co-authorship network (PACS number
04). Distributions of node degrees (a), path lengths (b), local clustering coefficients (c)
and component sizes (d) for the real and the optimal simulated networks.
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Figure C.22: General relativity and gravitation co-authorship network (PACS number
04). (a) Visual representation of one realization of the optimal simulated network. (b)
Size distribution of i. the circles of influence in all realizations of the optimal simulated
network, ii. the Infomap clusters in all realizations of the optimal simulated network and
iii. the Infomap clusters in the empirical network.
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Figure C.23: General relativity and gravitation co-authorship network (PACS number
04). (a) Distribution of link types for empirical and simulated networks. (b) Distribution
of path lengths at the moment of link formation (only for nodes belonging to the same
connected component).
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Figure C.24: Optics co-authorship network (PACS number 42). Distributions of node
degrees (a), path lengths (b), local clustering coefficients (c) and component sizes (d) for
the real and the optimal simulated networks.
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Figure C.25: Optics co-authorship network (PACS number 42). (a) Visual represen-
tation of one realization of the optimal simulated network. (b) Size distribution of i. the
circles of influence in all realizations of the optimal simulated network, ii. the Infomap
clusters in all realizations of the optimal simulated network and iii. the Infomap clusters
in the empirical network.
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Figure C.26: Optics co-authorship network (PACS number 42). (a) Distribution of
link types for empirical and simulated networks. (b) Distribution of path lengths at the
moment of link formation (only for nodes belonging to the same connected component).
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Figure C.27: Electronic transport in condensed matter co-authorship network (PACS
number 72). Distributions of node degrees (a), path lengths (b), local clustering coefficients
(c) and component sizes (d) for the real and the optimal simulated networks.
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Figure C.28: Electronic transport in condensed matter co-authorship network (PACS
number 72). (a) Visual representation of one realization of the optimal simulated network.
(b) Size distribution of i. the circles of influence in all realizations of the optimal simulated
network, ii. the Infomap clusters in all realizations of the optimal simulated network and
iii. the Infomap clusters in the empirical network.
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Figure C.29: Electronic transport in condensed matter co-authorship network (PACS
number 72). (a) Distribution of link types for empirical and simulated networks. (b)
Distribution of path lengths at the moment of link formation (only for nodes belonging to
the same connected component).
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Figure C.30: Superconductivity co-authorship network (PACS number 74). Distribu-
tions of node degrees (a), path lengths (b), local clustering coefficients (c) and component
sizes (d) for the real and the optimal simulated networks.
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Figure C.31: Superconductivity co-authorship network (PACS number 74). (a) Visual
representation of one realization of the optimal simulated network. (b) Size distribution
of i. the circles of influence in all realizations of the optimal simulated network, ii. the
Infomap clusters in all realizations of the optimal simulated network and iii. the Infomap
clusters in the empirical network.
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Figure C.32: Superconductivity co-authorship network (PACS number 74). (a) Dis-
tribution of link types for empirical and simulated networks. (b) Distribution of path
lengths at the moment of link formation (only for nodes belonging to the same connected
component).
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Supplementary material to Chapter 5

Mean knowledge path We report in Fig. D.1 the mean knowledge path of the collabo-

ration network 〈K〉 as a function of the dynamics parameter λ and the static parameter ε,

for a representative network of N = 200 agents moving in a knowledge space with D = 10

dimensions.
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Figure D.1: Mean knowledge path 〈K〉, as a function of the rewiring rate λ and (para-
metrically) the interaction radius ε. The R&D network under examination has N = 200
nodes and learning rate µ = 1, in a 10−dimensional knowledge space. We generate 1000
simulations for each parameter set and then average the results.
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Empirical features of the pooled R&D network with patents We report in Fig.

E.1 and Fig. E.2 the activity distribution and the alliance size distribution, respectively,

for the pooled R&D network with patent data.
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Figure E.1: Complementary cumulative distribution function (CCDF) of the empirical
firm activities in the pooled R&D network with patent data, measured on the SDC dataset
with 4 different time windows ∆t of 1, 5, 10 and 26 years. When the time window is shorter
than 26 years (the entire dataset observation period), we compute the activity by shifting
the time window in 1-year increments and then we average the results.

Numerical simulation results For each of the 324,900 computer simulations we run,

we test the resulting generated R&D network with respect to three properties: average

degree 〈k〉, average path length 〈l〉 and global clustering coefficient C. In Fig. E.3 we

show how these three quantities are distributed across all the 324,900 realizations and we

compare them with the observed values 〈k〉OBS, 〈l〉OBS and COBS.

Increasing the dimensionality of the knowledge space For our general modeling

framework, we have tested a patent categorization at the “class” level (i.e. the first letter

plus two digits of the IPC code). This way, we have obtained a total of 74 classes in
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Figure E.2: Distribution of the number of partners per alliance, as measured from the
SDC alliance dataset, for the pooled R&D network with patent data.
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Figure E.3: Distributions of average degree 〈k〉, average path length 〈l〉 and global
clustering coefficient C across all 324,900 runs of our model (each of the 3,249 points in
the parameter space has been explored 100 times). The vertical red lines represent the
observed values 〈k〉OBS, 〈l〉OBS and COBS in the empirical R&D network with patent data.

our metric knowledge space. We find that the computational burden of operating in a

74-dimensional space does not lead to any significant change in our results, if compared

to the 7-dimensional knowledge space that we have studied in Chapter 6.
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Figure E.4: Goodness score for every point in the parameter space, depicted by means
of a heatmap. The color scale corresponds to the score value; the lower the score, the closer
the simulated R&D network is to the empirical one. The dimensionality of the knowledge
space is D = 74, obtained by using a 3-digit IPC patent classification.
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